八年级数学菱形定义

合集下载

人教版八年级数学课件《菱形的性质》

人教版八年级数学课件《菱形的性质》

达标检测
人教版数学八年级下册
达标检测
人教版数学八年级下册
3.如图,已知菱形的两条对角线分别为6cm和8cm,则 这个菱形的高DE为( B ) A.2.4cm B.4.8cm C.5cm D.9.6cm
达标检测
人教版数学八年级下册
4.如图,菱形ABCD的边长为4cm,∠BAD=120°。对角线AC、 BD相交于点O,求这个菱形的对角线长和面积.
第十八章第2节
人教版数学八年级下册
菱形的性质 PEOPLE EDUCATION VERSION OF THE EIGHTH GRADE MATH VOLUME
学校:XXXX
老师:XXXX
学习目标
人教版数学八年级下册
1.了解菱形的概念及其与平行四边形的关系.探索并证明菱形的 性质定理.(重点)
2.应用菱形的性质定理解决相关计算或证明问题.(难点)
知识精讲
人教版数学八年级下册
菱形是特殊的平行四边形,它除具有平行四边形的所有性质外, 还有平行四边形所没有的特殊性质.
菱形的特殊性质
对称性:是轴对称图形. 边:四条边都相等. 对角线:互相垂直,且每条对角 线平分一组对角.
平行四边形的性质 角:对角相等. 边:对边平行且相等. 对角线:相互平分.
典例解析
B
D
C
你有什么发现?
菱形的面积 = 底×高 = 对角线乘积的一半
典例解析
人教版数学八年级下册
例4 如图,在菱形ABCD中,点O为对角线AC与BD的交点, 且在△AOB中,OA=5,OB=12.求菱形ABCD两对边的距离h.
解:在Rt△AOB中,OA=5,OB=12,
∴S△AOB=
12OA·OB=

八年级菱形知识点总结

八年级菱形知识点总结

八年级菱形知识点总结在初中数学中,菱形是一种常见的图形,学生需要掌握它的性质和用法。

本文将总结八年级菱形的知识点,包括面积、周长、对角线、中线等方面,希望对初中数学学习有所帮助。

一、菱形的定义和性质菱形是四边形的一种,它有如下性质:1. 四条边相等,即AB=BC=CD=DA,其中AB代表菱形上的任意一条边;2. 对角线互相垂直,且相互平分,即AC⊥BD并且AC=BD;3. 对角线的中点连线互相垂直,即AE⊥BF,CE⊥DF,其中E 和F分别是AC和BD的中点;4. 菱形内角和为360度,即∠ABC+∠BCD+∠CDA+∠DAB=360度。

二、菱形的周长和面积1. 周长由于菱形的四条边相等,因此它的周长可以用任意一条边a来表示,即P=4a。

2. 面积菱形面积的公式是S=(d1×d2)/2,其中d1和d2分别是对角线长,可以使用勾股定理计算,即d1²=d²+a²/4,d2²=d²+b²/4。

其中a和b分别是菱形两边的长度,d是菱形的对角线长度。

三、菱形的对角线和中线1. 对角线的长度由于菱形的对角线互相平分,因此可以用勾股定理求出对角线的长度,即d=√(a²+b²)。

2. 对角线的中点连线菱形的对角线的中点连线被称为菱形的中线,分别用e和f表示,它们互相垂直,长度相等。

中线长度的公式为e=f=√(a²+b²)/2。

四、菱形的应用1. 建筑设计在建筑设计中,常常需要设计菱形形状的窗户和门,因为这样可以在视觉上改变建筑物的形状。

2. 拼贴艺术拼贴艺术是一种非常受欢迎的艺术形式,它可以使用各种材料进行创作,包括彩纸、糊纸、墙纸等。

在拼贴艺术中,菱形形状也经常被使用。

3. 数学应用菱形在数学中有着广泛的应用,包括概率、统计、几何等方面。

例如,在概率计算中,会使用菱形图来表示事件的可能性。

在统计学中,会使用菱形图来表示一组数据的分布情况。

19.2.2 菱形的判定 数学华师大版八年级下册课件

19.2.2 菱形的判定 数学华师大版八年级下册课件

如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是 什么四边形?
解:四边形EFGH是菱形. 理由如下:连接AC、BD
EB A
∵点E、F、G、H为各边中点,
EF GH 1 BD,FG EH 1 AC.
又∵AC=BD2,
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
F
A
D AB=BC=CD=DA
A
D
B
C
四边形ABCD
B
C
菱形ABCD
几何语言 ∵在四边形ABCD中,AB=BC=CD=DA ∴四边形ABCD是菱形
用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的 十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候 变成菱形?
猜想:对角线互相垂直的平行四边形是菱形.
O B
(4)若∠BAO=∠DAO,则□ABCD是 菱 形.
4.下列命题中正确的是( C )
A.一组邻边相等的四边形是菱形 C.四条边相等的四边形是菱形
B.三条边相等的四边形是菱形 D.四个角相等的四边形是菱形
5.对角线互相垂直且平分的四边形是( C )
A.矩形
B.一般的平行四边形
C.菱形
D.以上都不对
例5 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边
形EFGH是菱形. 证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
∴AC=BD.
∵点E、F、G、H为各边中点,
EF GH 1 BD,FG EH 1 AC,
2
2
∴EF=FG=GH=HE,
F

人教版八年级数学下册《菱形》课件

人教版八年级数学下册《菱形》课件


20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。
Hale Waihona Puke •6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?

7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。
菱形
1.什么叫做平行四边形? 2.什么叫矩形? 3.平行四边形和矩形之间的关系 是什么?
矩形
一 . 定义
平行四边形
邻边相等
菱形
有一组邻边相等的平行四边形叫做菱形.
感受
生活
三菱越野汽车欣赏
菱形就在我们身边
菱形是特殊的平行四边形,它具有平 行四边形的一切性质.即
边:菱形的对边平行且相等. 角:菱形的对角相等. 对角线:菱形的对角线互相平分.
求:(1)∠ABC的度数 (2)对角线AC、BD的长;
(3)菱形ABCD的面积。
D
C
O
A
B
E
回味无穷
这 堂 课 你 学 到 了 什 么?
作业
课本 60 页 5、11题

1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。

2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
O
B
D
C
课堂检测
1.已知菱形的周长是12cm,那 么它的边长是______.

初中数学菱形的性质及判定

初中数学菱形的性质及判定

初中数学菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,? 还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质及判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

