《用频率估计概率》教学设计
九年级上册人教版数学25.3用频率估计概率教学设计
![九年级上册人教版数学25.3用频率估计概率教学设计](https://img.taocdn.com/s3/m/cca5d8a0c9d376eeaeaad1f34693daef5ef713bc.png)
1.创设情境,导入新课:通过一个与学生生活密切相关的实际问题,如彩票中奖概率,引出频率估计概率的概念,激发学生的兴趣。
2.实践探究,合作交流:组织学生进行小组合作,进行实验或调查,收集数据,引导学生运用频率估计概率。在此过程中,教师应及时给予指导,帮助学生解决实际问题。
3.知识讲解,巩固提高:在学生实践探究的基础上,教师进行系统地讲解,强调频率与概率的关系,并通过典型例题进行分析,帮助学生巩固所学知识。
2.重点:利用频率分布表和频率分布直方图进行分析,培养学生的数据分析和处理能力。
难点:如何让学生理解并掌握频率分布表和频率分布直方图的构建过程,以及它们在实际问题中的应用。
3.重点:培养学生运用概率知识解决实际问题的能力,增强数学思维。
难点:如何激发学生的创新思维,将理论知识与实际问题相结合,提高解决问题的策略和方法。
教学过程:
(1)教师引导学生回顾本节课所学内容,总结频率与概率的关系。
(2)学生分享自己在学习过程中的收获和疑问。
(3)教师解答学生疑问,强调本节课的重点和难点。
(4)教师布置课后作业,巩固所学知识。
五、作业布置
为了巩固本节课所学知识,培养学生的实践能力和创新思维,特布置以下作业:
1.基础作业:
(1)完成课本第25.3节后的练习题1、2、3。
7.关注个体差异,实施分层教学:针对学生的不同水平,设计难易程度不同的练习题,使每个学生都能在原有基础上得到提高。
8.情感态度与价值观的培养:在教学过程中,关注学生的情感态度,引导学生正确看待概率事件,培养学生积极向上的人生态度。
9.课后作业,巩固拓展:布置适量的课后作业,包括基础题和提高题,让学生在课后巩固所学知识,并进行适当的拓展。
用频率估计概率教案
![用频率估计概率教案](https://img.taocdn.com/s3/m/c4cffe5cc4da50e2524de518964bcf84b9d52d8d.png)
用频率估计概率教案教案标题:用频率估计概率教学目标:1. 理解频率是概率的估计值。
2. 学会使用频率估计概率的方法。
3. 能够应用频率估计概率解决实际问题。
教学准备:1. 教师准备:白板、黑板笔、投影仪、教学PPT、实例题目。
2. 学生准备:纸、铅笔。
教学步骤:引入(5分钟):1. 教师通过引入问题激发学生对频率和概率的思考,如:如果我们想知道某个事件发生的概率,我们可以怎么做?2. 学生回答后,教师解释频率是概率的估计值,并介绍频率估计概率的概念。
讲解(15分钟):1. 教师通过教学PPT或黑板,详细讲解频率估计概率的方法:a. 频率的定义:事件发生的次数除以实验次数。
b. 频率估计概率的方法:通过实验重复多次,统计事件发生的次数,然后计算频率作为概率的估计值。
c. 频率估计概率的特点:随着实验次数的增加,频率会趋近于概率的真实值。
示范(15分钟):1. 教师给出一个实际问题,如:在一副扑克牌中,黑桃A的概率是多少?2. 教师引导学生进行实验,重复抽取扑克牌并统计黑桃A出现的次数。
3. 学生根据实验结果计算频率,并将其作为概率的估计值。
练习(15分钟):1. 学生分组进行练习,教师提供一些实际问题,要求学生通过实验估计概率。
2. 学生完成练习后,教师进行讲解和讨论,引导学生理解概率估计的过程和结果。
拓展(10分钟):1. 教师提供更多的实际问题,要求学生通过实验估计概率,并与理论概率进行比较。
2. 学生进行讨论和分析,总结频率估计概率的优缺点。
总结(5分钟):1. 教师进行总结,强调频率是概率的估计值,并提醒学生在实际问题中可以使用频率估计概率的方法。
2. 学生提出问题和意见,教师进行解答和回应。
作业:1. 学生完成课堂练习的剩余部分。
2. 学生自选一个实际问题,通过实验估计概率,并写出实验过程和结果。
教学反思:1. 教师应提前准备好实例题目,并确保实验过程简单易懂。
2. 教师应鼓励学生积极参与实验和讨论,培养学生的实验设计和数据分析能力。
九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案
![九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案](https://img.taocdn.com/s3/m/15c81f557dd184254b35eefdc8d376eeafaa176b.png)
教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。
对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
难点是试验估计随机事件发生的概率。
为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。
2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。
三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。
人教版九年级数学上册《25.3用频率估计概率》教案
![人教版九年级数学上册《25.3用频率估计概率》教案](https://img.taocdn.com/s3/m/63f7c47f182e453610661ed9ad51f01dc381577c.png)
2.培养学生分析问题和解决问题的能力,引导他们从多角度思考问题;
3.鼓励学生独立思考,创新思维,提高他们在实际应用中运用数学知识的能力。
在今后的教学中,我会不断总结经验,改进教学方法,努力提高学生的学习效果。同时,关注学生的个体差异,因材施教,让每个学生都能在数学学习中找到乐趣和成就感。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解频率和概率的基本概念。频率是指某个事件在多次实验中发生的次数与实验总次数的比值。概率则是描述某个事件发生可能性的数学度量。它们在预测和决策中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过掷骰子的实验,观察不同点数出现的频率,并探讨如何用频率估计概率。
人教版九年级数学上册《25.3用频率估计概率》教案
一、教学内容
人教版九年级数学上册《25.3用频率估计概率》主要内容包括:
1.频率的定义与计算方法;
2.频率与概率的关系,利用频率估计概率;
3.案例分析:通过实验或统计数据,运用频率估计概率;
4.课堂练习:完成教材中相关的习题,巩固频率估计概率的方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了频率和概率的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对用频率估计概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
本章节将引导学生通过实际操作,观察与分析实验数据,理解频率的概念,并运用频率来估计事件的概率,增强学生对概率与统计知识的理解和应用能力。教学内容与教材紧密关联,注重培养学生的实际操作能力和数据分析能力。
人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计
![人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计](https://img.taocdn.com/s3/m/2adcb18ac0c708a1284ac850ad02de80d5d80649.png)
3.的意识,提高学生的实践能力。
4.培养学生的团队合作精神,让学生在合作交流中学会尊重他人、倾听他人意见,提高人际交往能力。
5.培养学生勇于探索、不断进取的精神,鼓励学生在面对困难时保持积极向上的态度,增强克服困难的信心。
3.学生在合作交流中,如何有效地倾听、表达、沟通,提高团队合作效率。
教学设想:
1.创设情境,引入新课:通过生活中的实例,如彩票中奖概率、投篮命中率等,引出频率的概念,激发学生的兴趣。
2.自主探究,理解概念:让学生自主进行实验,收集数据,计算频率,进而引导学生发现频率与概率之间的关系。
3.合作交流,解决问题:分组讨论,让学生在小组内分享实验过程和结果,互相借鉴,提高解决问题的能力。
2.解释频率与概率的关系:通过实际例子,如抛硬币实验,引导学生发现频率在大量实验中趋于稳定,且稳定值接近于概率。
3.操作演示:教师进行实验演示,如抛硬币、掷骰子等,让学生观察并记录实验数据,计算频率。
4.方法讲解:教师详细讲解如何利用频率来估计概率,以及在实际操作中需要注意的问题。
(三)学生小组讨论,500字
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下思考:
1.回顾频率的定义,总结频率与概率之间的关系。
2.梳理用频率估计概率的方法,强调实验数据的重要性。
