【2021版 九年级数学培优讲义】专题23 圆与圆的位置关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题23 圆与圆的位置关系

【阅读与思考】

两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质.

解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有: 1.相交两圆作公共弦或连心线;

2.相切两圆作过切点的公切线或连心线;

3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形. 熟悉以下基本图形和以上基本结论

.

【例题与求解】

【例1】 如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2

. (全国初中数学竞赛试题)

解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长.

B

A

【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B , ⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A .c a b +=2 B .c a b +=2

C .

b a

c 1

11+= D .

b

a c 111+= (天津市竞赛试题) 解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线.

【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ;

(2)CB AC PC PB PA •+=•2. (天津市中考试题) 解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手.

P

B

C

D

A

【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .

(全俄中学生九年级竞赛试题)

解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角.

【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y .

(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;

(2)若以D 为圆心,

2

1

为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积. (河南省中考题)

解题思路:对于(2),⊙P 与⊙D 既可外切,也可能内切,故需分类讨论,解题的关键是由相切两圆的性质建立关于x 的方程.

D

C

P

B

A

【例6】 如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求

NC

BN

的值. (全国初中数学联赛试题) 解题思路:AB 为两圆的公切线,BC 为直径,怎样产生比例线段?丰富的知识,不同的视角激活想象,可生成解题策略与方法.

N P

B A C

D

【能力与训练】

A 级

1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.

(宁波市中考试题)

2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.

(四川省中考试题)

(第1题图) (第2题图) (第3题图)

3.如图,半圆O 的直径AB =4,与半圆O 内切的动圆O 1与

AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x

的函数关系是_________________.(要求写出自变量x 的取值范围)

(昆明市中考试题)

4.已知直径分别为151+

和315-的两个圆,它们的圆心距为115

-,这两圆的公切线的条数是__________.

5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是( )

A .60°

B .65°

C .70°

D .75°

(甘肃省中考试题)

6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为( )

A .52:3

B .3:52

C .1:52

D .2:5 E

(第5题图) (第6题图) (第7题图)

7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是( )

A .65

B .10

C .610

D .13

39

20

8.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(22

2

=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是( )

A .外切

B .内切

C .外离

D .外切或内切

(连云港市中考试题)

9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .

(1)证明:DO 1⊥AC ;

(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论. (大连市中考试题)

图1 图2

10.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .

(1)求证:△BCP ∽△HAP ;

(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .

相关文档
最新文档