板块一、菱形的性质菱形的两条对角线将菱形分成全等三角形的对数为考点】菱形的性质及判定题型】填空难度】2 星关键词】解析】根据菱形的性质可知:共有8 对答案】8在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】【解析】根据菱形的性质可知:应当旋转至少180【答案】180如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离AB BC16cm ,则1 度.考点】菱形的性质及判定题型】填空难度】2 星关键词】2009 年,江西中考解析】由题意可知:构成三角形为等边三角形答案】120如图,在菱形ABCD 中,A 60 ,E 、F 分别是AB 、AD 的中点,若EF 2 ,则菱形ABCD 的边长是______________________ .AC【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】2009 年,漳州中考【解析】省略【答案】4如图,E 是菱形ABCD 的边AD 的中点,EF AC 于H ,交CB 的延长线于F ,交AB 于P ,证明:AB与EF 互相平分.考点】菱形的性质及判定,平行四边形的性质和判定题型】解答难度】3 星关键词】解析】省略答案】连接BD、AF、EB菱形ABCD 中BD AC ,EF AC ,∴ BD ∥ EF∵ AD ∥ FC ,∴四边形BDEF 是平行四边形,∴ ED FB 又∵ AE∥FB,∴四边形AFBE 是平行四边形∴ AB 与EF 互相平分如图1 所示,菱形ABCD 中,对角线AC 、BD 相交于点O,H 为AD 边中点,菱形ABCD 的周长为24 ,则OH 的长等于AE ED ,∴ AE FB考点】菱形的性质及判定 题型】填空 难度】 2 星 关键词】 2009 年,本溪中考 解析】省略 答案】 3如图,已知菱形 ABCD 的对角线 AC 8cm ,BD 4cm ,DE BC 于点 E ,则 DE 的长 为 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星【关键词】 【解析】省略 【答案】8 5cm 5菱形周长为 52cm , 一条对角线长为 10cm ,则其面积为 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星 【关键词】D图1【解析】菱形的边长为52 4 13 cm ,由勾股数和菱形对角线的性质得另一对角线长为24 cm ,故面积为120 cm2【答案】120菱形的周长为20cm ,两邻角度数之比为2:1 ,则菱形较短的对角线的长度为【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】【解析】省略【答案】5如图2,在菱形ABCD 中,AC 6,BD 8,则菱形的边长为()A.5 B .10 C .6 D .8考点】菱形的性质及判定题型】选择难度】2 星关键词】2009 年,重庆江津中考解析】由菱形的对角线互相垂直平分及勾股数可知选A答案】A如图3,在菱形ABCD 中,A 110 ,E 、F 分别是边AB 和BC 的中点,EP 于点P ,则FPC ()A.35 B .45 C .50 D .55CDD考点】菱形的性质及判定 题型】选择 难度】 2 星 关键词】 2009 年,杭州市中考 解析】省略 答案】 D如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一 个锐角为 60 的菱形,剪口与折痕所成的角 的度数应为( ) 考点】菱形的性质及判定 题型】选择 难度】 2 星 关键词】 2009 年,绵阳市中考 解析】省略 答案】 D菱形 ABCD 中, E 、F 分别是 BC 、CD 的中点,且 AE BC ,AF CD , 那么 等于 . 【考点】菱形的性质及判定 题型】填空 难度】 2 星 关键词】A . 15 或 30B . 30 或 45C . 45 或 60DEAFE BP C图330解析】省略 答案】 60已知菱形的一个内角为 60 ,一条对角线的长为 2 3 ,则另一条对角线的 长为 _________________ . 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星【关键词】 2009 年,辽宁朝阳中考 【解析】省略 【答案】 2 或 6如图,将一个长为 10cm ,宽为 8cm 的矩形纸片对折两次后,沿所得矩形 两邻边中点的连线 (虚线)剪下,再打开, A . 10cm 2B . 20cm 2C . 40cm 2考点】菱形的性质及判定 题型】选择 难度】 3 星 关键词】 2009 年,南宁市中考 解析】省略 答案】 A已知菱形 ABCD 的两条对角线 AC ,BD 的乘积等于菱形的一条边长的平方, 则菱形的一个钝角的大小是 【考点】菱形的性质及判定得到的菱形的面积为 ( ) D . 80cm 2C2【题型】填空 【难度】 4 星【关键词】希望杯邀请赛【解析】如图,过点 A 作 AE BC 于 E ,则 1AC BD BC AE ,又 AC BD AB 2,2得AE 1AB , ABC 30 , BAD 1502答案】 150如图,菱形花坛 ABCD 的周长为 20m , ABC 60 , ? 沿着菱形的对角线修 建了两条小路 AC 和 BD ,求两条小路的长和花坛的面积.考点】菱形的性质及判定 题型】解答 难度】 3 星 关键词】 解析】 ∵四边形 ABCD 是菱形∴ AB BC CD DA 5 ∵ABC 60∴ ABC 和 ADC 都是等边三角形 ∴ AC 5 又∵ AC BD在 Rt ABO 和 Rt ADO 中可得53BO DODA图2∴BD 5 3∴ S ABCD1 AC BD 25 3 ABCD 2 2点评:内角为60 和120 的菱形学生必须掌握,这是考试的热点模型.【答案】见解析如图,在菱形ABCD 中,AB 4a ,E 在BC 上,BE 2a ,BAD 120 ,P 点在BD 上,则PE PC 的最小值为【考点】菱形的性质及判定【题型】填空【难度】3 星【关键词】【解析】A,C 关于BD对称,连AE 交BD 于P ,且AE BC ,BAE 30 ,PE PC AE 4a 2 2a 2 2 3a 为最小值【答案】2 3a已知,菱形ABCD中,E、F 分别是BC 、CD上的点,若AE AF EF AB,求C的度数.考点】菱形的性质及判定题型】解答难度】4 星关键词】解析】∵ AE AB ∴ B AEBD同理D AFD∵四边形 ABCD 是菱形考点】菱形的性质及判定 题型】解答 难度】 4 星 关键词】 解析】连接 AC ,∵ 四边形 ABCD 为菱形AB BC CD AD△ABC 和 △ ACD 为等边三角形AB AC , B ACD BAC 60 EAF 60 BAE CAF△ ABE ≌△ ACF AE AFEAF 60△AEF 为等边三角形AEF 60∵AEC B BAE AEF CEF∴ CEF 18 分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题 转∴ AD ∥ BC , B D , BAD C , AEB AFDB D ∴ BAE DAFDE EF AF ,∴ △ AEF 是等边三角形,∴EAF 60AD ∥BC ,xB BAD 180 ,∴ 90 60 2x 1802∴x 20 ∴C【答案】 100BAD 60 2 x 100已知,菱形 ABCD 中, E 、 F 分别是 BC 、 BAE 18 .求: CEF 的度数.CD 上的点,且B EAF 60 ,化为三角形问题.【答案】18板块二、菱形的判定如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是.考点】菱形的性质及判定题型】填空难度】2 星关键词】2007 年,四川成都解析】AB AD,AC BD 等;答案】AB AD,AC BD如图,在ABC 中,BD 平分ABC ,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形考点】菱形的性质及判定题型】解答难度】3 星关键词】解析】省略答案】∵ EF 是BD 的中垂线∴BE DE ,BF DF ,∴DBE BDE∵ EBD DBF∴ DBF EDB ,所以BC∥ DE 同理AB∥ DF 所以四边形BEDF 是菱形如图,在ABC 中,AB AC ,D是BC 的中点,连结AD,在AD 的延长线上取一点E,连结BE ,CE .当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】2009 年,娄底中考【解析】当AE 2AD (或AD DE 或DE 1 AE )时,四边形ABEC 是菱形2理由如下:∵ AE 2AD ,∴ AD DE又点D 为BC 中点,∴ BD CD∴四边形ABEC 为平行四形边∵ AB AC∴四边形ABEC 为菱形【答案】见解析已知:如图,平行四边形ABCD 的对角线AC的垂直平分线与边AD 、BC 分别相交于E 、F . 求证:四边形AFCE 是菱形.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】2006 年,盐城中考【解析】省略【答案】∵ EF 垂直平分AC,∴ EF AC,AO CO .o∴ AOE COF 90o.又∵ ABCD 平行四边形,∴ EAO FCO .∴ AOE ≌COF .∴OE OF .∴四边形AECF 是平行四边形.又由AC EF 可知,四边形AECF 是菱形.如图,在梯形纸片ABCD 中,AD //BC ,AD CD ,将纸片沿过点D 的直线折叠,使点C 落在AD上的点C处,折痕DE交BC于点E,连结CE. 求证:四边形CDC E 是菱形.考点】菱形的性质及判定题型】解答难度】3 星关键词】2007 年,云南双柏解析】省略答案】根据题意可知CDE C'DE则CD C'D,C'DE CDE ,CE C'E .∵ AD / /BC ,∴ C DE CDE .∴ CDE CED ,∴ CD CE .∴ CD C D CE CE ,∴四边形CDC E为菱形.如图,E 是菱形ABCD 的边AD 的中点,EF AC 于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分【考点】菱形的性质及判定,平行四边形的性质和判定【题型】解答【难度】3 星【关键词】【解析】省略【答案】连结BD,AF ,EB,因为菱形ABCD 中BD AC ,又因为EF AC ,所以BD ∥ EF ,因为AD ∥ FC ,所以四边形BDEF 是平行四边形,可得ED FB ,因为AE ED,所以AE FB,从而AE∥ FB ,AE FB ,因此四边形AFBE 是平行四边形,所以AB与EF互相平分已知:如图,在平行四边形ABCD 中,AE 是BC边上的高,将ABE沿BC 方向平移,使点E与点C重合,得GFC .若B 60 ,当AB与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.B E F C考点】菱形的性质及判定题型】解答难度】3 星关键词】2009 年,山东青岛市解析】省略答案】当BC 3AB 时,四边形ABFC 是菱形.2AB∥GF ,AG∥ BF 四边形ABFG 是平行四边形∵ Rt ABE 中, B 60∴ BAE 30∴ BE1 AB2∵ BE CF ,BC3 AB2∴ EF1 AB2∴ AB BF∴四边形ABFG是菱形如图,在ABC 中,AB AC ,M 是BC 的中点.分别作MD AB于D ,ME AC 于E,DF AC 于F ,EG AB 于G.DF、EG 相交于点P .求证:四边形DMEP 是菱形.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】【解析】省略【答案】∵ MD AB,EG AB.∴ MD ∥ EG ,同理ME ∥ DF ,∴四边形MFPD 是平行四边形AB AC ,BCo∵ BM MC , BDM CEM 90o,∴ BDM ≌ CEM ∴ DM EM ,∴四边形 DMEP 是菱形如图, ABC 中, ACB 90 ,AD 是 BAC 的平分线, 交 BC 于 D ,CH 是 AB 边上 的高,交 AD 于 F , DE AB 于 E ,求证:四边形 CDEF 是菱形.考点】菱形的性质及判定 题型】解答 难度】 3 星 关键词】 解析】省略 答案】 ∵ CH AB ,∴ HAF AFH 90ACB 90 ,∴ CAD ADC 90AD 平分 CAB ,∴ CAD HAF ,∴ AFH CDF AFH CFD ,∴ CDF CFD ,∴ CF CD AD 平分 CAB , DC AC , DE AB∴CD DE ,∴ CF DE 又∵ CH AB ,DE AB∴ CF ∥ DE , 故四边形 ABCD 是平行四边形∵ CD DE , ∴四边形 ABCD 是菱形 如图, M 是矩形 ABCD 内的任意一点,将 MAB 沿 AD 方向平移,使 AB 与 DC 重合,点 M 移动到点 M '的位置 ⑴画出平移后的三角形;⑵连结 MD ,MC ,MM ' ,试说明四边形 MDM 'C 的对角线互相垂直,且长度分 别等于AB ,AD 的长;⑶当 M 在矩形内的什么位置时, 在上述变换下, 四边形 MDM 'C是菱形?为什么?AD AM D M'BC【考点】菱形的性质及判定 【题型】解答 【难度】 3 星【关键词】 【解析】省略 【答案】⑴如图, DCM '就是所要作的三角形⑵因为 AM 平移到 DM ' ,所以 AM ∥DM '且AM DM ',四边形 DAMM' 是平行四边形,所以AD ∥MM ',矩形 ABCD 中,AD CD , 所以 MM ' CD ,又因为 AD MM ' , CD AB ,所以四边形 MDM 'C 的对角线互相垂直, 且长度分别等于 AB ,AD 的 长⑶当点 M 是 AC ,BD 的交点时,四边形 MDM 'C 是菱形,理由:如 图,矩形ABCD 中,AM BM MC MD , 又因为 AM D'M ,BM CM ' , 可得 MD MC CM ' DM ' , 所以 四边形 MDM 'C 是菱形 如图, ACD 、 ABE 、 BCF 均为直线 BC 同侧的等边三角形.已知 ABAC . ⑴ 顺次连结 A 、D 、F 、 E四点所构成的图形有哪几类?直接写出构成 图形的类型和相应 的条件.⑵ 当 BAC 为度时,四边形 ADFE 为正方形.考点】菱形的性质及判定题型】解答【难度】 3 星【关键词】 2008 年,佛山市中考改编DBC【解析】省略【答案】⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC≠60°(或A与F不重合、△ ABC不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC= 60°(或A与F重合、△ ABC为正三角形).⑵ 150 .三、与菱形相关的几何综合题已知等腰△ABC 中,AB AC ,AD 平分BAC交BC 于D点,在线段AD 上任取一点P(A点除外),过P点作EF ∥ AB ,分别交AC 、BC于E 、F点,作PM∥AC,交AB于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?M考点】菱形的性质及判定题型】解答难度】3 星关键词】解析】省略答案】⑴∵ PM ∥AC,EF∥ AB∴四边形AEPM 为平行四边形∵ AB AC ,AD平分CAB∴ CAD BADAD BC,BAD EPACAD EPAEA EPS 四边形 EFBM2 ∵四边形 AEPM 为菱形, ∴ AD EM∵AD BC ∴EM ∥BC 又 EF ∥AB ∴四边形 EFBM 为平行四边形问题:如图 1,在菱形 ABCD 和菱形 BEFG 中,点 A ,B ,E 在同一条直线上, P 是线段 DF 的中点,连结 PG ,PC .若 ABC BEF 60 ,探究 PG 与 PC 的位置 关系及 PG的值.PC小聪同学的思路是:延长 GP 交 DC 于点 H ,构造全等三角形,经过推理 使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: ⑴ 写出上面问题中线段 PG 与 PC 的位置关系及 PG的值;PC⑵ 将图 1 中的菱形 BEFG 绕点 B 顺时针旋转,使菱形 BEFG 的对角线 BF 恰 好与菱形ABCD 的边 AB 在同一条直线上,原问题中的其他条件不变(如 图 2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以 证明. ⑶ 若图 1 中 ABC BEF 2 0 90 ,将菱形 BEFG 绕点 B 顺时针旋转任【考点】菱形的性质及判定,全等三角形的性质和判定,旋转的性 质 题型】解答 难度】 5 星【关键词】 2008 年,北京中考 【解析】省略【答案】⑴ 线段 PG 与 PC 的位置关系是 PG PC ;PG3 .PC∴四边形 AEPM 为菱形 ⑵当 P 为 EF 中点时,S意角度,原问题中的其他条件不变,求 PG 的值(用含的式子表示) .F⑵ 猜想:⑴中的结论没有发生变化.证明:如图,延长 GP 交 AD 于点 H ,连结 CH ,CG .∵ P 是线段 DF 的中点, ∴ FP DP .由题意可知 AD ∥FG .∴ GFP HDP . 又∵ GPF HPD ,∴ GFP ≌ HDP ,∴ GP HP , GF HD .∵四边形 ABCD 是菱形,∴ CD CB , HDC ABC 60 . 由ABC BEF 60 ,且菱形 BEFG 的对角线 BF 恰好与菱形 ABCD 的边 AB 在同 一条直线上,可得 GBC 60 . ∴ HDC GBC . ∵四边形 BEFG 是菱形,∴ GF GB ,∴ HD GB .∴ HDC ≌ GBC ,∴ CH CG , DCHBCG . ∴ DCH HCB BCG HCB 120 ,即 HCG 120 .∵CHCG, PH PG , ∴ PG PC , GCP HCP 60 .∴ PG3.PC⑶PGtan 90 .证明过程略.PC本题是一道探究性的几何综合题,本题的题干是以阅读材料的形式呈 现,从而降低了题目的难度, 本题应该是在 05 年大连中考压轴题的基 础上改进而来的.四、中位线与平行四边形顺次连结面积为 20 的矩形四边中点得到一个四边形,再顺次连结新四 边形四边中点得到一个 ,其面积为 . 【考点】三角形的中位线 【题型】填空 【难度】 3 星【关键词】【解析】理由:由中位线得 EF FG GH HE 1AD 即可.2【答案】 AD BC .如图,在四边形 ABCD 中, AB CD , E 、 F 、 G 、 H 分别是 AB 、 BD 、 CD 、 AC 的中点,要使四边形 EFGH 是菱形,四边形 ABCD 还满足的一个条件 是 ,并说明理由.考点】菱形的性质及判定,三角形的中位线 题型】填空 难度】 3 星 关键词】2009 年,上海模拟 解析】理由:由中位线得 EF FG GH HE 1AD 即可.2 答案】 AD BC .在四边形 ABCD 中, AB CD , P , Q 分别是 AD 、 BC 的中点, M , N 分别是 对角线AC , BD 中点,证明:PQ 与MN互相垂直.考点】菱形的性质及判定,三角形的中位线题型】解答难度】4 星关键词】解析】连接PN , NQ , MQ , PM .证明PNQM 为菱形.答案】见解析四边形ABCD 中,R、P 分别是BC 、CD 上的点,点,当点P在CD上从C向D移动而点R不动时,()A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不变D.线段EF 的长与点P的位置有关考点】三角形的中位线题型】选择难度】4 星关键词】解析】连结AR ,利用三角形的中位线可得答案】CE、F 分别是AP、RP的中那么下列结论成立的是EF 12 AR与点P无关.如图,ABC 中,AD 是BAC 的平分线,CE AD 于 E ,M 为BC 的中点,AB 14cm ,AC 10cm,则ME 的长为【考点】三角形的中位线【题型】填空【难度】3 星【关键词】【解析】延长CE 交AB 于点线可得14 10 2 cm .2【答案】2N .利用中位线的性质和直角三角形斜边中如图,四边形ABCD 中,AB长,分别交BA,CDCD ,的延长线于点的中点,连结EF 并延CHEBC,ADBGEE,F 分别是G ,H ,求证:【考点】三角形的中位线【题型】解答【难度】4 星【关键词】【解析】省略【答案】连结BD,取BD中点P ,连结PE,PF ,BDC ,DBA 的中位线,所以PE∥DC,PF ∥BA,且PE 所以PE PF ,所以PEF PFE ,由PE∥ DC 可得:所以BGE CHEPE PF ,PFEBGE ,由条件易得1DC ,PF2PEF1BA2CHEPE,PF 分别是,因为AB CD ,,同理可得如图,已知 BE 、 CF 分别为 ABC 中 B 、 C 的平分线, AM BE 于 M,AN CF 于 N ,求证:MN ∥ BC.【考点】三角形的中位线 【题型】解答 【难度】 4 星 【关键词】【解析】延长 AM 、 AN 交 BC 于点 Q 、 R . 由等腰三角形三线合一可得 AM QM 、 ANRN 再由三角形中位线可得 MN ∥ BC .【答案】见解析如图,四边形 ABCD 中,E ,F 分别是边 AB ,CD 的中点,【考点】三角形的中位线 【题型】选择 【难度】 3 星 【关键词】【解析】连结 BD ,取 BD 的中点 P ,连结 FP ,EP ,由三角形的中位线可知 选B 【答案】 B则 AD ,BC 和 EF 的关系是( )A . AD BC 2EFBC .AD BC 2EF DAD BC ≥ 2EF AD BC ≤ 2EF已知如图所示,E、F 、G 、H分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】3 星【关键词】【解析】连接AC .∵ H 、G 分别为AD 、DC 中点∴ HG 1 AC ,HG ∥ AC2 又∵ E、F 分别为AB、BC 中点∴ EF 1 AC ,EF ∥ AC ,∴ HG EF ,HG ∥ EF2 ∴四边形EFGH 为平行四边形【答案】见解析如图,在四边形ABCD 中,E为AB 上一点,ADE 和BCE 都是等边三角形,AB、BC 、CD 、DA的中点分别为P、Q、M 、N ,证明四边形PQMN 为平行四边形且PQ PN .D考点】平行四边形的性质和判定,三角形的中位线题型】解答难度】4 星关键词】2009 年,兰州中考解析】如图,连结AC 、BD .∵ PQ 为 ABC 的中位线 ∴ PQ ∥ AC 且 PQ 1AC2同理 MN ∥ AC 且 MN 1AC2∴ MN ∥ PQ 且 MN PQ∴四边形 PQMN 为平行四边形. 在 AEC 和 DEB 中AE DE , EC EB , AED 60 CEB 即 AEC DEB ∴ AEC ≌ DEB∴AC BD ∴ 1 1.∴ PQ AC BD PN .22【答案】见解析如图,四边形 ABCD 中,AB CD ,E ,F ,G ,H 分别是 AD ,BC ,BD ,AC 的中点,求证: EF ,GH相互垂直平分【考点】菱形的性质及判定,三角形的中位线 【题型】解答 【难度】 3 星 【关键词】【解析】连结 EG ,GF ,FH ,HE ,根据题意, EG ,HF 分别是 DAB , CAB 的中位线, 所 以 EG HF 1AB , 同 理 可 证 : GF EH 1CD , 因为 AB CD , 所以 22EG HF GF EH , 则四边形 EGFH 是菱形,所以 EF ,GH 相互垂直 【答案】见解析ABC 的三条中线分别为 AD 、BE 、CF ,H 为 BC 边外一点,且 BHCF 为平行 四边形,求证: AD ∥ EH.C考点】平行四边形的性质和判定,三角形的中位线题型】解答难度】4 星关键词】【解析】此题解法很多,仅供两种解法参考.方法一:连结DE 、DH .(如图1)∵四边形BHCF 为平行四边形∴CH BF AF 且CH ∥ AF由中位线可得DE 12 AB AF∴ CH DE∴四边形DECH 为平行四边形∴DH ∥ CE 且DH CE AE∴四边形DHEA 为平行四边形∴ AD ∥ EH方法二:连结DE .(如图2)通过中位线和平行四边的性质可得DE HC ,AB∥ DE ∥HC∴ AED ECH 又∵ AE EC显然ADE ≌EHC ∴DAE HEC ∴ AD ∥ EH 【答案】见解析在平行四边形ABCD 的对角线BD上取一点 E ,使BE1 DE ,连接AE 并延长3与DC 的延长线交于F ,则CF 2 AB .OR ∥CD ∥ AB,【考点】三角形的中位线 【题型】解答 【难度】 5 星 【关键词】【解析】法 1:如图 2,取 BD 之中点 O ,由 O 引 OM ∥ AF 交 DF 于 M ,再由 C 引CG ∥FE交BD 于 G .∵ AB CD , ABE CDG , BAE DCG ,∴ ABE ≌ CDG , BE DG , 则 O 为 EG 的中点, ∴ EO OG . 又∵ DG BE 1DE ,3 1∴ EO OG DE ,3即 G 、 O 是 DE 的三等分点. ∵ CG ∥ OM ∥ AF ,∴C 、M 是 DF 的三等分点,有 CF 2CD . 而 CD AB ,∴ CF 2AB .法 2 :如图 3,连接 AC 交 BD 于 O ,则 O 为 AC 、BD 的中点,取 AF 的中点 R , 连接 AC 交 BD 于 O ,则 O 为 AC 、 BD 的中点,取 AF 的中点 R ,连接 OR ,则 1 OR ∥ CF .2图3∴ABE ROE ,BAE ORE.又∵ BE OE OD ,BE 1 DE 1 (OE OD),33由此可得BE 1OD,OE 1DE ,23BE OE ,ABE ≌ROEAB OR.即AB1OR CF ,∴CF2AB.2法3:如图1,∵AB∥DF ,AB BE 1,DF DE 3即DF3AB.又AB CD ,CF DF CD 3 AB AB,即CF2AB.答案】见解析如图,ABC中,E、F分别是AB 、BC的中点,G、H是AC的三等分点,连结并延长EG 、FH交于点D.求证:四边形ABCD是平行四边形.【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】4 星【关键词】【解析】连接BG 、BH 、BD ,设BD 与AC 相交与点O∵E、F 分别是AB 、BC 的中点,∴ EG ∥ BH ,同理FH ∥ BG ∴四边形BHDG 是平行四边形,∴ OB OD ,OG OH∵ AG HC ,∴ OA OC∴四边形ABCD 是平行四边形【答案】见解析如图,在四边形 ABCD 中, M 、 N 分别为 AD 、BC 的中点, BD AC ,BD 和 AC 相交于点O , MN 分别与 AC 、 BD 相交于 E 、 F ,求证 : OE OF .【考点】三角形的中位线 【题型】解答 【难度】 3 星 【关键词】【解析】取 AB 中点 P ,连结 MP 、 NP . 利用中位线可得MP 1BD NP 1AC22∴PMN PNM ∵ MP ∥BD ,NP ∥ AC∴ OFE OEF ∴ OE OF【答案】见解析 如图,线段 AB ,CD 相交于点 O ,且 AB CD , 连结 AD ,BC , E ,F 分别是 AD ,BC的中点, EF 分别交 AB ,CD 于 M ,N ,求证: OM ON考点】三角形的中位线 题型】解答 难度】 4 星关键词】解析】连结 BD ,取 BD 中点 P ,连结 PE ,PF ,由条件易得 PE ,PF 分别是答案】见解析 如图,梯形 ABCD 中,AD ∥ BC ,AB CD ,对角线 AC ,BD 相交于点 O , AOD 60 ,E ,F ,G 分别是 OA ,OB ,CD 的中点,求证 : EFG 是等边三角形【考点】三角形的中位线,直角三角形斜边上的中线等于斜边的一 半,等腰梯形的性质和判定 【题型】解答 【难度】 4 星 【关键词】【解析】省略【答案】 连结 DE ,由等腰梯形对角线相等, 且 AOD 60 ,可证 AOD 是等 边三角形,因为 E 是 OA 中点,所以 DE AC , 在 Rt DCE 中, G 是 DC 中点, 所以 EG 1DC ,同理可证 FG 1DC ,因为 E ,F 分别是 OA ,OB 的中点,所以 22 EF 1AB ,因为 AB DC , 所以 EG FG EF ,即 EFG 是等边三角形2如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线 共点.DBA , BDC 的中位线,所以 PE ∥ BA ,PF ∥ DC , 且 PE 1 BA ,PF 2所以 PE PF ,所以 PEFPFE ONM , 所以 OMNPFE ,由 PE ∥ BA 可得ONM , 所以 OM ONPEF1DC , 因为 AB CD ,2OMN ,同理可得DLD【考点】三角形的中位线【题型】解答 【难度】 5 星 【关键词】【解析】方法一:设 N ,H ,M ,L ,F ,E 分别为 AB ,BC ,CD ,DA ,AC ,BD 的中点, 要证明 EF ,LH ,及MN 三线共点.因为 LF ∥DC 且 LF 1DC ,2所以 EF ∥ DC 且 EF 1DC ,2LF ∥ EH 且 LF EH ,从而四边形 EHFL 为平行四边形,故 LH 与EF 互相平分.设 LH 与 EF 的交点为 O ,则 LH 经过 EF 中点 O (当然也是 LH 中点).同理, MN 也过EF 中点 O .所以, EF ,LH ,MN 三线共点于 O .说明:本题证明的关键是平行四边形 EHFL 的获得(它是通过三角形中 位线定理来证明的) .由此可见,在某些四边形的问题中,通过构造平行四边形去解题是一 种常用的技巧. 请看下例.方法二:应用中点公式法 可设 A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4 ,y 4 那 么 AC 线 段 的 中 点 坐 标 为 Fx1 x3,y1 y3, BD 线 段 的 中 点 坐 标 为 22Ex 2 x 4 ,y 2 y 4E2 ,2 那么 EF 线段的中点坐标为 x 1 x 2 x3 x4,y 1 y 2 y 3 y422同理可得: MN ,LH的中点坐标也为x1 x2 x3 x4,y1 y2 y3 y422 所以可知: EF , LH , MN 三线共点于 O【答案】见解析如图, O 是平行四边形 ABCD 内任意一点, E , F , G , H 分别是 OA , OB ,OC , OD 的中点.若 DE , CF 交于 P ,DG ,AF 交于 Q , AH , BG 交于 R ,BE ,CH 交 于 S ,求证 :A ENOFHPQ SR .【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】6 星【关键词】【解析】设法证明四边形PORS 为平行四边形.因为F ,G 分别为OB ,OC 的中点,所以FG∥BC,且FG 21BC,FG ∥ AD ,且FG 1 AD ,2从而F 是AQ 中点.同理可证,F 是PC 的中点(EF 是PCD 的中位线).所以四边形APQC 为平行四边形,PQ∥AC,PA AC.同理,RS∥ AC,RS = AC.因此PQ ∥ RS,PQ =RS,即四边形PQRS 为平行四边形,故PQ RS .说明本题证明显示了用平行四边形证题的技巧,平行四边形PQRS ,APQC ,ACRS 像三座互相连接的桥梁一样沟通了条件与结论之间的道路.事实上,由于PQRS 为平行四边形,我们还可得到PQ∥SR,PS∥QR,PS QR,SQ与PR互相平分等等一系列结论.F为AQ的中点(同样G 为DQ 的中点)的断言可以证明于下:取AD 中点M ,连MF ,则FG ∥ MD 且FG MD ,所以四边形MFGD 为平行四边形,MF ∥ DG .因此F 为AQ 的中点.答案】见解析。