3.反思本节课的学习过程,分享学习心得和收获。
4.提醒学生课后继续思考频率与概率的关系,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的用频率估计概率的知识,检验学生对课堂内容的掌握情况,特布置以下作业:
3.实践性:作业要注重实践,引导学生将所学知识应用于实际问题,提高学生的应用能力。
2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率
![2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率](https://img.taocdn.com/s3/m/3c77827cbdd126fff705cc1755270722182e5907.png)
25.3 利用频率估计概率一、教学目标【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度与价值观】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.五、课前准备课件等.六、教学过程(一)导入新课教师问:抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?(出示课件2)学生答:出现“正面朝上”和“反面朝上”两种情况.教师问:它们的概率是多少呢?学生答:都是1.2教师问:在实际掷硬币时,会出现什么情况呢?(出示课件3)在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?用列举法可以求一些事件的概率.实际上,我们还可以利用多次重复试验,通过统计试验结果估计概率.(板书课题)(二)探索新知探究一用频率估计概率出示课件5-9:抛硬币实验(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.学生尝试画图:的直线,你发现了什么?(3)在上图中,用红笔画出表示频率为12的直线,并观察思考.学生画出表示频率为12教师强调:试验次数越多频率越接近0. 5,即频率稳定于概率.(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?学生答:支持.教师问:抛掷硬币试验有什么特点?学生答:1.可能出现的结果数有限;2.每种可能结果的可能性相等.教师问:如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?学生独立思考,交流.出示课件10-13:图钉落地的试验从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?(1)选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.(2)根据上表画出统计图表示“顶帽着地”的频率.学生尝试画图:(3)这个试验说明了什么问题?学生答:在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.出示课件14:教师归纳:通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.出示课件15:知识拓展:人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.出示课件16:教师强调:一般地,在大量重复试验中,随机事件A发生的(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发频率mn生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即P(A)=P.练一练:判断正误(出示课件17)⑴连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1.(2)小明掷硬币10000次,则正面向上的频率在0.5附近.(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品.学生思考后口答:⑴错误;⑵正确;⑶错误.出示课件18:例1 某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0.001);学生计算后并填表:(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?学生独立思考后口答:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.巩固练习:(出示课件19)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是4学生自主思考后口答:D.出示课件20,21:例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:(1)计算上表中合格品率的各频率(精确到0.001);(2)估计这种瓷砖的合格品率(精确到0.01);(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.学生计算思考后,师生共同解答.(出示课件22)解:(1)逐项计算,填表如下:稳定在0.962⑵观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率mn的附近,所以我们可取P=0.96作为该型号瓷砖的合格品率的估计.(3)500000×96%=480000(块),可以估计该型号合格品数为480000块.出示课件23:教师归纳总结:频率与概率的关系在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与试验无关.巩固练习:(出示课件24)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1)学生自主思考后独立解答:⑴计算如下:⑵稳定在0.8附近;⑶0.8.(三)课堂练习(出示课件25-34)1.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾.3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.填表:由上表可知:柑橘损坏率是,完好率是.6.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?7.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.参考答案:1.D解析:由图知试验结果在0.33附近波动,因此概率约等于0.33.取到红球概率为0.6,故A错;骰子向上的面点数是偶数的概率为0.5,故B错;两次都出现反面的概率为0.25,故C错,骰子两次向上的面点数之和是7或超过9的概率≈0.33,故D正确.为132.310;2703.答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.⑴0.6;⑵0.6.5.解:填表如下:由上表可知:柑橘损坏率是0.10,完好率是0.90.6.分析:根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为21000020= 2.22(90009⨯≈元/千克),设每千克柑橘的销价为x 元,则应有(x-2.22)×9000=5000,解得x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.7.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000×95%=240350(千克).(四)课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?七、课后作业配套练习册内容八、板书设计:九、教学反思:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.。
《25.3 用频率估计概率》教案、教学设计、导学案、同步练习
![《25.3 用频率估计概率》教案、教学设计、导学案、同步练习](https://img.taocdn.com/s3/m/5f435c9c08a1284ac85043ea.png)
《25.3 用频率估计概率》教案【教学目标】1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16 .探究点二:用频率估计概率【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B、C、D不一定正确,选项A正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计【教学反思】教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.《25.3 用频率估计概率》教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