初二数学网课优选例习题--菱形

初二数学网课优选例习题--菱形

初二数学网课优选例习题--菱形【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.3.能够利用菱形的性质和判定进行有关的计算和证明。

【基础知识】一、菱形的定义有一组邻边相等的平行四边形叫做菱形.注意:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.注意:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.三、菱形的判定1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.注意:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【考点剖析】考点一:利用菱形的性质求角度例1.(2022·河南·夏邑县育才学校八年级期中)如图,在正方形ABCD中,以对角线AC为一边作菱形AEFC,连接菱形AEFC的对角线AF,则∠F AB的度数等于()A .22.5°B .45°C .30°D .15°考点二:利用菱形的性质求线段的长度例2.(2022·河南·新乡市第一中学八年级期末)如图,在菱形ABCD 中,对角线AC BD ,相交于点O ,若6023BAD AC ∠=︒=,,则菱形ABCD 的周长为( )A .8B .43C .6D .4考点三:利用菱形的性质求面积例3.(2022·浙江·温州绣山中学八年级月考)如图,菱形ABCD 与菱形AECF 的顶点A ,C 重合,12EAF BAD ∠=∠,CE AB ⊥,若菱形AECF 的面积为22,则菱形ABCD 的面积为( )A .4B .42C .62D .222+考点四:利用菱形的性质证明例4.(2022·福建省泉州实验中学八年级期中)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 中点,连接OE ,则下列结论中不一定正确的是( )A .AB =ADB .OE =12ABC .∠DOE =∠EOCD .∠EOD =∠EDO考点五:证明四边形是菱形例5.(2022·浙江·杭州外国语学校八年级期末)如图,平行四边形ABCD 的对角线相交于点O ,请你再添一个条件,使得平行四边形ABCD 是矩形,则下列条件符合的是( )A .BD 平分ABC ∠B . OB OA =C .AC BD ⊥D . AB AD =考点六:菱形的性质与判定的综合应用例5.(2022·福建·厦门外国语学校八年级月考)如图,E ,F 是平行四边形ABCD 对角线BD 上两点,且BE =DF ,若∠BAF =90°,AB =4,AF =AE =3,则AC 的长为( )A .2.4B .3.6C .4.8D .6【真题演练】1.(2022·江苏常州·中考真题)如图,将一个边长为20cm 的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD ,对角线是两根橡皮筋,其拉伸长度达到36cm 时才会断裂.若60BAD ∠=︒,则橡皮筋AC _____断裂(填“会”或“不会”,参考数据:3 1.732≈).2.(2021·江苏淮安·中考真题)已知:如图,在▱ABCD 中,点E 、F 分别在AD 、BC 上,且BE 平分∠ABC ,EF ∥AB .求证:四边形ABFE 是菱形.3.(2021·江苏镇江·中考真题)如图,四边形ABCD 是平行四边形,延长DA ,BC ,使得AE =CF ,连接BE ,DF .(1)求证:ABE CDF △≌△;(2)连接BD ,∠1=30°,∠2=20°,当∠ABE = °时,四边形BFDE 是菱形.4.(2021·江苏盐城·中考真题)如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择一个条件填空(写序号),并加以证明.5.(2022·江苏南通·中考真题)【阅读材料】老师的问题:已知:如图,AE BF ∥.求作:菱形ABCD ,使点C ,D 分别在,BF AE 上.小明的作法:(1)以A 为圆心,AB 长为半径画弧,交AE 于点D ; (2)以B 为圆心,AB 长为半经画弧,交BF 于点C ; (3)连接CD .四边形ABCD 就是所求作的菱形,请根据材料中的信息,证明四边形ABCD 是菱形. 【过关检测】 一、单选题1.(2022·江苏·沛县第五中学八年级月考)如图,在菱形ABCD 中,对角线AC 与BD .相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC =130°,则∠AOE 的大小为( )A .21B .65C .42D .562.(2022·江苏·常青藤实验中学八年级月考)如图,菱形ABCD 的对角线AC 、BD 交于点O ,4AC =,16BD =,将BOC 绕着点C 旋转180︒得到B O C '',则点A 与点B '之间的距离为( )A .6B .8C .10D .123.(2022·四川泸州·八年级期末)若菱形的两条对角线的长分别为8和10,则菱形的面积为( ) A .30B .40C .50D .604.(2022·广东·陆丰市南塘中学八年级月考)下列命题的逆命题不成立的是( ) A .菱形的四条边都相等 B .全等三角形的对应边相等 C .对顶角相等D .等边三角形三个角都等于60︒5.(2022·湖北黄石·八年级期中)如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 边上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有()个.A .1B .2C .3D .46.(2022·浙江绍兴·八年级期末)把一个长方形的纸片按如甲乙图形对折两次,然后剪下图丙中的①部分,为了得到一个锐角为30°的菱形,剪口与折痕所成的角α的度数应为( )A .60°或30°B .30°或45°C .45°或60°D .75°或15°7.(2022·上海市罗南中学八年级月考)如图,ABC ∆中,已知AD 是BAC ∠的平分线,E 、F 分别是边AB AC 、的中点,联结DE DF 、,要使四边形AEDF 为菱形,ABC ∆需要满足一定的条件,该条件可以是______.8.(2022·山东·德州市第五中学八年级期中)如图,在矩形ABCD 中,E 、F 分别是AD 、BC 中点,连接AF 、BE 、CE 、DF 分别交于点M 、N ,四边形EMFN 是______.9.(2022·福建厦门·八年级期中)如图,在平行四边形ABCD 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①2ABC ABF ∠=∠;②2BE BF >;③2EFB DEBC S S =△四边形;④3CFE DEF ∠=∠;其中正确结论有_______.10.(2022·山东菏泽·八年级期末)如图,等边ABC 的边长为6cm ,将ABC 向右平移到DCE △的位置,连接AD ,AE ,则AE 的长为______cm .11.(2022·广东·东莞市寮步镇香市中学八年级期中)如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,6AB =,点E 、F 分别在AB 、BC 上,沿EF 将EBF △翻折使顶点B 的对应点B '落在AC 上,若EB AC '⊥,则EF 等于__________.12.(2022·浙江·杭州市文澜中学八年级期末)在平行四边形中,四条边和两条对角线这六条线段中只有两种长度x ,()y x y <,则xy的值为______.13.(2022·山东·临邑县兴隆镇中学八年级期中)如图,已知菱形ABCD 中,对角线AC 、BD 相交于点O ,过点C 作CE BD ∥,过点D 作DE AC ∥,CE 与DE 相交于点E .(1)求证:四边形CODE 是矩形;(2)若5AB =,6AC =,求四边形CODE 的周长.14.(2022·湖南湘潭·八年级期末)如图,平行四边形ABCD 的两条对角线相交于点O ,3213OA OB AB ===,,(1)求证:平行四边形ABCD 是菱形; (2)求菱形ABCD 的面积.15.(2022·吉林吉林·八年级期末)如图,菱形ABCD 的两条对角线AC 和BD 相交于点O ,并且DE OC CE OD ∥,∥.(1)求证:四边形OCED 是矩形;(2)若AC=45,BD=25,则矩形OCED 的周长为______.16.(2022·贵州省三穗中学八年级期末)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作AF BC ∥,交BE 的延长线于点F ,连接CF .(1)求证:四边形ADCF 是平行四边形;(2)若AB ⊥AC ,试判断四边ADCF 的形状,并证明你的结论.17.如图,四边形ABCD 和四边形AECF 都是菱形,点E ,F 在BD 上已知100BAD ∠=︒,60EAF ∠=︒,求:(1)ABD ∠的度数. (2)BAE ∠的度数.18.取一张长方形纸片,按图的方法对折两次,并沿图③中的斜线(虚线)剪开,把剪下的Ⅰ这部分展开,平铺在桌面上.议一议:(1)剪出的这个图形是哪一种四边形?一定是菱形吗?(2)根据折叠、裁剪的过程,这个四边形的边和对角线分别具有什么性质? (3)一个平行四边形具备怎样的条件,就可以判定它是菱形?19.(2022·陕西·无八年级期末)定义:只有一组对角是直角的四边形叫做损矩形.如图1,90ABC ADC ∠=∠=︒,四边形ABCD 是损矩形.我们发现损矩形的一边与另外两个顶点所构成的两个三角形中,公共边所对的两个角是相等的,比如图1中:ABC 和ABD △有公共边AB ,AB 所对的ADB ∠和ACB ∠相等;再比如ABC 和DBC △有公共边BC ,此时BAC BDC ∠=∠.概念理解(1)请在图1中再找出一对相等的角:_________=_________;(不另添字母且ABC ADC∠=∠除外)(2)如图2,ABC中,90∠=︒,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点.四ABC边形ABCD_______损矩形(填“是”或“不是”);问题探究∠时,(3)在(2)的条件下,连接BD,当BD平分ABC①判断四边形ACEF为何种特殊的四边形?请利用图3画图并说明理由;②若4,52==,求四边形ACEF的面积.AB BDAB=,20.(2022·河北·保定市满城区白龙乡龙门中学八年级期末)如图,在平行四边形ABCD中,6cmAD=,点P在边AD上,以每秒1cm的速度从点A向点D运动,点Q在边CB上,以每秒2cm的速度10cm从点C出发,在CB之间做往返运动.两个动点同时出发,当点P到达点D时两点同时停止运动.设运动t>.时间为t秒(0)(1)用含t的代数式表示线段AP及BQ的长度;(2)在点P,Q的运动过程中,t为何值时,四边形APQB为平行四边形?(3)在点P,Q的运动过程中,是否存在t的值,使四边形APQB为菱形?若存在,直接写出t的值;若不存在,请说明理由.考点一:利用菱形的性质求角度例1.(2022·河南·夏邑县育才学校八年级期中)如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,连接菱形AEFC 的对角线AF ,则∠F AB 的度数等于( )A .22.5°B .45°C .30°D .15°【答案】A【分析】根据正方形对角线的性质:平分对角,可得1452CAB DAB ∠=∠=︒,再根据菱形对角线的性质:平分对角,可得122.52FAB CAB ∠=∠=︒.【详解】解:在正方形ABCD 中,90DAB ∠=︒, AC 是正方形ABCD 的对角线,1452CAB DAB ∴∠=∠=︒,AF 是菱形AEFC 的对角线,∴122.52FAB CAB ∠=∠=︒,故选:A .考点二:利用菱形的性质求线段的长度例2.(2022·河南·新乡市第一中学八年级期末)如图,在菱形ABCD 中,对角线AC BD ,相交于点O ,若6023BAD AC ∠=︒=,,则菱形ABCD 的周长为( )A .8B .43C .6D .4【答案】A【分析】根据菱形的性质得到132AC BD AO AC ==⊥,30DAO ∠=︒,再根据勾股定理和含30度角的直角三角形的性质求出AD 的长即可得到答案. 【详解】解:∵四边形ABCD 是菱形, ∴132AC BD AO AC ==⊥,∵60BAD ∠=︒, ∴30DAO ∠=︒, ∴2AD OD =,在Rt AOD 中,由勾股定理得:222AD OD AO =+,∴22134AD AD =+, ∴2AD =,∴菱形ABCD 的周长为48AD =, 故选A .考点三:利用菱形的性质求面积例3.(2022·浙江·温州绣山中学八年级月考)如图,菱形ABCD 与菱形AECF 的顶点A ,C 重合,12EAF BAD ∠=∠,CE AB ⊥,若菱形AECF 的面积为22,则菱形ABCD 的面积为( )A .4B .42C .62D .222+【答案】C【分析】根据菱形的性质,结合CE AB ⊥,根据ASA 证明()ASA CGA CGB ≌,从而得出AC BC =,即可得出AB AC BC ==,根据SAS 证明BAE CAE ≌,同理证明得出BCE BAE △≌△,从而证明AEBAECBECAFCAFDDFCSSSSSS=====,根据22AECAFCAECF S SS=+=菱形,即可求出结果.【详解】解:连接BD ,AC ,交于点O ,延长CE 交AB 于点G ,如图所示:∵四边形ABCD 与四边形AECF 为菱形,∴12BAC DAC BAD ∠=∠=∠,12BCA DCA BCD ∠=∠=∠,BAD BCD ∠=∠,12EAC FAC EAF ∠=∠=∠,12ECA FCA ECF ∠=∠=∠,EAF ECF ∠=∠,∴BAC DAC BCA DCA ∠=∠=∠=∠, EAC FAC ECA FCA ∠=∠=∠=∠,∵12EAF BAD ∠=∠,∴22BAC BCA EAC ECA ∠=∠=∠=∠, ∴ECA ECB ∠=∠,EAB EAC ∠=∠, ∵CE AB ⊥,∴90CGA CGB ∠=∠=︒, ∵CG CG =,∴()ASA CGA CGB ≌, ∴AC BC =, ∴AB AC BC ==,∵AE AE =,BAE CAE ∠=∠,AB AC =, ∴BAE CAE ≌,∵AB AC =,ABE CBE ∠=∠,BE BE =, ∴BCE BAE △≌△, ∴AEB AEC BEC ≌≌, ∴AEBAECBECSSS==, 同理可得:AFCAFDDFCSSS==,∵四边形AECF 为菱形, ∴AECAFCS S =,∴AEB AECBECAFCAFDDFCSSSSSS=====,∵22AECAFCAECF S S S=+=菱形,∴2AECAFCS S==,∴2AEBAECBECAFCAFDDFCSSSSSS======,∴62ABCD S =菱形,故C 正确. 故选:C .考点四:利用菱形的性质证明例4.(2022·福建省泉州实验中学八年级期中)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 中点,连接OE ,则下列结论中不一定正确的是( )A .AB =AD B .OE =12ABC .∠DOE =∠EOCD .∠EOD =∠EDO【答案】C【分析】由菱形的性质可得AB =AD =CD ,AC ⊥BD ,由直角三角形的性质可得OE =DE =CE =12CD = 12AB ,即可判定A ,B ,D ,再在C 的条件下证明四边形ABCD 是正方形,从而可得答案. 【详解】解:∵四边形ABCD 是菱形,∴AB =AD =CD ,AC ⊥BD ,故选项A 正确,不合题意, ∵点E 是CD 的中点,∴OE =DE =CE =1122CD AB =,故选项B 正确,不合题意;∴∠EOD =∠EDO ,故选项D 正确,不合题意; 若∠DOE =∠EOC ,而,AC BD ⊥ ∴45,COE DOE EDO ECO ∠=∠=︒=∠=∠ ∴OD OC =,∵,,,AC BD OA OC OB OD ⊥==∴四边形ABCD 是正方形,与已知条件矛盾,故C 错误,符合题意; 故选:C .考点五:证明四边形是菱形例5.(2022·浙江·杭州外国语学校八年级期末)如图,平行四边形ABCD 的对角线相交于点O ,请你再添一个条件,使得平行四边形ABCD 是矩形,则下列条件符合的是( )A .BD 平分ABC ∠B . OB OA =C .AC BD ⊥D . AB AD =【答案】B【分析】根据已知条件,根据菱形的判定,矩形的判定,逐项分析判断即可求解. 【详解】解:A .∵BD 平分ABC ∠, ∴ABD CBD ∠=∠,∵四边形ABCD 是平行四边形, ∴AD BC ∥, ∴ADB CBD ∠=∠, ∴ABD ADB ∠=∠, ∴AB AD =,∴平行四边形ABCD 是菱形,故不符合题意;B.∵四边形ABCD是平行四边形,∴1122AO AC BO BD ==,,∵OB OA=,∴AC BD=,∴四边形ABCD是矩形;C.∵四边形ABCD是平行四边形,AC BD⊥,∴四边形ABCD是菱形,故不符合题意;D.∵四边形ABCD是平行四边形,AB AD=,∴四边形ABCD是菱形,故不符合题意;故选:B.考点六:菱形的性质与判定的综合应用例5.(2022·福建·厦门外国语学校八年级月考)如图,E,F是平行四边形ABCD对角线BD上两点,且BE=DF,若∠BAF=90°,AB=4,AF=AE=3,则AC的长为()A.2.4 B.3.6 C.4.8 D.6【答案】C【分析】由勾股定理求出BF=5,证出四边形AECF是菱形,得AC⊥EF,由勾股定理的OA2=AB2﹣OB2=AE2﹣OE2,解得OF=1.8,则OA=2.4,得AC=2OA=4.8.【详解】解:∵∠BAF=90°,AB=4,AF=3,∴BF222243AB AF++=5,∵E,F是平行四边形ABCD对角线BD上两点,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,∵OA=OC,AE=AF,∴四边形AECF是菱形,∴AC⊥EF,∴22222OA AB OB AE OE=-=-,∴2222453OF OF ---()= ,解得:OF =1.8, ∴22=3 1.8=2.4OA - , ∴AC =2OA =4.8. 故选:C .【真题演练】1.(2022·江苏常州·中考真题)如图,将一个边长为20cm 的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD ,对角线是两根橡皮筋,其拉伸长度达到36cm 时才会断裂.若60BAD ∠=︒,则橡皮筋AC _____断裂(填“会”或“不会”,参考数据:3 1.732≈).【答案】不会【分析】设扭动后对角线的交点为O ,根据正方形的性质,得出扭动后的四边形为菱形,利用菱形的性质及条件,得出ABD △为等边三角形,利用勾股定理算出103AO =,从而得到AC ,再比较即可判断. 【详解】解:设扭动后对角线的交点为O ,如下图:60BAD ∠=︒,根据正方形的性质得,得出扭动后的四边形四边相等为菱形, 20AD AB ==cm ,ABD ∴为等边三角形,20BD ∴=cm ,1102BO BD ∴==cm , 22103AO AB BO ∴-=,根据菱形的对角线的性质:220334.64AC AO ==≈(cm), 34.6436<,AC ∴不会断裂,故答案为:不会.2.(2021·江苏淮安·中考真题)已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.3.(2021·江苏镇江·中考真题)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.△≌△;(1)求证:ABE CDF(2)连接BD,∠1=30°,∠2=20°,当∠ABE=°时,四边形BFDE是菱形.【答案】(1)见解析;(2)当∠ABE=10°时,四边形BFDE是菱形【分析】(1)根据平行四边形的性子和“SAS”可证△ABE≌△CDF;(2)先证明四边形BFDE是平行四边形,再通过证明BE=DE,可得结论.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠BCD,∴∠1=∠DCF,在△ABE 和△CDF 中,1AE CF DCF AB CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)当∠ABE =10°时,四边形BFDE 是菱形, 理由如下:∵△ABE ≌△CDF , ∴BE =DF ,AE =CF , ∴BF =DE ,∴四边形BFDE 是平行四边形, ∵∠1=30°,∠2=20°, ∴∠ABD =∠1-∠2=10°, ∴∠DBE =20°, ∴∠DBE =∠EDB =20°, ∴BE =DE ,∴平行四边形BFDE 是菱形, 故答案为10.4.(2021·江苏盐城·中考真题)如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择一个条件填空(写序号),并加以证明.【答案】(1)见解析;(2)②或③,见解析【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形. (2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点 ∴//DE AC又∵E 、F 是BC 、AC 的中点 ∴//EF AB ∵//DE AF ∴EF //AD∴四边形ADEF 为平行四边形 (2)证明:选②AE 平分BAC ∠ ∵AE 平分BAC ∠ ∴DAE FAE ∠=∠ 又∵平行四边形ADEF ∴//EF DA ∴=∠∠FAE AEF ∴AF EF =∴平行四边形ADEF 是菱形 选③AB AC = ∵//EF AB 且12EF AB = //DE AC 且12DE AC =又∵AB AC = ∴EF DE =∴平行四边形ADEF 为菱形 故答案为:②或③5.(2022·江苏南通·中考真题)【阅读材料】老师的问题:已知:如图,AE BF ∥.求作:菱形ABCD ,使点C ,D 分别在,BF AE 上.小明的作法:(1)以A 为圆心,AB 长为半径画弧,交AE 于点D ; (2)以B 为圆心,AB 长为半经画弧,交BF 于点C ;(3)连接CD . 四边形ABCD 就是所求作的菱形,请根据材料中的信息,证明四边形ABCD 是菱形. 【答案】见解析【分析】由作图可知AD =AB =BC ,然后根据AE BF ∥可得四边形ABCD 是平行四边形,再由AD =AB 可得结论.【详解】解:由作图可知AD =AB =BC , ∵AE BF ∥,即AD BC ∥, ∴四边形ABCD 是平行四边形, 又∵AD =AB ,∴平行四边形ABCD 是菱形. 【过关检测】 一、单选题1.(2022·江苏·沛县第五中学八年级月考)如图,在菱形ABCD 中,对角线AC 与BD .相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC =130°,则∠AOE 的大小为( )A .21B .65C .42D .56【答案】B【分析】根据“菱形的性质、三角形内角和定理”结合已知条件分析解答即可. 【详解】解:在菱形ABCD 中,∠ADC =130°, ∴∠BAD =180°﹣130°=50°, ∴∠BAO =12∠BAD =12×50°=25°,∵OE ⊥AB ,∴∠AOE =90°﹣∠BAO =90°﹣25°=65°. 故选:B .2.(2022·江苏·常青藤实验中学八年级月考)如图,菱形ABCD 的对角线AC 、BD 交于点O ,4AC =,16BD =,将BOC 绕着点C 旋转180︒得到B O C '',则点A 与点B '之间的距离为( )A .6B .8C .10D .12【答案】C【分析】根据菱形ABCD 的对角线AC 、BD 交于点O ,4AC =,16BD =,可得AC BD ⊥,所以90BOC ∠=︒,根据BOC 绕着点C 旋转180︒得到B O C '',所以90CO B BOC ''∠=∠=︒,6AO '=,8OB '=,再根据勾股定理即可求出点A 与点B '之间的距离.【详解】解:菱形ABCD 的对角线AC 、BD 交于点O ,4AC =,16BD =,AC BD ∴⊥,90BOC ∴∠=︒,BOC 绕着点C 旋转180︒得到B O C '',90CO B BOC ''∴∠=∠=︒,122O C OC OA AC '∴====, 6AO '∴=,182OB OD O B BD ''====, 在Rt AO B ''中,根据勾股定理,得:10AB '===.则点A 与点B '之间的距离为10. 故选:C .3.(2022·四川泸州·八年级期末)若菱形的两条对角线的长分别为8和10,则菱形的面积为( ) A .30 B .40 C .50 D .60【答案】B【分析】根据菱形面积等于两条对角线乘积的一半,计算求值即可. 【详解】∵菱形的两条对角线的长分别为8和10, ∴菱形的面积为:810240⨯÷=, 故选:B .4.(2022·广东·陆丰市南塘中学八年级月考)下列命题的逆命题不成立的是( ) A .菱形的四条边都相等 B .全等三角形的对应边相等 C .对顶角相等 D .等边三角形三个角都等于60︒【答案】C【分析】交换命题的题设与结论得到四个命题的逆命题,然后根据菱形的性质、对顶角的性质、全等三角形的性质、和等边三角形的判定方法对四个逆命题的真假进行判断.【详解】A 、菱形的四条边都相等的逆命题是四条边都相等的四边形是菱形,逆命题是真命题;B 、全等三角形的对应边相等的逆命题是对应边相等的三角形是全等三角形,逆命题是真命题;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;D 、等边三角形的三个内角都等于60︒的逆命题是三个内角都等于60︒的三角形是等边三角形,逆命题是真命题; 故选:C5.(2022·湖北黄石·八年级期中)如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD ,BC 边上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有()个.A .1B .2C .3D .4【答案】C【分析】①先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CF FH =,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得BCH ECH ∠∠=,然后求出只有30DCE ∠︒=时EC 平分DCH ∠,判断出②错误;③点H 与点A 重合时,设BF x =,表示出8AF FC x -==,利用勾股定理列出方程求解得到BF 的最小值,点G 与点D 重合时,CF CD =,求出4BF =,然后写出BF 的取值范围,判断出③正确; ④过点F 作FM AD ⊥于M ,求出ME ,再利用勾股定理列式求解得到EF ,判断出④正确. 【详解】解:①∵HE CF ∥, ∴HEF EFC ∠∠=, ∵EFC HFE ∠∠=, ∴HEF HFE ∠∠=, ∴HE HF =, ∵FC FH =, ∴HE CF =, ∵HE CF ∥,∴四边形CFHE 是平行四边形, ∵CF FH =,∴四边形CFHE 是菱形,故①正确; ②∴BCH ECH ∠∠=,∴只有30DCE ∠︒=时,EC 平分DCH ∠, 故②错误;③点H 与点A 重合时,设BF x =,则8AF FC x -==, 在Rt ABF 中,222AB BF AF +=, 即()22248x x +=-, 解得3x =,点E 与点D 重合时,4CF CD ==, ∴4BF =,∴线段BF 的取值范围为34BF ≤≤, 故③正确;过点F 作FM AD ⊥于M ,则()8332ME =--=,由勾股定理得,2225EF MF ME =+=, 故④正确;综上所述,结论正确的有①③④共3个, 故选:C .6.(2022·浙江绍兴·八年级期末)把一个长方形的纸片按如甲乙图形对折两次,然后剪下图丙中的①部分,为了得到一个锐角为30°的菱形,剪口与折痕所成的角α的度数应为( )A .60°或30°B .30°或45°C .45°或60°D .75°或15°【答案】D【分析】根据翻折的性质和菱形的性质可得答案. 【详解】解:为了得到一个锐角为30︒的菱形,∴菱形的内角度数为30︒或150︒,根据菱形的对角线平分每一组对角得,15α=︒或75︒, 故选:D . 二、填空题7.(2022·上海市罗南中学八年级月考)如图,ABC ∆中,已知AD 是BAC ∠的平分线,E 、F 分别是边AB AC 、的中点,联结DE DF 、,要使四边形AEDF 为菱形,ABC ∆需要满足一定的条件,该条件可以是______.【答案】=AB AC (答案不唯一)【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此即可求解. 【详解】解:由题意知,可添加:=AB AC . 则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合, 即点D 是BC 的中点,∴DE DF ,是三角形的中位线, ∴DE AC ∥, DF AB ∥, ∴四边形AEDF 是平行四边形,∵=AB AC ,点E ,F 分别是AB AC ,的中点, ∴=AE AF ,∴平行四边形=AE AF 为菱形.故答案为:=AB AC 、B C ∠=∠或=AE AF (答案不唯一).8.(2022·山东·德州市第五中学八年级期中)如图,在矩形ABCD 中,E 、F 分别是AD 、BC 中点,连接AF 、BE 、CE 、DF 分别交于点M 、N ,四边形EMFN 是______.【答案】菱形【分析】根据矩形的性质可得AD ∥BC ,AD BC =,根据E ,F 分别为AD ,BC 中点,可得AE ∥BF ,AE BF =,ED ∥BF ,DE BF =,得出四边形ABFE 为平行四边形,四边形BFDE 为平行四边形,同理四边形EMFN 为平行四边形,根据ABC ∠为直角,可得四边形ABFE 为矩形,得出ME MF =,进而可得四边形EMFN 为菱形. 【详解】解:四边形EMFN 是菱形;理由如下: 如图,连接EF , 四边形ABCD 为矩形, ∴AD ∥BC ,AD BC =,又E ,F 分别为AD ,BC 中点,∴AE ∥BF ,AE BF =,ED ∥BF ,DE BF =,∴四边形ABFE 为平行四边形,四边形BFDE 为平行四边形,∴BE ∥FD ,即ME ∥FN ,同理可证EN ∥MF ,∴四边形EMFN 为平行四边形,四边形ABFE 为平行四边形,ABC ∠为直角, ∴四边形ABFE 为矩形,AF ∴,BE 互相平分于M 点,且AF =BE ,ME MF ∴=,∴四边形EMFN 为菱形;故答案为:菱形.9.(2022·福建厦门·八年级期中)如图,在平行四边形ABCD 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①2ABC ABF ∠=∠;②2BE BF >;③2EFB DEBC S S =△四边形;④3CFE DEF ∠=∠;其中正确结论有_______.【答案】①②③④【分析】延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .想办法证明EF =FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题.【详解】解:如图,延长EF 交BC 的延长线于G ,取AB 的中点H ,连接FH . ∵CD =2AD ,DF =FC , ∴CF =CB , ∴∠CFB =∠CBF , ∵CD AB ∥ ∴∠CFB =∠FBH , ∴∠CBF =∠FBH ,∴∠ABC =2∠ABF .故①正确, ∵DE CG ∥, ∴∠D =∠FCG , 在△DFE 和△CFG 中,===D FCG DF CFDFE CFG ∠∠⎧⎪⎨⎪∠∠⎩∴()DFE FCG ASA ≌△△, ∴FE =FG , ∵BE ⊥AD , ∴∠AEB =90°, ∵AD ∥BC ,∴∠AEB =∠EBG =90°, ∴BF =EF =FG ,∴=FEB FBE ∠∠,=FGB FBG ∠∠, ∵∠ABC =2∠ABF . ∴FBG FBE ∠∠>,∵=+=2EFB FBG FGB FBG ∠∠∠∠,=+=2GFB FBE FEB FBE ∠∠∠∠, ∴EFB GFB ∠∠>,假设=EFB GFB ∠∠,此时==90?EFB GFB ∠∠,∴BE =, ∵EFB GFB ∠∠>, ∴90?EFB ∠>,∴BE ,故②正确, ∵S △DFE =S △CFG ,∴S 四边形DEBC =S △EBG =2S △BEF ,故③正确, ∵AH =HB ,DF =CF ,AB =CD , ∴CF =BH , ∵CF BH ∥,∴四边形BCFH 是平行四边形, ∵CF =BC ,∴四边形BCFH 是菱形, ∴∠BFC =∠BFH ,∵FE =FB ,FH ∥AD ,BE ⊥AD , ∴FH ⊥BE ,∴∠BFH =∠EFH =∠DEF , ∴∠EFC =3∠DEF ,故④正确, 故答案为:①②③④10.(2022·山东菏泽·八年级期末)如图,等边ABC 的边长为6cm ,将ABC 向右平移到DCE △的位置,连接AD ,AE ,则AE 的长为______cm .【答案】63【分析】证明四边形ACED 是菱形,进而求得90BAE ∠=︒,根据勾股定理即可求解. 【详解】解:等边ABC 的边长为6cm ,将ABC 向右平移到DCE △的位置,6AC CE DE AD ∴====cm ,60ABC CED ∠=∠=︒, ∴四边形ACED 是菱形, 1302CEA CED ∴∠=∠=︒,90BAE ∴∠=︒,2263AE BE AB ∴=-=.故答案为:63.11.(2022·广东·东莞市寮步镇香市中学八年级期中)如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,6AB =,点E 、F 分别在AB 、BC 上,沿EF 将EBF △翻折使顶点B 的对应点B '落在AC 上,若EB AC '⊥,则EF 等于__________.【答案】2【分析】连接BB ',交EF 于点O ,根据折叠的性质,得出BO B O =',BB EF '⊥,再根据平行线的判定,得出EB BC ∥′,再根据平行线的性质,得出EB O FBO ∠=∠′,再根据ASA ,得出B EO BFO △≌△′,再根据全等三角形的性质,得出OE OF =,再根据菱形的判定定理,得出四边形BEB F '为菱形,再根据菱形的性质,得出EB EB FB FB ===′′,然后设EB EB x ==′,则6AEx ,再根据直角三角形30︒所对的直角边等于斜边的一半,得出2AE EB =′,进而列出方程,并解出,再根据等边三角形的判定,得出BEF △为等边三角形,再根据等边三角形的性质,即可得出结果. 【详解】解:如图,连接BB ',交EF 于点O ,根据题意,可得:BO B O =',BB EF '⊥, ∵90ACB ∠=︒,EB AC '⊥, ∴EB BC ∥′, ∴EB O FBO ∠=∠′, 在B EO △′和BFO 中,90EB O FBO BO B O EOB FOB ∠'=∠⎧⎪='⎨⎪∠'=∠=︒⎩, ∴()'B EO BFO ASA ≌, ∴OE OF =,又∵BO B O =',BB EF '⊥, ∴四边形BEB F '为菱形, ∴EB EB FB FB ===′′, 设EB EB x ==′,则6AEx ,∵30A ∠=︒,90AB E ∠'=︒, ∴2AE EB =′, 即62x x -=, 解得:2x =,∴2EB EB FB FB ====′′, ∵90ACB ∠=︒,30A ∠=︒, ∴180309060ABC ∠=︒-︒-︒=︒, ∴BEF △为等边三角形, ∴2EF BE BF ===.故答案为:212.(2022·浙江·杭州市文澜中学八年级期末)在平行四边形中,四条边和两条对角线这六条线段中只有两种长度x ,()y x y <,则xy的值为______. 32【分析】分两种情况:①该平行四边形的四条边与一对角线的长度相等,另一对角线为另一长度;②该平行四边形的四条边相等,两条对角线相等;分别计算即可.【详解】解:分两种情况:①如图1,平行四边形ABCD 的四条边与一对角线相等,即AB BC CD DA BD x =====,AC y =,∴四边形ABCD 为菱形,在ABD △中,AB AD BD ==, ABD ∴是等边三角形,60BAD ABD ADB ∴∠=∠=∠=︒,同理,60BCD CBD CDB ∠=∠=∠=︒,120ABC ∴∠=︒, AC AB ∴>,∴四边形ABCD 为菱形符合题意,AC BD ∴⊥,3232AC x x ∴=⨯⨯=, 即3y x =, 333x x y x∴==; ②如图2,在平行四边形ABCD 中,AD DC CB BA x ====,AC BD y ==,∴四边形ABCD 是正方形,AC BD AB ∴=>, ∴正方形ABCD 符合题意,22AC BD x ∴=,。