北师大九年级上册 3.2 用频率估计概率 教学设计
![北师大九年级上册 3.2 用频率估计概率 教学设计](https://img.taocdn.com/s3/m/cf298e54591b6bd97f192279168884868662b870.png)
3.2用频率估计概率教学设计任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,可以发现实验次数越多,频率越接近概率.(m>n),那么一定有一个抽屉中放进了至少2个物品”.300个同学中,一定有两个同学的生日相同吗?不一定.但有2个同学的生日相同的可能性较大.“我认为咱们班50个同学中很可能就有2个同学的生日相同.”,你同意这种说法吗?同意。
【议一议】为了证明上述的说法是否正确,我们可以通过大量重复试验,用“50个人中有2个人的生日相同”的频率来估计这一事件的概率.请你设计试验方案.(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选择50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在表格中.“50人中有2人生日相同”的频率=“50人中有2人生日相同”的频数总调查次数(3)根据上表中的数据,估计“50个人中有2个人的生日相同”的概率.“n个人中至少有2人相同”的概率统计如下:【归纳】(1)用频率估计概率:当试验次数足够大时,随机事件出现的频率稳定于相应的理论概率附近;(2)用频率估计概率的条件:试验的次数必须足够大.(3)计算方法:一般地,在大量重复试验中,如果事稳定于某个常数p,那么估计事件A 件A发生的频率mn发生的概率P(A)=p.【想一想】(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?(1)每次随机摸出一个球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.(2)每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.【思考】频率与概率有什么区别与联系?所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变,而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关..例、六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球有多少个.方法指导:(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得;(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)∵1000040000=14,∴参加一次这种游戏活动得到福娃玩具的频率为14 (2)∵试验次数很大时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是14.设袋中白球有x 个.1.不透明的袋子里放有4个黑球和若干个白球(这些球除颜色外都相同),老师将全班学生分成10个小组,进行摸球试验,经过大量重复摸球试验,统计显示,从中摸出白球的频率稳定在0.2附近,则袋子中白球的个数是 ( )A.1 B.2 C.3 D.4 2.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是 ( ) A.掷一枚正六面体的骰子,出现1点的概率B.任意写一个整数,它能被2整除的概率C.抛一枚质地均匀的硬币,出现正面朝上的概率D.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率3.下表记录了某种幼树在一定条件下移植成活的情况:由此估计这种幼树在此条件下移植成活的概率是_____(精确到0.1).4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.。
冀教版九年级数学下册教学设计:31.3用频率估计概率
![冀教版九年级数学下册教学设计:31.3用频率估计概率](https://img.taocdn.com/s3/m/b8814149a66e58fafab069dc5022aaea998f4181.png)
冀教版九年级数学下册教学设计:31.3 用频率估计概率一. 教材分析本节课的内容是冀教版九年级数学下册的31.3节,主题是用频率估计概率。
这部分内容是在学生已经掌握了概率的基本概念和计算方法的基础上进行讲解的,旨在让学生通过实际操作,理解频率与概率之间的关系,学会如何用频率来估计概率。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和动手操作能力,对于概率这一概念已经有了初步的了解。
但是,对于如何用频率来估计概率,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过实际操作,理解频率与概率之间的关系。
三. 教学目标1.知识与技能:让学生理解频率与概率之间的关系,学会如何用频率来估计概率。
2.过程与方法:通过实际操作,培养学生的动手操作能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。
四. 教学重难点重点:如何用频率来估计概率。
难点:理解频率与概率之间的关系。
五. 教学方法采用问题驱动的教学方法,引导学生通过实际操作,理解频率与概率之间的关系。
同时,运用小组合作的学习方式,培养学生的团队合作意识和探究精神。
六. 教学准备1.准备一些实际问题,让学生通过实际操作来估计概率。
2.准备一些关于频率与概率之间关系的资料,用于讲解和引导学生思考。
七. 教学过程1.导入(5分钟)通过提出一些实际问题,引导学生回顾概率的基本概念和计算方法。
例如,抛硬币、抽奖等,让学生思考这些问题背后的概率原理。
2.呈现(10分钟)讲解频率与概率之间的关系,引导学生理解如何用频率来估计概率。
通过展示一些实例,让学生明白频率是概率的一种表现形式,而概率则是频率的长期平均值。
3.操练(10分钟)让学生进行实际操作,估计一些问题的概率。
例如,抛硬币实验、抽奖问题等,让学生通过动手操作,体会如何用频率来估计概率。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的内容。
例如,给出一些实际问题,让学生用频率来估计概率。
5.3用频率估计概率教学设计-2024-2025学年高一下学期数学湘教版(2019)必修第二册
![5.3用频率估计概率教学设计-2024-2025学年高一下学期数学湘教版(2019)必修第二册](https://img.taocdn.com/s3/m/940303a8f80f76c66137ee06eff9aef8951e4860.png)
(4)讨论法:在课堂上引导学生进行分组讨论,鼓励他们发表自己的观点,提高学生的合作意识和沟通能力。
2.设计具体的教学活动:
(1)导入环节:以一个简单的概率问题引入本节课的主题,激发学生的学习兴趣。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与“用频率估计概率”内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合“用频率估计概率”内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习“用频率估计概率”的心得和体会,增进师生之间的情感交流。
针对以上问题和不足,我提出以下改进措施和建议:
1.在知识讲解上,加强备课,深入研究教材,确保讲解清晰、准确,对于难点和重点问题,可以通过举例、类比等方法帮助学生理解和掌握。
2.在实验操作环节,改进实验设计,增加实验时间和器材,确保每位学生都有机会亲自动手操作,提高实验的实效性。
3.在课堂管理上,加强课堂纪律管理,采取适当的激励措施,提高学生的课堂参与度,确保学生在课堂上能够集中精力学习。
5.概括性强:板书应具有概括性,能够将知识点概括总结,帮助学生形成完整的知识体系。
6.艺术性和趣味性:板书设计应具有艺术性和趣味性,以激发学生的学习兴趣和主动性,提高学生的学习积极性。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的“用频率估计概率”内容,强调“用频率估计概率”重点和难点。
肯定学生的表现,鼓励他们继续努力。
布置作业:
九年级数学上册《用频率作为概率的估计值》教案、教学设计
![九年级数学上册《用频率作为概率的估计值》教案、教学设计](https://img.taocdn.com/s3/m/8ffe8db60875f46527d3240c844769eae009a397.png)
3.通过数学知识在实际生活中的应用,让学生认识到数学的价值,提高学生的数学素养。
教学过程:
一、导入新课
1.复习概率的基本概念,为新课的学习做好铺垫。
2.提问:我们已经学习了如何计算事件的概率,那么在实际问题中,如何估计事件的概率呢?