八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。

1.1菱形的性质课件数学华师大版八年级下册

1.1菱形的性质课件数学华师大版八年级下册
22
A E A 2 D D 2 1 E 2 5 3 2 1 c 2 .m
∴AC=2AE=2×12=24(cm). 菱形ABCD的面积=△ABD的面积+△CBD的面积
=2×△ABD的面积 21BD AE
2
2 1 1 0 1 2 12 c0 2 m . 2
A
BE
D
C
当堂训练
1.一个菱形的周长为8cm,一条对角线长为2 cm.则这个菱
AB=AD=BD 即 △ABD是等边三角形
∴∠ABD=60° ∴ ∠ABC=2∠ABD=120°(菱形对角线平分对角)
②∵菱形ABCD ∴AB=BC=CD=DA ∴菱形ABCD的周长 = 2×4 = 8 cm
例3 如图,在菱形ABCD中,AC与BD相交于点 O,AB=5,OA=4,求这一菱形的周长与两条对角 线的长度。
A
B
O
EC
D
S菱形ABCD SABD SBCD
【菱形的面积公式】 S菱形 = 底×高 = 对角线乘积的一半
已知:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长 10cm.
求:.对角线AC的长度; .菱形的面积
解: ∵四边形ABCD是菱形,
∴∠AED=900, D E 1B D 1 1 05 cm .
形的四个内角的度数为 60°、120°。、60°、120°
2.菱形具有而平行四边形不一定具有的特征是( C)
A、对角线互相平分 B、对边相等且平行 C、对角线平分一组对角 D、对角相等
课堂小结
菱形的定义:有一组邻边相等的平行四边形是菱形。
菱形的性质:
1.对边平行,且四边都相等;
2.对角相等; 3.对角线互相平分且互相垂直 .

18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(解析版)

18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(解析版)

§18.2.2.1菱形的性质一、知识导航1.菱形的定义:有一组邻边相等的四边形叫做菱形注意:(1)矩形的定义有两个要素:①是平行四边形;②有一组邻边相等,二者缺一不可;(2)菱形的定义既是它的性质,也是它的判定方法;(3)一组邻边相等的四边形不一定是菱形.2.菱形的性质类别性质符号语言图形边菱形的四条边都相等 四边形ABCD是菱形AB BC CD DA ∴===对角线菱形的两条对角线互相垂直平分,并且每条对角线平分一组对角四边形ABCD是菱形,,,AC BD OA OC OB OD∴⊥==,ABD CBD ADB CDB∠=∠=∠=∠BAC DAC BCA DCA∠=∠=∠=∠对称性矩形是轴对称图形,具有两条对称轴(即对角线所在的直线)3.菱形面积计算(1)平行四边形的面积公式:底×高(2)两条对角线长的积的一半二、重难点突破重点1利用菱形的性质求线段长度例1.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【答案】C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:由于菱形的两条对角线的长为6和8,,∴菱形的周长为:4×5=20,故选:C.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.变式1-1如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE 的长等于()A .2B .3.5C .7D .14【答案】B 【分析】由菱形的周长可求得AB 的长,再利用三角形中位线定理可求得答案0【详解】∵四边形ABCD 为菱形,∴AB 14=⨯28=7,且O 为BD 的中点.∵E 为AD 的中点,∴OE 为△ABD 的中位线,∴OE 12=AB =3.5.故选B .【点睛】本题考查了菱形的性质,由条件确定出OE 为△ABD 的中位线是解题的关键.变式1-2如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为()A .125B .185C .4D .245【答案】D【分析】利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高DE 即可.【详解】记AC 与BD 的交点为O ,菱形ABCD ,6,AC =,3,,AC BD OA OC OB OD ∴⊥===5,AB = 22534,8,OB BD ∴=-==∴菱形的面积16824,2=⨯⨯=,DE AB ⊥ ∴菱形的面积,AB DE =∙524,DE ∴=24.5DE ∴=故选D .【点睛】本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.变式1-3如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为()A .4B .245C .6D .485【答案】B 【分析】连接BP ,通过菱形ABCD 的周长为20,求出边长,菱形面积为24,求出SABC 的面积,然后利用面积法,SABP +SCBP =SABC ,即可求出PE PF +的值.【详解】连接BP ,∵菱形ABCD 的周长为20,∴AB =BC =20÷4=5,又∵菱形ABCD 的面积为24,∴SABC =24÷2=12,又SABC =SABP +SCBP∴SABP +SCBP =12,∴111222AB PF BC PE += ,重点点拨:当菱形的一个内角为120°或60°时,菱形被其对角线分为4个含30°角的直角三角形;菱形较短的一条对角线将其分成两个等边三角形,因此可利用其性质进行计算.∵AB =BC ,∴()1122AB PE PF += ∵AB =5,∴PE +PF =12×25=245.故选:B.【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系,求出PF +PE 的值.重点2利用菱形的性质求角度例2.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为()A .65︒B .55︒C .45︒D .25︒【答案】A 【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.变式2-1如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是()A .35°B .30°C .25°D .20°【答案】C 【分析】根据直角三角形的斜边中线性质可得OE BE OD ==,根据菱形性质可得1652DBE ABC ∠︒=∠=,从而得到OEB ∠度数,再依据90OED OEB -∠︒∠=即可.【详解】∵四边形ABCD 是菱形,∠BCD =50°,∴O 为BD 中点,∠DBE =12∠ABC =65°.∵DE ⊥BC ,∴在Rt △BDE 中,OE =OB =OD ,∴∠OEB =∠OBE =65°.∴∠OED =90°-65°=25°.故选:C .【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.变式2-2如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF∠的度数是()A .90°B .60°C .45°D .30°【答案】B 【分析】根据垂直平分线的性质可得出△ABC 、△ACD 是等边三角形,从而先求得∠B =60°,∠C =120°,在四边形AECF 中,利用四边形的内角和为360°可求出∠EAF 的度数.【详解】解:连接AC ,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°-180°-120°=60°.故选B.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,关键是掌握线段垂直平分线上的点到线段两端点的距离相等,及菱形四边形等的性质.变式2-3如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒【答案】B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】如图,连接BF,在菱形ABCD中,∠BAC=12∠BAD=12×100°=50°,∵EF是AB的垂直平分线,∴∠FBA=∠FAB=50°,∵菱形ABCD的对边AD∥BC,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.重点3利用菱形的性质计算面积及其应用例3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【详解】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=12×8×6=24cm2,重点点拨:在菱形中已知边要求角的度数时需要利用矩形的性质和特殊三角形的性质找到角的关系,这些所求角度一般为45°,60°等特殊角度【点睛】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.变式3-1已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.B.8C.D.【答案】D【分析】根据菱形的性质和菱形面积公式即可求出结果.【详解】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC=60°,∠BAD=120°,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60°=∴菱形的面积=12 AC•BD=12故选:D.【点睛】本题考查菱形的性质,解题关键是掌握菱形的性质.变式3-2如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96B.48C.24D.6【答案】C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.重点4利用菱形的性质证明线段相等例4.如图,在菱形ABCD 中,BE ⊥CD 于点E .DF ⊥BC 于点F .求证:BF =DE;【分析】根据菱形的性质得到CB =CD ,根据全等三角形的判定和性质即可得到结论;【详解】证明:∵四边形ABCD 是菱形,∴CB =CD ,∵BE ⊥CD 于点E ,DF ⊥BC 于点F ,∴∠BEC =∠DFC =90°,∵∠C =∠C ,∴△BEC ≌△DFC (AAS ),∴EC =FC ,∴CD -CE =CB -CF∴BF =DE ;【点睛】本题考查了菱形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.变式4如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .求证:AF EF =;重点点拨:菱形的对角线容易作为一个直角三角形的斜边,这样两条对角线的交点也是斜边的中点;菱形的面积等于对角线乘积的一半重点点拨:利用菱形的性质证明边的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合【分析】连接CF ,根据垂直平分线的性质和菱形的对称性得到CF=EF 和CF=AF 即可得证;【详解】连接CF ,∵FG 垂直平分CE ,∴CF=EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF=AF ,∴AF=EF;【点睛】本题考查了菱形的性质,最短路径,等边三角形的判定和性质,中位线定理,难度一般,题中线段较多,需要理清线段之间的关系.重点5利用菱形的性质证明角相等例5.已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E .求证:∠AFD =∠CBE.【分析】根据菱形的性质得出∠BCE =∠DCE ,BC =CD ,AB ∥CD ,推出∠AFD =∠CDE ,证△BCE ≌△DCE ,推出∠CBE =∠CDE 即可.【详解】证明:∵四边形ABCD 是菱形,∴∠BCE =∠DCE ,BC =CD ,AB ∥CD ,∴∠AFD =∠CDE ,在△BCE 和△DCE 中BC CD BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCE ,∴∠CBE =∠CDE ,∵∠AFD =∠CDE ,∴∠AFD =∠CBE .【点睛】考查了菱形的判定与性质以及全等三角形的判定与性质等知识,得出△BCE ≌△DCE 是解题关键.变式5如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO =∠DCO.【分析】根据菱形的对角线互相平分可得OD =OB ,再根据直角三角形斜边上的中线等于斜边的一半可得OH =OB ,然后根据等边对等角求出∠OHB =∠OBH ,根据两直线平行,内错角相等求出∠OBH =∠ODC ,然后根据等角的余角相等证明即可.【详解】证明:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∵DH ⊥AB ,∴OH =12BD =OB ,∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO .【点睛】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.难点6菱形中的图形变换问题例6.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是()A 3B .2C .23D .4【答案】B 【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====重点点拨:利用菱形的性质证明角的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合∴∠111206022ABD ABC ︒=∠=⨯=︒∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD ==故选:B .【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.变式6-1如图,在菱形纸片ABCD 中,对角线AC 、BD 长分别为16、12,折叠纸片使点A 落在DB 上,折痕交AC 于点P ,则DP 的长为()A .BC .D .【答案】A 【分析】首先设O 点的对应点为E ,连接PE ,由菱形的性质,可求得OD ,OA 与AD 的长,由折叠的性质,根据勾股定理可得方程:即(8-x )2=42+x 2,可求x 的值,由勾股定理可求DP 的长.【详解】解:设O 点的对应点为E ,连接PE ,由折叠的性质可得:PE=OP ,DE=OD ,∵四边形ABCD 是菱形,1111,168,1262222AC BD OA AC OB BD ∴⊥==⨯===⨯=10AD ∴==设OP=x,则PE=x,AE=AD-DE=10-6=4,AP=OA-OP=8-x,在Rt△APE中,AP2=AE2+PE2,即(8-x)2=42+x2,解得:x=3,即OP=3,DP∴===故选A.【点睛】本题考查了折叠的性质、菱形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.变式6-2如图,在菱形纸片ABCD中,∠A=60°,P为AB中点.折叠该纸片使点C落在点C′处且点P在DC′上,折痕为DE,则∠CDE的大小为()A.30°B.40°C.45°D.60°【答案】C【分析】连接BD,首先根据∠A=60°,AB=AD,得到△ABD是等边三角形,然后根据等边三角形三线合一的性质得到DP⊥AB,然后根据平行线的性质得到∠CDP=∠APD=90°,最后根据折叠的性质求解即可.【详解】如图,连接BD,∵菱形ABCD中,∠A=60°,AB=AD,∴△ABD是等边三角形,∠ADC=120°,∵点P是AB的中点,∴DP⊥AB,∵CD AB,∴∠CDP=∠APD=90°,∴由折叠的性质可得:∠CDE=12∠CDP=45°.故选:C.【点睛】此题考查了等边三角形的性质和判定,菱形的性质以及折叠的性质等知识,解题的关键是在含有60°内角的菱形中,连接较短的对角线,把菱形分成的两个三角形是等边三角形.难点7菱形中的最值问题例7.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A .12B .1C 2D .2【答案】B 【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】如图难点点拨:解决菱形问题的思考方向:①边;②对角线.有60°的特殊角,就可以由菱形的性质构造等边三角形解决问题;有等边三角形,有中点,会出现“三线合一”作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.【点睛】本题主要考查了菱形的性质,以及最小值问题,解题关键在于熟练掌握菱形性质以及求最值的作图方式.变式7如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4【答案】C【分析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.【详解】∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.【点睛】本题主要考查了菱形的性质;轴对称-最短路线问题三、提升训练1.下列结论中,不正确的是()A .对角线互相垂直的平行四边形是菱形B .对角线相等的平行四边形是矩形C .一组对边平行,一组对边相等的四边形是平行四边形D .菱形的面积等于对角线乘积的一半难点点拨:解决线段之和最小问题,一般转化为解决“两点之间,线段最短”问题.“两点一线”型:()minPA PB +“一点两线”型:()min ''''''ABC C AB AC BC A B A C BC A A ∆=++=++=【答案】C【分析】由菱形和矩形的判定得出A 、B 正确,由等腰梯形的判定得出C 不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D 正确,即可得出结论.【详解】解:A.∵对角线互相垂直的平行四边形是菱形,∴A 正确;B.∵对角线相等的平行四边形是矩形,∴B 正确;C.∵一组对边平行,一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,∴C 不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D 正确;故选:C【点睛】本题考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形,矩形和等腰梯形的判定方法是解题的关键.2.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是()A .90︒B .100︒C .120︒D .150︒【答案】C 【分析】如图(见解析),先根据菱形的性质可得,//AB BC AD BC =,再根据全等的性质可得1203AC AE cm ==,然后根据等边三角形的判定与性质可得60B ∠=︒,最后根据平行线的性质即可得.【详解】如图,连接AC四边形ABCD 是菱形20,//AB BC cm AD BC∴== 如图所示的木制活动衣帽架是由三个全等的菱形构成,60AE cm =1203AC AE cm ∴==AB BC AC∴==ABC ∴ 是等边三角形60B ∴∠=︒//AD BC180********DAB B ∴∠=︒=∠=︒-︒-︒故选:C .【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行线的性质等知识点,理解题意,熟练掌握菱形的性质是解题关键.3.如图,在△ABC 中,AD 平分BAC ∠,DE AC ∥交AB 于点E ,DF AB ∥交AC 于点F ,若8AF =,则四边形AEDF 的周长是()A .24B .28C .32D .36【答案】C 【分析】由题意知四边形AEDF 是平行四边形,有BAD ADF ∠=∠,AE DF AF DE ==,,AD 平分BAC ∠,可得BAD CAD ADF ∠=∠=∠,AF DF =,平行四边形AEDF 是菱形,进而计算周长即可.【详解】∵DE AC DF AB∥,∥∴四边形AEDF 是平行四边形∴BAD ADF ∠=∠,AE DF AF DE==,∵AD 平分BAC∠∴BAD CAD ADF∠=∠=∠∴AF DF=∴平行四边形AEDF 是菱形∴432AE DE DF AF AF +++==故选C .【点睛】本题考查了角平分线的性质,平行四边形的判定与性质,菱形的判定.解题的关键在于对知识的灵活运用.4.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是()A .20B .24C .40D .48【答案】A 【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【详解】由菱形对角线性质知,AO =12AC =3,BO =12BD =4,且AO ⊥BO ,则AB =5,故这个菱形的周长L=4AB =20.故选A .【点睛】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB 的长是解题的关键,难度一般.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,∠CAD =20°,则∠DHO 的度数是()A .20°B .25°C .30°D .40°【答案】A 【分析】先根据菱形的性质得OD =OB ,AB ∥CD ,BD ⊥AC ,则利用DH ⊥AB 得到DH ⊥CD ,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【详解】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选A.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.245B.125C.5D.4【答案】A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD=12AC BD AB DE ⨯⨯=⨯,∴18652DH ⨯⨯=⨯,∴DH=24 5,故选:A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.7.如图,菱形ABCD中,∠ABC=135°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD 于F.若△DEF的周长为2,则菱形ABCD的面积为()A.B C.2D.2【答案】A【分析】根据题意利用菱形的性质,可得AH=DH,再根据等腰直角三角形的判定与性质得出DE EF,再求出DH=DE+EH AB=2.【详解】∵四边形ABCD是菱形,∠ABC=135°,∴∠DAB=45°,∠DAC=∠BAC,且EH⊥AB,EF⊥AD∴EF =EH ,∠ADH =∠DAB =45°∴AH =DH∵∠DAB =45°,DH ⊥AB∴∠ADH =45°,且EF ⊥AD∴∠ADH =∠DEF =45°∴DF =EF ,∴DE EF∵△DEF 的周长为2,∴DE +EF +DF =2∴2EF =2∴EF =2∴EH =2,DE =2,∴DH =DE +EH ∵∠DAB =∠ADH =45°∴AH =DH ,∴AD AH =2∴AB =2∴菱形ABCD 的面积=AB ×DH =故选A .【点睛】此题考查菱形的性质,等腰直角三角形的判定与性质,解题关键在于掌握判定定理.8.如图,菱形ABCD 的边,8AB =,60B ∠= ,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为()A .5B .7C .8D .132【答案】B【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则2CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠= ,ABC ∆∴为等边三角形,CH AB ∴==,4AH BH ==,3PB = ,1HP ∴=,在Rt CHP ∆中,7CP ==,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.9.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF 是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④【答案】B 【分析】①根据四边形ABCD 是平行四边形,可得:AD =BC ,AB =CD ,AB ∥CD ,再由AE 平分∠BAD ,可得出∠AED =∠DAE ,进而推出AF =DE ,即可运用菱形的判定方法证得结论;②根据题目条件可证明△BFN ≌DEN ,其它三角形均不能证明;③根据题目条件可得出12FMN DMN BFNS S S ==,S 菱形BCEF =4S △BFN ,S 四边形BCEN =3S △BFN ,即可判断结论③错误;④由FM =FN 可得出DF =AF =AD ,即△ADF 是等边三角形,可判定结论④正确.【详解】解:①四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,AB ∥CD ,∵点F 为AB 边的中点,∴AF =12AB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AB ∥CD ,∴∠AED =∠BAE ,∴∠AED =∠DAE ,∴AD =DE ,∴BC =DE ,∵AB =2BC .∴BC =12AB ,∴AF =DE ,∵AF ∥DE ,∴四边形ADEF 是平行四边形,∵AD =DE ,∴四边形ADEF 是菱形,故①正确;∵AB ∥CD ,∴∠FBN =∠EDN ,DE =AF =BF ,∠BNF =∠DNE ,∴△BFN ≌DEN (AAS ),能够确定与△BFN 全等的三角形只有1个,故②错误;③∵△BFN ≌DEN ,∴FN =EN ,BN =DN ,∵四边形ADEF 是菱形,∴DM =FM ,∴12FMN DMN BFNS S S == ,同理可证:四边形BCEF 是菱形,∴S 菱形BCEF =4S △BFN ,∴S 四边形BCEN =3S △BFN ,·S △BFN =2S △FMN ,∴S 四边形BCEN =4S △FMN ,故③错误;④当FM =FN 时,∵FN =EN ,EF =AF ,∴AF =2FM ,∵DF =2FM ,∴DF =AF =AD ,∴△ADF 是等边三角形,∴∠BAD =60°,故④正确;故选:B .【点睛】本题是四边形综合题,考查了平行四边形性质,菱形的判定,全等三角形判定和性质,三角形面积和四边形面积,等边三角形判定等,熟练掌握平行四边形的性质和菱形的判定,证明三角形全等是解题的关键.10.已知某菱形的周长为8cm ,高为1cm ,则该菱形的面积为A .22cmB .24cmC .26cmD .28cm 【分析】先利用菱形的性质求出菱形的边长为2,再利用菱形的面积=底⨯高即可【详解】解:菱形的边长:842÷=.菱形的面积:212⨯=.【点睛】本题主要是考题菱形的性质与面积,易出现求面积时不懂的把菱形当作平行四边的面积来求.11.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为【分析】由菱形对角线和边长组成一个直角三角形,由勾股定理可得菱形的边长,再利用面积相等建立等式,进而可求解高DH 的长.【详解】∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4cm ,OB =12BD =3cm ,在Rt △AOB 中,OA =4cm ,OB =3cm ,∴AB ,菱形的面积S =12AC •BD =AB •DH ,即12×8×6=5×DH ,解得DH =245cm ,【点睛】本题考查了菱形的性质和菱形的面积,熟练掌握“菱形的对角线互相垂直平分,菱形的面积等于对角线乘积的一半”是解题的关键.12.如图,在菱形纸片ABCD 中,60A ︒∠=,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 的中点)所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的度数为________.【答案】75°【分析】连接BD ,先证明ABD △为等边三角形,然后根据三线合一定理得到30ADP BDP ∠=∠=o 即可得到90PDC ∠= ,则45CDE PDE ∠=∠=o ,再根据三角形内角和定理求解即可.【详解】连接BD ,∵四边形ABCD 为菱形,∴AD =AB ,60C A ∠==o ∠,AB ∥CD ,∴180A ADC ∠+∠= ,∴120ADC ∠=∵60A ∠= ,∴ABD △为等边三角形,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=o ,∴90PDC ∠= ,由折叠的性质得到45CDE PDE ∠=∠=o ,在DEC 中,()18075DEC CDE C ∠=-∠+∠=o o .故答案为:75°.【点睛】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF.【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A C AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.14.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB//CD,然后证明得到BE=CD,BE//CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD是菱形,∴AB=CD,AB//CD.又∵BE=AB,∴BE=CD,BE//CD.∴四边形BECD是平行四边形.∴BD=EC.(2)∵四边形BECD是平行四边形,∴BD//CE,∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC丄BD.∴∠BAO=90°﹣∠ABO=40°.【点睛】本题主要考查了,勾股定理,矩形的性质,菱形的判定和性质,熟练掌握相关知识点是解题的关键.。

八年级数学菱形的判定

八年级数学菱形的判定
菱形的判别方法: 1.一组邻边相等的平行四边形是菱形; 2.对角线互相垂直的平行四边形是菱形; 3.四条边都相等的四边形是菱形
[例1]如下图,平行四边形ABCD的两条 对角线AC,BD相交于O点, AB= 5 ,AO=2,OB=1.
(1)AC,BD有怎样的位置关系? (2)四边形ABCD是菱形吗?为什么?
小结
菱形的定义:一组邻边相等的平行 四边形是菱形.
菱形的性质: 边:四条边都相等,对边分别平行 角:对角相等 对角线:互相垂直、平分,每一条 对角线平分一组对角.
菱形的判别可用下图来表示
作业: 课本习题4.5 1,2
; 全天免费计划 ;
4.3 菱 形
黄凌
图片中有你熟悉的图形吗?
这种特殊平行四边形特殊在哪里? 我们称它为菱形,你能给菱形下定 义吗?
一组邻边相等的平行四边形叫做菱形.
如图,在菱形ABCD中,AB=AD,对角 线AC,BD相交于点O。 (1)图中有哪些线段是相
等的?哪些角是相等的? (2)图中有哪些等腰三角
形、直角三角形? (3)两条对角线AC,BD有
什么特定的位置关系?
菱形是特殊的平行四边形,它除具 有平行四边形的所有性质外,还有平行 四边形所没有的特殊性质:
1.菱形的四条边都相等.
2.菱形的两条对角线互相垂直平分, 每一条对角线平分一组对角.
菱形是轴对称图形吗?如果是,它有 几条对称轴?对称轴之间有什么位置 关系?
你能画出一个菱形吗?你是怎么知道 画出的图形是菱形?
方法一:将一张长方形的纸横对折,再 竖对折,然后沿图中的虚线剪 下,打开即可。
ቤተ መጻሕፍቲ ባይዱ
方法二:两张等宽的纸条交叉重叠在一 起,重叠的部分ABCD就是菱形.