二、自主探究
3.激发学生对数学的兴趣,培养他们的探究精神和:以生活实例引入频率与概率的概念,让学生感受到数学的实用性和趣味性。
2.自主探究,合作交流:鼓励学生自主探索频率与概率之间的关系,通过小组合作、讨论交流,共同解决问题。
3.精讲精练,突破难点:针对教学难点,教师进行详细的讲解和示范,让学生在理解的基础上,通过适量的练习题进行巩固。
设计实际问题,让学生运用频率估计概率,解决生活中的问题,提高数据分析与处理的能力。
第六步:总结反思,提升素养
1.让学生回顾所学内容,总结频率与概率之间的关系。
2.教师对学生进行情感态度与价值观的教育,强调数学在实际生活中的价值。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示一个有趣的魔术,引起学生的好奇心。魔术内容为:教师准备一个不透明的袋子,里面装有5个红球和5个蓝球,让学生从中随机抽取一个球,然后放回袋子。重复这个过程多次,最后预测学生抽到红球的概率。
九年级数学上册《用频率作为概率的估计值》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解频率和概率的关系,掌握用频率估计概率的方法。
2.培养学生运用数学知识解决实际问题的能力,提高数据分析与处理的能力。
3.使学生能够运用频率估计概率,解决一些简单的实际问题,如抛硬币、掷骰子等。
《用频率估计概率》教案
![《用频率估计概率》教案](https://img.taocdn.com/s3/m/bbd544dad5d8d15abe23482fb4daa58da1111c60.png)
《用频率估计概率》教案第一章:引言1.1 教学目标让学生理解概率的基本概念。
让学生了解频率与概率之间的关系。
1.2 教学内容概率的定义与例子。
频率与概率的关系。
1.3 教学方法通过具体的例子引导学生理解概率的概念。
使用实际实验或模拟实验让学生观察频率与概率之间的关系。
1.4 教学活动引入概率的概念,举例说明。
让学生进行简单的实验或观察,记录频率。
引导学生思考频率与概率之间的关系。
第二章:单次实验的频率估计2.1 教学目标让学生能够通过单次实验来估计概率。
2.2 教学内容单次实验的概率估计方法。
随机事件的概率估计。
2.3 教学方法使用实际实验或模拟实验让学生进行单次实验。
引导学生通过实验结果来估计概率。
2.4 教学活动让学生进行单次实验,如抛硬币、掷骰子等。
引导学生观察实验结果,计算频率。
让学生通过频率来估计事件的概率。
第三章:多次实验的频率估计3.1 教学目标让学生能够通过多次实验来估计概率。
3.2 教学内容多次实验的概率估计方法。
随机事件的概率估计。
3.3 教学方法使用实际实验或模拟实验让学生进行多次实验。
引导学生通过实验结果来估计概率。
3.4 教学活动让学生进行多次实验,如抛硬币、掷骰子等。
引导学生观察实验结果,计算频率。
让学生通过频率来估计事件的概率。
第四章:频率与概率的关系4.1 教学目标让学生理解频率与概率之间的关系。
4.2 教学内容频率与概率的关系。
概率的性质与定理。
4.3 教学方法通过具体的例子引导学生理解频率与概率之间的关系。
使用实际实验或模拟实验让学生观察频率与概率之间的关系。
4.4 教学活动引导学生思考频率与概率之间的关系。
让学生进行实验或观察,记录频率。
引导学生通过实验结果来理解频率与概率之间的关系。
第五章:总结与拓展5.1 教学目标让学生总结本节课所学的知识。
让学生了解概率估计在实际中的应用。
5.2 教学内容总结频率估计概率的方法。
概率估计在实际中的应用。
5.3 教学方法通过问题引导学生总结本节课所学的知识。
《用频率估计概率》教案
![《用频率估计概率》教案](https://img.taocdn.com/s3/m/ecc2fd5391c69ec3d5bbfd0a79563c1ec5dad784.png)
《用频率估计概率》教案一、教学目标1. 让学生理解概率的定义,掌握用频率来估计概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流的能力,提高学生的数学思维水平。
二、教学内容1. 频率与概率的关系2. 用频率估计概率的方法3. 实际问题中的应用三、教学重点与难点1. 教学重点:频率与概率的关系,用频率估计概率的方法。
2. 教学难点:如何运用概率知识解决实际问题。
四、教学方法2. 利用信息技术手段,如多媒体演示、网络资源等,辅助教学。
3. 采用小组合作学习的方式,培养学生的合作交流能力。
五、教学过程1. 导入新课:通过一个简单的问题引出频率与概率的概念,激发学生的兴趣。
2. 探究频率与概率的关系:引导学生通过实验探究频率与概率的关系,让学生亲身感受概率的内涵。
4. 应用练习:让学生通过解决实际问题,运用所学的概率知识。
6. 作业布置:布置一些有关用频率估计概率的练习题,让学生进一步巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,评价学生的学习态度和合作能力。
2. 练习题评价:对学生在练习题中的解答情况进行评价,了解学生对频率估计概率方法的掌握程度。
3. 实际问题解决评价:评价学生在解决实际问题时,能否灵活运用概率知识,提出合理的解决方案。
七、教学拓展1. 引导学生进一步学习其他估计概率的方法,如最大似然估计等。
2. 结合实际问题,让学生深入了解概率在日常生活和学科领域中的应用。
3. 鼓励学生参加数学竞赛和相关活动,提高学生的数学素养。
八、教学反思1. 教师在课后要对自己的教学进行反思,分析教学过程中的优点和不足,不断调整和改进教学方法。
2. 关注学生的学习反馈,及时了解学生在学习中遇到的问题,针对性地进行辅导。
3. 结合教学实际情况,灵活调整教学计划,确保教学目标的实现。
九、教学资源1. 多媒体课件:制作课件,生动展示频率与概率的关系,以及用频率估计概率的方法。
用频率估计概率教案
![用频率估计概率教案](https://img.taocdn.com/s3/m/70c8d4cb763231126edb11cc.png)
用频率估计概率教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《利用频率估计概率》教案1第一课时★新课标要求知识与技能:1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念.过程与方法:通过试验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力.情感态度与价值观:1.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯.2.在活动中进一步发展合作交流的意识和能力.教学重点:理解当试验次数较大时,试验频率稳定于理论概率.教学难点:对概率的理解.设计教学程序:一、问题情境:教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大.在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、合作游戏:1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来.2.教师巡视学生分组试验情况.注意:(1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2)要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上要求填好下表.并根据所整理的数据,在统计图上标注出对应的点,完成统计图.想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示).随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律.鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(如下表).通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识有没有发现频率还有其他作用学生探究交流,发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ),记作P(A )=p .注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论):问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.第二课时知识与技能:了解模拟试验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力.过程与方法:初步学会对一个简单的问题提出一种可行的模拟试验.情感态度与价值观:1.提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣.2.渗透数形结合思想和分类思想.教学重点:理解用模拟试验解决实际问题的合理性.教学难点:会对简单问题提出模拟试验策略.设计教学程序:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗说说你的理由但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替,你觉得这样公平吗选哪种颜色获得门票的概率更大说说你的理由!二、合作游戏:1.试验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出.表格一:(1)你认为哪种情况的概率最大?(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?2.累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、前五组(150次).....的试验数据,完成表格二的填写,并绘制出相应的折线统计图并得出有关结论.表格二:问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论?3.得出试验结论.例题小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯.袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只.同学们能否求出摸出的2只恰好是一双的可能性?问:同学们能否通过试验估计它们恰好是一双的可能性如果手边没有袜子应该怎么办问:在摸袜子的试验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做试验吗?答:不可以,用不同的替代物混在一起,大大地改变了试验条件,所以结果是不准确的.注意:试验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的.问:假设用小球模拟问题的试验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响试验结果吗?答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的试验,而是中途变成了3双黑袜子试验,这两种试验结果是不一样的.问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行试验,结果会怎样?答:小球的颜色不影响恰好是一双的可能性大小.三、随堂练习.书本“柑橘的损坏率”填写表25—6.四、拓展提升:解决问题2.1.柑橘的损坏率是多少?2.到达目的地后完好的柑橘还有多少千克?3.把损坏的柑橘也算在内,到达目的地后柑橘的成本约是多少元?4.设每千克定价为x元,则可以得到的方程是.。
“用频率估计概率”教学设计
![“用频率估计概率”教学设计](https://img.taocdn.com/s3/m/2e07aaf3b04e852458fb770bf78a6529647d35ac.png)
“用频率估计概率”教学设计“用频率估计概率”教学设计「篇一」教学准备1.教学目标1.1 知识与技能:知道通过大量重复试验,可以用频率估计概率. 1.2过程与方法:2.让学生经历硬币实验和投图钉实验,对数据进行收集、整理、描述和分析,通过“猜想试验——收集数据——分析结果”的探索过程,体验频率的随机性与规律性,丰富对随机现象的体验,了解用频率估计概率的合理性和必要性,培养随机观念.1.3 情感态度与价值观:在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.2.教学重点/难点2.1 教学重点对实验数据进行收集、整理、描述和分析 2.2 教学难点用频率估计概率方法的合理性.3.教学用具4.标签教学过程1导入新课问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去,我很为难,真不知该把球给谁,请大家帮我想个办法来决定把球票给谁.生:抓阄、抽签、猜拳、投硬币,教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.过渡:抛掷一枚质地均匀的硬币时,“正面向上”和“反面向上”发生的可能性相等,这两个随机事件发生的概率都是0.5.这是否意味着抛掷一枚硬币100次时,就会有50次“正面向上”和50次“反面向上”呢?2.试验活动:抛掷一枚硬币 50 次,统计“正面向上”出现的频数,计算频率,填写表格,思考.组员分工:号同学抛掷硬币,约达 1 臂高度,接住落下的硬币,报告试验结果; 2 号同学用画记法记录试验结果;号同学监督,尽可能保证每次试验条件相同,确保试验的随机性,填写表格.全班同学分成若干小组,同时进行试验.全班学生3人一组,进行实验.第1组的数据填在第1列,第1,2组的数据之和填在第2列10个组的数据之和填在第10列.如果在抛掷硬币n次时,出现m次“正面向上”,则称比值为“正面向上”的频率.教师在学生填写后,根据上表的数据,在下图中标注出对应的点.问题1:频率和概率有什么不同?问题2:如果重复实验次数增多,结果会怎样?问题3:随着重复实验次数的增加,“正面向上”的频率有什么规律?教师引导学生思考这3个问题,理解用频率估算概率的合理性和必要性,鼓励学生探索数据中隐藏的规律,提高学生的统计意识.2.历史上的抛掷硬币的试验.历史上,有些人曾做过成千上万次抛掷硬币的试验.其中一些试验结果见下表:思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势是什么? 可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5附近摆动.一般地,随着抛掷次数的增加,频率呈现出一定的稳定性:在0.5附近摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.它与前面用列举法得出的“正面向上”的概率是同一个数值.当“正面向上”的频率稳定于0.5时,“反面向上”的频率也稳定于0.5.3总结实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.问题1:你怎样理解“固定数”?问题2:“正面向上”的概率是0.5,连续掷2次,结果一定是“正面向上”和“反面向上”各1次吗?教师让学生思考、分析,通过问题,深化理解.“固定数”就是“概率”;概率是0.5并不能保证掷2n次硬币一定恰好有n 次“正面向上”,只是当n越来越大时,正面向上的频率会越来越稳定于0.5.可见,概率是针对大量重复试验而言的,概率具有稳定性.4例:某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?解:根据估计的概率可以知道,在 10 000 kg 柑橘中完好柑橘的质量为 10 000×0.9=9 000(kg).设每千克柑橘售价为 x 元,则 9 000x-2×10 000=5 000.解得x ≈ 2.8(元).因此,出售柑橘时,每千克大约定价 2.8 元可获利润 5 000元. 6.5巩固练习教材第144页练习1、2.四、课堂小结课堂小结今天学习了什么?有什么收获?a、我知道通过大量重复试验,可以用频率估计概率.b、当统计次数越大时,频率越接近概率。