人教版八年级数学下册 第18章《平行四边形》讲义 第11讲 菱形及正方形

人教版八年级数学下册 第18章《平行四边形》讲义 第11讲 菱形及正方形

第11讲 菱形、正方形 第一部分 知识梳理知识点一:菱形的概念和性质1、定义:有一组邻边相等的平行四边形叫做菱形。

2、基本性质:(1)边:菱形的四条边都相等;(2)角:菱形的对角相等,邻角互补;(3)对角线:菱形的对角线互相垂直平分,且每一条对角线平分一组对角: (4)对称性:菱形是轴对称图形,中心对称图形,对称轴有两条;(5)面积:S=21ab(其中a 、b 分别是菱形的两条对角线的长). 或 S=底×高。

知识点二:菱形的判定方法(1)有一组邻边相等的平行四边形是菱形;(2)四边都相等的四边形是菱形;(3)对角线互相垂直平分的四边形是菱形;(4)对角线互相垂直的平行四边形是菱形.知识点三:正方形的基本概念1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、基本性质:(1)边:正方形四条边都相等;(2)角:正方形的四个角都相等;(3)对角线:对角线相等且互相垂直平分,并且每条对角线平分一组对角; (4)对称性:是中心对称图形,又是轴对称图形,对称轴有四条;知识点四:正方形判定(1)有一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形;(3)有一个角是直角的菱形是正方形;(4)对角线相等的菱形是正方形。

第二部分 考点精讲精练考点1、菱形的性质例1、菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是________ 例2、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是________.例3、已知菱形的一条对角线长为12cm ,面积为30cm 2,则这个菱形的另一条对角线长为_______cm 。

例4、如图,菱形ABCD ,E ,F 分别是BC ,CD 上的点,∠B =∠EAF =60°,∠BAE =18°,求∠CEF 的度数。

八年级数学下册_18章课件9菱形的定义、性质_课件新人教版

八年级数学下册_18章课件9菱形的定义、性质_课件新人教版
已知:菱形ABCD的对角线AC和BD相交于点O,如下图,
求证:AC⊥BD ;
AC平分∠BAD和∠BCD ;BD平分∠ABC和∠ADC
证明:∵四边形ABCD是菱形 ∴AB=AD(菱形的四条边都相等)
A
D
BO=CO( 菱形的对 角线互相平分) ∴AC⊥BD,AC平分∠BAD B 同理: AC平分∠BCD; BD平分∠ABC和∠ADC
O
C
D

菱形的两组对边平行且相等 A
O B 数学语言
C
菱形的四条边相等
菱形的两组对角分别相等 ∵四边形ABCD是菱形

菱形的邻角互补
DCA= ∠ BCA ∠∠ ADC= ∠ ABC ∥ CD AB ∠ADB= ∠CDB 菱形的 两条对角线互相平分 ∠ABD=∠CBD AC⊥BD 对角线
∥ ∴ AD BC ∴ ∠ ∴ DAB+ ∠ DAC= ∠ ABC= ∠BAC 180° ∴ AB=BC=CD=DA ∴OA=OC;OB=OD ∠DAB= ∠ DCB ∴ =
A
C
4.在菱形ABCD中,AE⊥BC,AF⊥CD, E、F分别为BC,CD的中点,那么 B ∠EAF的度数是( )B
A.75°B.60°C.45°D.30°
E
B
D F
C
5、四边形ABCD是菱形,O是两条对角线的 交点,已知AB=5cm,AO=4cm,求对角 线BD的长。 D
解:∵四边形ABCD是菱形 A 4 O C
三、课堂练习(复习巩固) 1、菱形的两条对角线长分别是6cm和 8cm,则菱形 的周长 ,面积 。 2、菱形的面积为24cm2,一条对角线的 长为6cm,则另一条对角线长为 ;边 长为 。 3、已知菱形的两个邻角的比是1:5,高 是 8cm,则菱形的周长为 。 4、已知菱形的周长为40cm,两对角线的 比为3:4,则两对角线的长分别 是 。

带你认识菱形

带你认识菱形

带你认识菱形菱形是一个具有特殊几何形状的图形,拥有四条边、四个角以及两条对角线。

它具有一些独特的性质和特点,使得它在数学、建筑、设计等领域中得到广泛应用。

本文将带你认识菱形的定义、性质及应用。

一、菱形的定义菱形是指具有以下特点的四边形:1. 四条边长度相等:菱形的四条边相等,因此它是一种等边四边形。

2. 对角线相互垂直:菱形的两条对角线相互垂直,即相交于90度角。

3. 对角线长度相等:菱形的两条对角线相等。

二、菱形的性质1. 内角性质:菱形的内角度数为360度,每个内角为90度。

2. 对称性质:菱形具有对称性,即它可以以对角线为轴进行对称。

3. 相等边性质:菱形的四条边相等,因此具有边对等性质。

4. 相等角性质:菱形的四个角相等,每个角为90度。

5. 正方形特例:当菱形的各边长度相等且每个内角为90度时,它也是一个正方形。

三、菱形在建筑中的应用菱形作为一种典型的几何图形,常被应用于建筑设计中,以下是一些例子:1. 立面设计:建筑立面中常以菱形为基本造型元素,通过组合和排列菱形来构建独特的外观。

2. 窗户设计:一些窗户的玻璃形状采用菱形,既能增加建筑的美观性,又能提供适当的采光效果。

3. 地板设计:在地板的铺设中,利用菱形瓷砖或木地板可以打破传统直线和方形的排列方式,创造出独特的装饰效果。

四、菱形在数学中的应用菱形在数学中有一些重要的应用,包括:1. 偶数求和:菱形的对角线长度相等,因此可以利用菱形的性质来简化偶数求和的运算过程。

2. 坐标系:在数学中,菱形可以作为坐标系的一种表示方式,通过菱形的边和角来标记和定位点。

3. 几何推理:菱形是几何推理中重要的基本形状之一,通过研究菱形的性质,可以推导出其他形状的性质和定理。

五、菱形在设计中的应用菱形在设计领域中被广泛应用,例如:1. 标识设计:许多品牌和企业的标识中采用了菱形元素,以突出其独特性和品牌形象。

2. 室内设计:在室内装饰中,使用菱形图案的墙纸、地毯等可以增加空间的美感和层次感。

人教版八年级数学下《菱形》知识全解

人教版八年级数学下《菱形》知识全解

《菱形》知识全解课标要求探索并证明菱形的性质定理:菱形的四条边相等,对角线互相垂直;以及它的判定定理:四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.知识结构内容解析1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.菱形首先是一个平行四边形,然后增加一个特殊条件:一组邻边相等.菱形的定义既可作为菱形的性质运用,又可作为菱形的判定运用.2.菱形的性质(1)具有平行四边形的所有性质.(2)特有的两条性质(定理):①菱形的四条边相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角.(3)菱形是轴对称图形,对角线所在的直线就是它的对称轴.(4)菱形的面积计算:S菱形=底×高=两条对角线乘积的一半.菱形的每条对角线把菱形分成两个全等的等腰三角形,两条对角线把菱形分成四个全等的直角三角形,所以有关菱形的问题可以转化为等腰三角形或直角三角形来解决.3.菱形的判定(1)有一组邻边相等的平行四边形是菱形.这是菱形的定义,可作为菱形的判定方法,它是菱形其他判定方法的基础.(2)定理①:四边都相等的四边形是菱形.运用该定理证明时,可以直接证明一个四边形是菱形.(3)定理②:对角线互相垂直的平行四边形是菱形.运用该定理证明时,要先证明四边形是平行四边形,再证明它的对角线互相垂直.4.运用和菱形的性质与判定解决问题.重点难点本课的重点是菱形的性质定理和判定定理的探索与证明.性质和判定定理本身容易理解,但需要学生借助一定的活动去进行观察、归纳、推导与验证.让学生自己体验探究过程,从中收获感悟.在教师的引导下,对知识本身和思想方法上都有实质性的掌握.这个过程到位了,必将很好地为下一过程——“运用性质和判定定理解决问题”打下坚实的基础,达到运用自如.教学重点的解决方法:在探究实验活动以及旧知类比的基础上进行定理的概括的推导.通过观察实验,巧妙设问,发现规律,归纳结论,解决重点.本课的难点是运用菱形的性质和判定方法进行推理、计算和解决问题.在通过探索和证明得到了菱形的性质及判定定理后,直接利用定理解决问题就势在必行.但从主观上讲,学生对刚学会的知识会有生疏感,不会直接用,甚至不敢用,习惯一步推理,对多步推理不熟;从客观上讲,性质和定理本身的数量不止一项,因而问题的解决需要选择相应的性质和定理,特别是判定方法的选择性很强,而且题目的设置往往灵活多变,还综合之前的知识等.这都给问题解决带来了困难.教学难点的解决方法:问题设置从易到难,从单一到综合逐步递进.通过引导思维,结合图形一步一步体现思路,明确方法来解决难点、疑点.教法导引在数学教学过程中,基于学生思维的起点,为了突出教师为主导、学生为主体的教学原则,我们可以运用自主探究法和直观教学法,让学生在实践中学习、掌握知识,达到灵活运用,并对先后知识融会贯通.针对本节课的特点,可以采用“创设情境——探究实践——观察讨论——总结归纳——知识运用”为主线的教学模式,运用实践、观察、分析、讨论相结合的方法.教学中引导学生经过观察、思考、探索、交流获得知识,形成技能.在教学过程中注意创设思维情境,在合作交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在教师的指导下自始至终处于一种积极思维,主动探究的学习状态.借助教具和课件演示,以增加教学的直观性,更好的理解菱形的性质与判别,解决教学重点与难点.根据本课内容的特点,建议教师在教学过程中注意以下问题:1.菱形的知识,学生在小学时接触过一些,教学要基于学生对菱形的已有认知上.在引入概念时,应让学生充分的理解到菱形是一个特殊的平行四边形,特殊在有一组邻边相等.教师设置情境,学生自己动手探究,体验到菱形可以由平行四边形平移或等角三角形、直角三角形拼接得到.2.菱形在现实中的实例较多,因而在讲解菱形的性质和判定时,教师可多准备一些生活实例,来对菱形的性质和判定进行应用.既增加了学生的参与感,又巩固了所学的知识.3.教学过程中,应特别重视探究活动,这样既增强了学生的动手能力和参与感,又在教学中有切实的实例,使学生对知识的掌握更轻松、具体.例如菱形性质的探索、判定定理的探索都需要通过具体的折纸、画图等实践来进行探究.4.教学过程中注意学生独立思考和合作交流的有机结合.例如在对性质的讲解中,教师可将学生分组,每组学生分别对菱形进行“边、角、对角线”等方面的研究,然后在组内进行整理、归纳.而在性质或判定的应用中,教师根据题目的层次安排,可引导学生独立分析思路,并独立进行具体的证明.5.注重将新知识与旧知识进行联系与类比.新旧知识的联系与类比有利于学生建立新的知识体系,同时也能在一定程度上培养学生的合情推理能力.菱形的判定方法可以通过类比已学过的矩形的判定方法,进行合情猜想,并加以验证,实现知识的正迁移.学法建议在日常生活中,学生经常会遇到各种几何图形也包括菱形,但学生对这一图形的认识是直观的、肤浅的,因此在教学中要以原有直观感和平行四边形、矩形的相关知识为基础,探索菱形的性质及判别方法,并尝试利用它们解题.新的教学理念要求在课堂中注重探究学习,在本课中,其实有许多内容可以进行这方面的尝试.如菱形的概念得到、菱形性质的发现和推导、菱形面积的算法、菱形判定方法的选择和思路的选取等都可以让学生进行探究和归纳.若能在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也能得到不断提高.在本节课的教学中,要帮助学生学会运用实践、观察、分析、比较、验证、归纳、概括等手段,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,领会到成功的喜悦.。

人教版八下数学课件第18章18.2.2第1课时菱形的性质

人教版八下数学课件第18章18.2.2第1课时菱形的性质
灿若寒星
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.