《用频率估计概率》教案
![《用频率估计概率》教案](https://img.taocdn.com/s3/m/36d3ed371fb91a37f111f18583d049649b660ebc.png)
《用频率估计概率》教案一、教学目标:1. 让学生理解频率与概率之间的关系,掌握用频率来估计概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 增强学生对统计学的基本概念的理解,为后续学习打下基础。
二、教学内容:1. 频率与概率的关系2. 利用大量实验来估计事件的概率3. 用频率估计概率的步骤与方法4. 实例分析与应用三、教学重点与难点:1. 教学重点:频率与概率的关系,用频率估计概率的方法及步骤。
2. 教学难点:如何运用概率知识解决实际问题,对实例进行分析。
四、教学方法:1. 讲授法:讲解频率与概率的关系,阐述用频率估计概率的方法及步骤。
2. 案例分析法:分析实例,让学生学会运用概率知识解决实际问题。
3. 互动教学法:引导学生积极参与讨论,提高课堂氛围。
4. 实践操作法:让学生进行实验操作,加深对用频率估计概率方法的理解。
五、教学过程:1. 导入新课:通过抛硬币实验,引导学生思考频率与概率的关系。
2. 讲解频率与概率的概念,阐述它们之间的关系。
3. 讲解用频率估计概率的方法及步骤。
4. 分析实例,让学生学会运用概率知识解决实际问题。
5. 课堂练习:让学生运用所学的知识解决一些实际问题。
6. 总结本节课的主要内容,布置课后作业。
7. 课后反思:对本节课的教学进行总结,思考如何改进教学方法,提高学生的学习效果。
六、教学评估:1. 课堂提问:通过提问了解学生对频率与概率关系的理解程度,以及对用频率估计概率方法的掌握情况。
2. 课后作业:布置相关的练习题,检验学生对课堂所学知识的应用能力。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们是否能运用概率知识解决实际问题。
七、教学资源:1. 教学PPT:制作精美的PPT,展示频率与概率的关系,以及用频率估计概率的方法。
2. 抛硬币实验材料:准备足够的硬币,用于课堂实验。
3. 实例分析材料:收集相关的实际问题,用于课堂分析。
八、教学进度安排:1. 第1周:讲解频率与概率的关系。
用频率估计概率教学设计北师大版九年级数学上册
![用频率估计概率教学设计北师大版九年级数学上册](https://img.taocdn.com/s3/m/81608884fc0a79563c1ec5da50e2524de518d0b3.png)
频率估计概率一、教学目标1.理解试验次数较大时试验频率趋于稳定这一规律;2.结合具体情境掌握如何用频率估计概率;3.通过概率计算进一步比较概率与频率之间的关系.二、教学重难点重点:通过试验,理解当试验次数较大时,试验频率稳定于理论概率,并据此估计某一随机事件发生的概率.难点:辨证地理解频率与概率的关系.三、教学方法学生学习知识的过程与人类的发展认知过程是相同的,需要经历由具体到抽象、由特殊到一般的过程.在本节课,教师将遵循学生的认知规律,根据知识结构和认知结构,坚持以学生为主体、教师为主导的理念,力求提高学生学习数学的兴趣,通过小组合作、多媒体演示等多种教学手段,调动学生的积极性,让学生在参与活动的过程中体验动手、动脑的乐趣,通过从生活实例中抽象数学模型的过程,启发学生体会在分析问题时由感性到理性、由特殊到一般的思维过程.本节可通过大量的试验活动,让学生逐步学会计算一个随机事件发生的试验频率,并通过观察试验数据的规律性,归纳试验频率趋近于理论概率这一规律,同时为进一步学习用树状图或列表来计算概率打下基础.四、教学设计(一)复习回顾1.什么是频数?频率?概率?2.如何计算?(二)问题探究问题1:400个同学中,一定有2人的生日相同(可以不同年)吗?问题2:“50个同学中,有可能有2人的生日相同”你相信吗?问题3:如果班里50个同学中有两个同学的生日相同,那么说明50个同学中有两个同学的生日相同的概率是1,如果没有,概率为0,这样的判断对吗?为什么?活动探究:(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选取50个被调查人,看看他们中有无2个人的生日相同.将全班同学的调查数据集中起来.(3)根据表格中数据,“估计50个人中有2个人的生日相同”的概率.总结:当试验次数较少时,两个小组的试验数据可能相差较大;而当试验次数大量增加时,这两个小组的试验数据相差会变小;并且试验数据会稳定在同一个数值附近.我们可以用这个数值来估计事件发生的概率.结论:1.“50个人中有2个人的生日相同”是很有可能发生的.2.当试验次数越多时,频率越稳定于概率.3.对于一些比较复杂的或不能计算出概率的事件,我们可以通过试验来求出频率,然后用频率来估计概率.(三)数学文化人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.(四)总结归纳总结:试验频率与理论概率之间的关系:联系:当试验次数很大时,事件发生的频率稳定在相应概率的附近,即试验频率稳定于理论概率,因此可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.区别:某可能事件发生的概率是一个定值.而这一事件发生的频率是波动的,当试验次数不大时,事件发生的频率与概率的差异很大.事件发生的频率不能简单地等同于其概率,要通过多次试验,才能用一事件发生的频率来估计这一事件发生的概率.应用:在大量重复实验的前提下,试验频率≈理论概率.(五)典型例析例1:据上面的试验过程,想一想下面的问题:(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球和白球的比例吗?(3)生活中还有哪些问题可以借助类似(2)的方案加以解决?与同伴交流. 解:(1)红球的概率=+红球数红球数白球数 337=+ 310=(2)将口袋中的球搅拌均匀,从中随机摸出一个,记下颜色后放回,不断重复这个过程n 次(n 足够大),其中摸到红球的次数是m ,设袋中有x 个红球,例2:在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 0.6 (精确到0.1); (2)假如你摸一次,估计你摸到白球的概率P (白球)= .(六)课堂练习1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( A ) A .随着试验次数的增加,频率一般会越来越接近概率 B .频率与试验次数无关 C .概率是随机的,与频率无关 D .频率就是概率2.【浙江绍兴中考】为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x ( cm)统计如下:( D )3.【教材P70随堂练习T2变式】一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现摸到白球的频率稳定在0.4左右,则可判断袋子中黑球的个数为(B)A.2个B.3个C.4个D.5个4.某种油菜籽在相同条件下发芽试验的结果如下表:(七)课堂小结1.频率是怎样计算的?2.如何利用频率来估计概率?五、布置作业教材第71页,习题3.4第1题.六、板书设计3.2用频率估计概率七、教学反思试验活动,在试试验,学生通过大量试验还会发现,试验频率并不一定等于概率,虽然多次试验的频率逐渐稳定于其理论概率,但也可能无论做多少次试验,试验的频率仍然是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差.因此学生对概率的理解应是多方面的,概率应尽量让学生通过具体试验领会这一点,从而形成对某一事件发生的概率的较为全面的理解,初步形成随机观念,发展学生初步的辩证思维能力.。
九年级数学上册《用频率估计概率》教案、教学设计
![九年级数学上册《用频率估计概率》教案、教学设计](https://img.taocdn.com/s3/m/4b83954853d380eb6294dd88d0d233d4b04e3f15.png)
1.教师介绍频率与概率的概念,强调频率是实验中观察到的结果,而概率是理论上计算出的结果。
2.讲解频率与概率的关系,通过实际例子让学生理解频率可以用来估计概率。
3.介绍频率分布表和频率分布直方图的制作方法,示范如何利用它们分析数据。
4.讲解如何运用概率知识解决实际问题,如根据频率分布表和频率分布直方图进行决策等。
4.培养学生正确的价值观,使学生明白概率知识在实际生活中的重要意义,激发学生为国家和民族的发展贡献自己的力量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有了初步的了解。在此基础上,他们对本章节的学习将面临以下挑战:
1.对频率和概率的关系理解不够深入,需要通过具体实例和实验,引导学生深入理解两者之间的联系;
4.学生活动与练习:
a.学生分小组进行实验,收集数据,制作频率分布表和频率分布直方图;
b.各小组展示实验成果,进行交流讨论,提高数据处理和分析能力;
c.学生尝试运用概率知识解决实际问题,教师给予指导和反馈。
5.教学难点突破:
a.通过具体实例,让学生感受频率与概率的关系,提高理解程度;
b.对频率分布表和频率分布直方图的制作方法进行详细讲解,确保学生掌握;
c.针对不同学生的实际情况,给予个性化指导,帮助他们克服学习难点。
6.课堂小结:对本节课的知识点进行总结,强调频率与概率的关系,以及频率分布表和频率分布直方图在数据分析中的应用。
7.课后作业:布置与课堂内容相关的作业,巩固所学知识,提高学生的实际操作能力。
8.教学评价:采用过程性评价和终结性评价相结合的方式,关注学生在实验、讨论、解决问题等方面的表现,全面评估学生的学习效果。
4.学生在讨论中互相学习,共同提高。
初中数学初三数学上册《用频率估计概率》教案、教学设计
![初中数学初三数学上册《用频率估计概率》教案、教学设计](https://img.taocdn.com/s3/m/b9427a18a9956bec0975f46527d3240c8547a147.png)
3.学生对概率与频率之间关系的认识,以及在实际问题中的应用。
(三)教学设想
为了突破教学重难点,提高学生的学习效果,我设想以下教学策略:
1.创设情境,激发兴趣:
结合生活实例,如彩票抽奖、球赛预测等,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
4.小组合作,共同探讨以下问题:
a.在实验中,如何判断频率已经足够接近概率?
b.在实际问题中,如何运用频率估计概率?
c.请举例说明频率与概率在实际应用中的区别和联系。
要求各小组整理讨论成果,形成文字报告,以培养学生的团队合作精神和沟通表达能力。
5.阅读拓展资料,了解概率论在生活中的其他应用,如统计学、经济学、心理学等,拓宽学生的知识视野。
作业布置要求:
1.学生在完成作业时,要认真思考,确保作业质量。
2.作业完成后,要进行自查,确保格式规范,表述清晰。
3.教师在批改作业时,要及时给予反馈,指导学生改进。
4.鼓励学生在完成作业过程中,积极提问,主动探讨,提高自身能力。
5.融入信息技术,提高教学效果:
利用多媒体、网络等信息技术手段,展示实验过程、数据分析等,使抽象的数学概念形象化,降低学习难度。
6.注重个体差异,因材施教:
关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,给予关心和支持,提高他们的自信心。
7.反馈评价,促进反思:
教学过程中,及时给予学生反馈,引导学生自我评价,促使学生反思学习过程和方法,提高学习效果。
2.强调频率在实际问题中的应用,让学生认识到数学知识在生活中的价值。
3.鼓励学生主动发现生活中的概率问题,用所学知识解决实际问题,提高学生的数学素养。
《25.3 用频率估计概率》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
![《25.3 用频率估计概率》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册](https://img.taocdn.com/s3/m/9fbf0bee970590c69ec3d5bbfd0a79563c1ed4b7.png)
《用频率估计概率》教学设计方案(第一课时)一、教学目标:1. 理解频率稳定性,并理解概率和频率之间的关系。
2. 学会使用频率估计概率的方法。
3. 培养观察、分析和解决问题的能力。
二、教学重难点:教学重点:理解频率稳定性,掌握用频率估计概率的方法。
教学难点:如何根据实际情况,灵活运用频率估计概率。
三、教学准备:1. 准备教学PPT和相关图表。
2. 准备实验器材,如小球、骰子等。
3. 准备概率应用案例,以便在实际教学中使用。
四、教学过程:(一)导入新课通过一些简单的实例,引导学生体会频率与概率之间的关系,感受概率的意义。
例如:1. 抛一枚均匀的硬币,落地后正面朝上的概率为0.5,那么连续多次抛掷后,正面朝上的频率是否会一直稳定在0.5左右呢?2. 投掷两枚均匀的骰子,计算朝上一对骰子的点数和为偶数的概率。
每次试验这种事件都会发生吗?它的概率会改变吗?通过这些实例,让学生感受到频率与概率之间的关系,并引出课题。
(二)探索新知通过实验活动,让学生体验如何通过实验来估计概率。
例如:1. 设计一些简单的实验,如摸球、摸卡片、转盘等,让学生自己动手实验,感受实验的次数对估计概率的影响。
2. 讨论如何选择合适的实验方法来估计不同事件的概率。
3. 通过实例让学生了解随机事件发生的频率在多次试验中会有一定的稳定性,可以用来估计某个事件的概率。
4. 探究如何将一个必然事件或不可能事件转化为一个随机事件来估计它的概率。
(三)巩固提高通过一些练习题,让学生应用所学知识解决实际问题,加深对知识的理解。
例如:1. 一些简单的概率计算题。
2. 一些与生活实际相关的概率问题,如彩票中奖率、天气预报的准确率等。
(四)小结作业1. 总结本节课的主要内容,强调频率与概率之间的关系,以及如何通过实验来估计概率。
2. 布置作业,让学生通过作业进一步巩固所学知识,并可以自行设计一些简单的实验来感受概率的意义。
教学设计方案(第二课时)一、教学目标1. 学生能够理解频率稳定值的概率的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用频率估计概率》教学设计
一、教学目标
1.知识与技能
①理解概率的含义即当实验次数较大时,频率渐趋稳定的那个常数叫概率。
②理解进行大量重复实验是估计概率的一种方法。
③能运用频率估计概率的方法解决某些实际问题。
2.过程与方法
①通过经历“猜测结果——进行实验——收集数据——分析实验结果”等活动过程,建立正确的概率直觉。
,进一步发展学生合作交流的意识和能力。
②通过对解决问题过程的反思,获得解决问题的经验和方法。
3 。
情感态度价值观
①在合作学习的过程中培养学生的实践意识,创新意识,体会合作学习的乐趣和力量。
②体会随机实验的随机性与规律性,让学生了解偶然性寓于必然性之中的辨证唯物主义思想。
二、教学重难点
重点和难点
①知道当实验次数较大时,频率稳定于概率是教学重点。
②学会运用频率估计概率来解决实际问题是教学的难点。
三、过程分析
实践活动是培养学生进行主动探索与合作交流的重要途径。
”教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题。
为此,我将本节课设置为以下几个环节:
创设情境引出问题→动手实践合作探究→揭示新知尝试应用→练习巩固发展提高→归纳总结交流评价→布置作业课后延伸
动手实践
合作探究
整个实验分四
大步:
第一步:每个学生首先抛硬币两次。
师:以举手的方式统计“正面向上”的频率。
“正面向上”的频率出现的三种结果:1,1/2,0。
显然:两次实验并不能验证猜想,其中有两种结
果与猜想有较大偏差,这是为什么呢?