数学菱形判定知识点总结

数学菱形判定知识点总结

数学菱形判定知识点总结一、菱形的定义菱形是一种特殊的四边形,它具有以下特点:1. 四边相等:菱形的四条边长度相等。

2. 对角线相等:菱形的对角线长度相等。

3. 对角线垂直:菱形的对角线互相垂直。

4. 相邻角互补:菱形的相邻角互补,即相邻的两个角的和为180°。

二、菱形的判定方法1. 利用对角线判定菱形:如果一个四边形的对角线相等,则这个四边形是菱形;即AC=BD,则ABCD为菱形。

2. 利用边长判定菱形:如果一个四边形的四边相等,则这个四边形是菱形;即AB=BC=CD=DA,则ABCD为菱形。

3. 利用角度判定菱形:如果一个四边形的相邻角互补且对角线相等,则这个四边形是菱形;即∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A=180°,并且AC=BD,则ABCD为菱形。

三、菱形的性质1. 对角线垂直:菱形的对角线互相垂直;即AC⊥BD。

2. 对角线平分:菱形的对角线互相平分;即AC=BD。

3. 角性质:菱形的内角为90°;即∠A=∠B=∠C=∠D=90°。

4. 边长性质:菱形的四边相等;即AB=BC=CD=DA。

四、菱形的应用1. 解题方法:在解题过程中,如果遇到了菱形的相关问题,可以根据菱形的判定方法和性质来解答。

通过判定四边形是否满足菱形的条件,再根据菱形的性质进行推理和计算,从而得出答案。

2. 几何证明:在几何证明中,菱形的性质和判定方法经常被应用。

可以利用菱形的对角线垂直、对角线平分等性质,来推导出与菱形相关的定理和结论。

3. 建模应用:菱形作为一种特殊的几何图形,在建模过程中也有着特殊的应用。

例如在建筑、设计等领域中,可以利用菱形的性质和特点来构建特定的结构和图案。

五、拓展延伸菱形是一种特殊的四边形,它的性质和应用涉及到了数学的多个知识点。

在学习菱形的基础上,可以进一步拓展延伸相关的数学知识,例如平行四边形、矩形、正方形等特殊的四边形,从而更好地理解和运用几何知识。

菱形菱形的判定课件人教版数学八年级下册

菱形菱形的判定课件人教版数学八年级下册

所以CE=AE=AC.
又因为AF=CE,所以AF=AE=AC.
7.(丹东)如图,在▱ABCD中,O是AD的中点,连接CO并延长,交BA的延长线于 点E,连接AC,DE.
(1)求证:四边形ACDE是平行四边形. (2)若AB=AC,判断四边形ACDE的形状,并说明理由.
8.(滨州)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC, AE∥BD.
第4题图
5.如图,过▱ABCD的对角线交点O作互相垂直的两条直线EG,FH,
与AD,AB,BC,CD分别相交于点E,F,G,H.求证:四边形EFGH是
菱形.
证明:因为四边形ABCD是平行四边形,
所以AD∥BC,OB=OD.
所以∠ODE=∠OBG,∠OED=∠OGB.
所以△EOD≌△GOB.
所以OE=OG.
第十八章 平行四边形
18.2 特殊的平行四边形
菱形——菱形的判定
自主导学
菱形的判定方法: 方法1(定义法):有一组___邻__边___相等的平行四边形是菱形. 方法2:对角线__互__相__垂__直____的平行四边形是菱形. 方法3:四条边___相__等___的四边形是菱形.
探究学习
对角线互相垂直的平行四边形是菱形 【例1】如图,▱ABCD的对角线AC的垂直平分线与 边AD,BC分别相交于点E,F.求证:四边形AFCE是菱 形.
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,请说 明理由.
解:能. 因为∠B=∠DFC=90°, 所以DF∥AB. 又DF=AE, 所以四边形AEFD是平行四边形. 当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得t=10. 所以当t=10时,四边形AEFD是菱形.

初中数学 什么是菱形

初中数学 什么是菱形

初中数学什么是菱形菱形是一种特殊的四边形,它具有一些独特的性质和特点。

下面将详细介绍菱形的定义、性质和相关概念:定义:菱形是一种四边形,它的四条边都相等,并且对角线相等且互相垂直。

通常用大写字母表示,如ABCD。

性质:1. 菱形的四条边相等,即AB = BC = CD = DA。

2. 菱形的两对对角线相等,即AC = BD。

3. 菱形的对角线互相垂直,即∠ADB = ∠BDC = ∠CDA = ∠ACB = 90°。

4. 菱形的对角线平分内角,即∠BAD = ∠DAC = ∠ACB = ∠CBA。

5. 菱形的每个角都是直角。

6. 菱形的对角线交点是菱形的中心,同时也是对角线的垂直平分线和对称轴。

相关概念:1. 菱形的边长:菱形的边长是指菱形的任意一条边的长度。

由于菱形的四条边相等,所以菱形的边长是固定的。

2. 菱形的对角线长度:菱形的对角线长度是指菱形对角线的长度。

由于菱形的对角线相等,所以菱形的对角线长度也是固定的。

3. 菱形的面积:菱形的面积是指菱形所围成的区域的大小。

菱形的面积可以通过不同的公式计算,如使用对角线的乘积的一半,即S = (AC × BD) / 2。

4. 菱形的周长:菱形的周长是指菱形的四条边的总长度。

由于菱形的四条边相等,所以菱形的周长是边长的四倍,即P = 4 × AB。

菱形是几何学中的一种重要形状,它具有许多独特的性质和特点。

菱形的对角线相等且互相垂直,这使得菱形在许多几何问题中有着重要的应用。

我们可以通过菱形的定义和性质来解决各种与菱形相关的问题,如计算边长、对角线长度、面积和周长等。

同时,菱形也是其他几何形状的基础,例如正方形就是一种特殊的菱形。

因此,对菱形的理解和掌握对于几何学的学习和应用是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形的定义学习目标:1.认识菱形的概念,熟悉菱形与平行四边形的关系.2.掌握菱形的性质,会用这些性质进行有关的计算和证明.3.了解菱形在生活中的应用实例,能根据菱形的性质解决简单的实际问题.4.理解菱形的面积公式,会选择适当的方法计算菱形的面积.一、知识回顾:1.两组对边分别平行的四边形称为.2.平行四边形性质:平行四边形对边且平行四边形两条对角线。

平行四边形的对角。

3. 如果一个图形沿一条直线对折,直线两旁的图形能够,那么这个图形是轴对称图形。

二.探究新知:1.阅读教材P55“思考”以上的内容,然后与小组伙伴交流,并尝试回答下列问题:(1)菱形的定义:有一组相等的平行四边形叫菱形如图记作“菱形”(2)用定义证明菱形的推理步骤:∵四边形ABCD是,AB=BC∴四边形ABCD是2.菱形的性质:阅读教材P55“思考”以上的内容,然后与小组伙伴交流,并尝试回答下列问题:(1)如图,在菱形ABCD中,说出它具有的平行四边形的性质(2)如图,在菱形ABCD中,已知AB=BC,把下面说明AB=BC=CD=DA,AC ⊥BD,BD、DB分别平分∠ABC和∠ADC的步骤补充完整.证明:∵菱形ABCD是平行四边形,∴AB= ,BC= , ∵∴AB=BC=CD=DA∵菱形ABCD是平行四边形,∴OA=OC. ∴AB=BC∴∠ABD=∠CBD,AC⊥BD(等腰三角形“三线合一”)∴BD 平分∠ABC同理可证BD 平分∠ABC(3)菱形的性质:、菱形的四条边菱形的对角线互相,并且每一条对角线一组对角。

菱形是轴对称图形,它有对称轴。

3.完成下列习题(1)菱形具有而一般平行四边形不具有的性质是()A.对角线互相平分B.邻角互补C.对角相等D.对角线互相垂直(2)(2011•淮安)在菱形ABCD中,AB=7cm,则此菱形的周长为()A.7cm B.21cm C.28cm D.35cm(3)如图,菱形ABCD周长为8cm.∠BAD=60°,则AC= 23cm.考点:菱形的性质;解直角三角形.(4)菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是 58度.分析:根据菱形的一边与两条对角线所构成的两个角的差是32°即可求得菱形的内角的一半,根据菱形对角线垂直平分且为角平分线的性质,可以计算菱形较小的内角.解答:解:根据菱形的一边与两条对角线所构成的两个角的差是32°,菱形对角线垂直平分且为角平分线 设菱形内角度数为2x 、2y ,则x-y=32°,x+y=90°,∴x=61°,y=29°,所以菱形的相邻内角为122°和58°, 故答案为 58°.点评:本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了菱形相邻内角的和为180°的性质,本题中求菱形相邻内角的值是解题的关键.5. 思考:如何求平行四边形的面积?如何求菱形的面积吗?有新方法吗?(1)总结菱形的面积等于 或 .(2)已知菱形的对角线长分别为2cm 和3cm ,则它的面积为 。

(3)菱形是 图形,它有 对称轴,分别为对角线所在的直线。

6.阅读教材P 56例3,注意它的书写格式,完成P 57课后练习.三、知识总结:1、有一组 的平行四边形是菱形;2、菱形的四条边 菱形具有 条对称轴,它们分别是3、菱形的对角线互相 并且每一条对角线平分 。

4、菱形四条边上的高 ,菱形的面积公式是 。

四.当堂检测1. 如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( )A .50°B .60°C .70°D .80°分析:连接BF ,根据菱形的对角线平分一组对角求出∠BAC ,∠BCF=∠DCF ,四条边都相等可得BC=CD ,再根据菱形的邻角互补求出∠ABC ,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF ,根据等边对等角求出∠ABF=∠BAC ,从而求出∠CBF ,再利用“边角边”证明△BCF 和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF .解答:解:如图,连接BF , 在菱形ABCD 中,∠BAC =21∠BAD =21×80°=40°,∠BCF=∠DCF ,BC=CD ,∵∠BAD=80°,∴∠ABC=180°-∠BAD=180°-80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC-∠ABF=100°-40°=60°,∵在△BCF和△DCF中,BC=CD ∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选B.点评:本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合题,但难度不大,熟记各性质是解题的关键.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.若菱形的两条对角线分别为2和3,则此菱形的面积是34. 如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.5..(2012•舟山)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.考点:菱形的性质;平行四边形的判定与性质.专题:证明题.分析:(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.解答:(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°-∠ABO=40°.点评:本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.6.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°考点:翻折变换(折叠问题);菱形的性质.专题:计算题.分析:连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.解答:解:连接BD,∵四边形ABCD为菱形∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.点评:此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.7.(2012•本溪)在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.44考点:菱形的性质;勾股定理.分析:先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.解答:解:∵AD ∥BE ,AC ∥DE ,∴四边形ACED 是平行四边形,∴AC=DE=6,在RT △BCO 中,BO= AB 2−AO = =4,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE 是直角三角形,∴S △BDE =21DE•BD=24.故选B . 点评:此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD 的长度,判断△BDE 是直8. (2013•临沂)如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是 33考点:菱形的性质;等边三角形的判定与性质.分析:首先利用菱形的性质及等边三角形的判定可得判断出△AEF 是等边三角形,再根据三角函数计算出AE=EF 的值,再过A 作AM ⊥EF ,再进一步利用三角函数计算出AM 的值,即可算出三角形的面积.解答:解:∵四边形ABCD 是菱形,∴BC=CD ,∠B=∠D=60°,∵AE ⊥BC ,AF ⊥CD ,∴AB•AE=AD•AF ,∠BAE=∠DAF=30°,∴AE=AF ,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF 是等边三角形,∴AE=EF ,∠AEF=60°,∵AB=4,∴AE=23,∴EF=AE=23,过A 作AM ⊥EF ,∴AM=AE•sin60°=3,∴△AEF 的面积是:21EF•AM=21×23×3=33. 故答案为:33.点评:此题考查菱形的性质,等边三角形的判定及三角函数的运用.关键是掌握菱形的性质,证明△AEF 是等边三角形.9. (2010•嘉兴)如图,已知菱形ABCD 的一个内角∠BAD=80°,对角线AC 、BD 相交于点O ,点E 在AB 上且BE=BO ,则∠BEO = 65度.分析:因为AB=AD ,∠BAD=80°,可求∠ABD=50°;又BE=BO ,所以∠BEO=∠BOE ,根据三角形内角和定理求解.解答:解:∵ABCD 是菱形,∴AB=AD .∴∠ABD=∠ADB .∵∠BAD=80°,∴∠ABD =21×(180°-80°)=50°. 又∵BE=BO ,∴∠BEO=∠BOE =21×(180°-50°)=65°. 故答案为:65. 点评:此题考查了菱形的性质和等腰三角形的性质以及三角形内角和定理10. (2013•株洲)已知四边形ABCD 是边长为2的菱形,∠BAD=60°,对角线AC 与BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F .(1)求证:△AOE ≌△COF ;(2)若∠EOD=30°,求CE 的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理.分析:(1)根据菱形的对角线互相平分可得AO=CO ,对边平行可得AD ∥BC ,再利用两直线平行,内错角相等可得∠OAE=∠OCF ,然后利用“角边角”证明△AOE 和△COF 全等;(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO 的长,再求出EF 的长,然后在Rt △CEF 中,利用勾股定理列式计算即可得解.解答:(1)证明:∵四边形ABCD 是菱形,∴AO=CO ,AD ∥BC ,∴∠OAE=∠OCF ,在△AOE 和△COF 中,可证∴△AOE ≌△COF (ASA );(2)解:∵∠BAD=60°,∴∠DAO =21∠BAD =21×60°=30°,∵∠EOD=30°,∴∠AOE=90°-30°=60°, ∴∠AEF=180°-∠DAO-∠AOE=180°-30°-60°=90°,∵菱形的边长为2,∠DAO=30°,∴OD =21AD=21×2=1, ∴AO =3∴AE=CF =3×23=23,∵菱形的边长为2,∠BAD=60°,∴高EF=2×23=3在Rt △CEF 中,CE=221 点评:本题考查了菱形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,(2)求出△CEF 是直角三角形是解题的关键,也是难点.11. (2012•南通)菱形ABCD 中,∠B=60°,点E 在边BC 上,点F 在边CD 上.(1)如图1,若E 是BC 的中点,∠AEF=60°,求证:BE=DF ;(2)如图2,若∠EAF=60°,求证:△AEF 是等边三角形.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定.专题:证明题;压轴题.分析:(1)首先连接AC ,由菱形ABCD 中,∠B=60°,根据菱形的性质,易得△ABC 是等边三角形,又由三线合一,可证得AE ⊥BC ,继而求得∠FEC=∠CFE ,即可得EC=CF ,继而证得BE=DF ;(2)首先由△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得:△AEF是等边三角形.解答:证明:(1)连接AC,∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠C=180°-∠B=120°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°,∴∠CFE=180°-∠FEC-∠ECF=180°-30°-120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△ACF中,可证∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.点评:此题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.12.(2012•海南)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,(1)求证:△ADN≌△CBM;(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;(3)如图(2)所示,若AB=4cm,BC=3cm,求PC的长度.考点:翻折变换(折叠问题);全等三角形的判定与性质;平行四边形的判定;菱形的判定.专题:压轴题.分析:(1)根据折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,从而根据AD∥BC可得出∠DAN=∠BCM,从而即可判断出△ADN≌△CBM.(2)连接NE、MF,根据(1)的结论可得出NF=ME,再由∠NFE=∠MEF可判断出NF∥ME,在直角三角形NFE中,NE为斜边,NF为直角边,可判断四边形MFNE不是菱形.(3)设AC与MN的交点为O,EF=x,作QG⊥PC于G点,首先求出AC=5,根据翻折变换知:AF=CE=3,于是可得AF+(CE-EF)=5,可得EF=1,解答:(1)证明:由折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,∵AD∥BC,∴∠DAC=∠BCA,∴∠DAN=∠BCM,在Rt△ADN和Rt△CBM中,可证△ADN≌△CBM,(2)解:连接NE、MF,∵△ADN≌△CBM,∴NF=ME,∵∠NFE=∠MEF,∴NF∥ME,∴四边形MFNE是平行四边形,∵MN与EF不垂直,∴四边形MFNE不是菱形;(3)解:设AC与MN的交点为O,EF=x,作QG⊥PC于G点,∵AB=4,BC=3,∴AC=5,∵AF=CE=BC=3,∴2AF-EF=AC,即6-x=5,解得x=1,∴EF=1,∴CF=2,点评:本题主要考查翻折变换的知识点,还涉及平行四边形、菱形的证明,解答(3)问的关键是求出EF 的长,此题难度较大,要熟练掌握此类试题的解答,此类题经常出现中考试卷中,请同学们关注.。

相关文档
最新文档