第二步:分组活动
布置活动注意事项:
①分组(按照组间同质,组内异质的合作学习原
则)将全班同学分成8组,每组指定一位同学
作记录,一位同学抛硬币,其余同学观察实验
是否在同一条件下进行。
②任务:每组抛掷60次,本着一丝不苟,严谨
求实的态度认真记录好“正面向上”出现的频
数和“正面向上”出现的频率。
附记录单
抛掷
次数
60
正面
向上
的频
数
正面
向上
的频
率
③收集,统计数据:每个小组记录员将所记录数
据汇总,相应得到60,120,180,240,300,
360,420,480次实验数据。
次6121824303642480
生:实验次
数太少,实
验结果具
有偶然性。
学生充分讨论的基
础上,启发学生分
析产生差异的原
因,使学生认识到
每次随机试验的频
率具有不确定
性。
学生的回答,似乎
合作探究
动手实践
皮
尔
逊
2400
12012 0.5005
(表格2)
第三步:分析试验数据
师问:随着抛掷次数的增加,正面向上的频率在
哪个常数附近摆动,摆动的幅度有何变化?
师问:造成这种变化的原因是什么呢?
进一步要求:以小组为单位,建立平面直角坐标
系,横轴表示试验的次数,纵轴表示正面向上的
频率,绘制表格1和表格2所对应的折线统计图。
(图1)
摆动的幅
度越来越
小。
生2:随着
抛掷次数
的增加,正
面向上的
频率与0.5
之间的偏
差越来越
小。
绘制折线统计图,
利用函数的观点进
一步直观地感受刚
才得出的规律。
合作探究
(图2)
第四步:对比分析深化结论
师:请同学们分析,两个折线统计图所反映的规
律是否相同?如果不同,不同在哪里?是什么原
因造成了不同?
学生得出:由(图1)看出因为实验次数不多,
正面向上的频率在0.5左右摆动的幅度时大时
小。
由(图2)看出随着实验次数的增加,正面向上
的频率在0.5左右摆动的幅度越来越小。
师追问:“你们认为出现上述规律与实验次数的
多少有何关系?
师生共同归纳反思:
1.由以上实验,我们验证了开始的猜想,即抛掷
一枚硬币时,正面向上与反面向上的可能性相等
(各一半),也就是说,用抛硬币的方法决定由谁
出演哪个角色是可行的,是公平的。
2.抛掷硬币60次。
试验的次数很少,正面向上
的频率与0.5这个常数有一定偏差。
所以,正面
向上的次数不一定等于30次。
3.通过以上的大量重复实验,随机事件发生的频
率和概率之间到底有怎样的关系?
通过对比,
学生发现:
图1中反映
的规律并
不能在图2
中得到反
映。
经过讨
论:原因是
实验次数
太少。
生:“实验
次数越多,
就越容易
出现上述
规律。
”
显然,该问题的设
计意在点出课题,
突出教学重点。
同
时为进入揭示新知
的环节起到了承上
启下的作用。
环
节
教师活动学生活动活动说明
揭示新知
尝试应用活动:课堂小议
问题1:填表
频率与概
率
区别
联系
问题2:补充完整
频率
概率
问题3:某体彩彩民在一期体彩投注中,一次买了
100注,结果有一注中了一等奖,三注中了二
等奖,该彩民高兴地说:“这次体彩中奖率高,
竟高达4℅。
”
问题4:将一张扑克牌抛掷6次,可能1次正面
朝上,也可能有5次正面朝上,因此,正面朝上
的概率无法确定。
问题2在问
题1的基础
上,通过图
示简明扼
要地指明
了频率和
概率之间
的联系
问题3告诉
我们只有
当购买的
注数足够
多时,中奖
频率才接
近中奖概
率。
问题4割裂
了频率和
概率之间
的联系。
问题的设计层层递
进,目的只有一个,
即为了深化对概率
的理解,从错误辨
析,频率与概率的
区别和联系等方面
对概率进行多角
度,多侧面,多层
次的深入理解。
环
节
教师活动学生活动活动说明
归纳总结
交流评价活动1:通过这节课的学习,请每位同学完成自我评价表
姓
名
日期
今天数学课的课题
所学的重要数学知识
理解的最好的地方
疑惑(需进一步理解的地
方)
对课堂表现的评价(自我,
他人)
活动2:完成小组间的评价表(附表格)
新课程强调发展学
生的数学交流能
力,数学自我评价
表给学生提供了一
种表达数学思想方
法和情感的方式,
小组间的评价表则
从组员的参与状
况,合作技能,交
互的质量,活动的
秩序,学习的效果,
活动结果的汇报水
平来评定,显得科
学且有说服力。
教学过程活动说明
布
置作业
课后延伸
(1)必做题:习题5.1 第1,2题
(2)选作题:小红和小明在操场上做游戏,他们先在地上画了
半径分别是2m和3m的同心圆(如图)蒙上眼在一定距离外向圈
内仍小石子,投中阴影小红胜,否则小明胜,未投入圈内不算,
你来当裁判.
(1)你认为游戏公平吗?
(2)游戏结束,小明边走边想,“反过来,能否用频率估计
概率的方法,来估算非规则图形的面积呢?”请你设计方案,
解决这一问题(要求画出图形,说明设计步骤、原理,写出公式).
为了适应不同层次
的学生的需求,设
计了分层作业,教
材上的基础题目可
进一步巩固课堂所
学的知识,选作题
则可以发挥学生学
习的自主性。