随机变量的数字特征
CH4随机变量的数字特征

例7 已知二维随机变量 (X,Y) 的联合概率分布如 下表,求
(1) 随机变量 S X Y 的数学期望 ( X Y ) (2) 随机变量 Z si n 的数学期望 2
X
Y
0
0.10 0.25 0.15
1
0.15 0.20 0.15
0
1
2
解
P100
例8 二维随机变量(X,Y) 的联合概率密度函数为
i 1 i 1
注意: 5的逆命题不一定成立.
例10 设X与Y 相互独立,它们的概率密度函数 分别为
2 x , f ( x) 0,
0 x1
其他
y2 9 , g( y ) 0,
0 y 3
其他
求:(1) E (aX bY ),
其中 a , b R; (2) E ( XY ).
i , j 1,2, ,
则 E g( X ,Y ) g( xi , y j ) pij
i j
(2)如果 X ,Y 是连续型随机变量,联合概率密度为
f ( x, y) 则
E g ( X ,Y )
g( x , y ) f ( x , y ) dxdy
1 EX p
2) 连续型随机变量 的数学期望 定义4.1.2 设 X 是连续型随机变量,X ~ f ( x ) 如果 x f ( x )dx 绝对收敛, 则称此无穷积分的值为 随机 变量 X 的数学期望,记作 EX 即 EX x f ( x )dx 说明:对连续型随机变量 X ~ f ( x )
解
0 1 X 1 0.3 0 0.3 0 .6 0 1 X Y 1 解 1 0.1 0.2 0.1 0 .4 P 0 .4 0 .2 0 .4 0 .4 0 .2 0 .4 1 Y 1.因为p1,0 0 P{ X 1} P{Y 0} 0.6 0.2
2-2随机变量的数字特征

2.连续型随机变量的数学期望
定义 设连续型随机变量 X 的概率密度为 f ( x),
若积分
|
x
|
f
(
x)d
x
(即
x f ( x)d x绝对收敛),
则称积分 x f ( x)d x 的值为随机变量 X 的数学期望,
且Eg( X ) g( xi )pi
i 1
(2)若X是连续型随机变量,f ( x)是其密度函数,且
xi. pi.
i 0
此数值是对射手真实水平的综合评价,它是以概率 为权重的加权平均,称为r.v.X的数学期望。
定义:若离散型随机变量X的可能取值为xi (i 1, 2,),
其概率分布为P{ X xi } pi , i 1, 2,
如果级数 | xi |pi 时,(即级数 xk pk 绝对收敛)
i 1
k 1
称 xi pi为随机变量X的数学期望(简称期望),
i 1
也叫均值,记作EX . 即 E ( X ) xk pk .
k 1
如果级数 | xi |pi ,称r.v.X的数学期望不存在。
i 1
关于定义的几点说明
(1) E(X)是一个实数,而非变量,它是一种加 权平均,与一般的平均值不同 , 它从本质上体现 了随机变量 X 取可能值的真正平均值, 也称 均值.
记为 E( X ).
即 E(X)
x f (x)d x.
若
|
x
|
f
(
x)d
x
,称C .r .v . X的数学期望不存在。
注:对于r.v.X ,只要数学期望存在,则一定是一个
随机变量的数字特征

例 若随机变量X的概率密度为
f(x)(1 1x2), x
则称X服从柯西(Cauchy)分布。
但
|x|
f(x)d x (1| x|x2)dx 发散
所以柯西分布的数学期望不存在。
《医药数理统计方法》
§3.1
三、数学期望的性质
1、E(C)=C 2、E(CX)=C×E(X) 3、E(X±Y)=E(X)±E(Y)
n
n
3)设X1,X2,…,Xn相互独立,则 V(Xi)V(Xi)
i1
i1
V (1 n i n 1X i) n 1 2i n 1 V (X i) 1 n [1 n i n 1 V (X i)]
解:红细胞的变异系数为 C V(X1)4 0..1 27 98 16.965%
血红蛋白的变异系数为
10.2 C V(X2)117.68.673%
所以,血红蛋白的变异较大。
《医药数理统计方法》
§3.2
二、方差的性质
1、V(C)=0 证明:V(C)=E{[CE(C)]2} =E[(CC)2]=0
2、V(CX)=C2V(X) 证明:V(CX)=E{[CXE(CX)]2}
而 E (X 2 ) E (X X ) E (X )E (X ) 1 1 1
339
计算是错误的!!
《医药数理统计方法》
§3.2
§3.2 方差、协方差和相关系数
一、方差 二、方差的性质 三、其他数字特征
《医药数理统计方法》
§3.2
一、方差
例3.15 为了比较甲、乙两个专业射击运动 员的技术水平,令每人各射击5次,分别以 X1,X2表示他们射击的环数,结果如下:
即
E(X) xf(x)dx
概率论与数理统计课件:随机变量的数字特征

首页 返回 退出
例7 (正态分布的数学期望)设 X ~ N( μ, σ 2 ), 求E(X).
解:
E(X) =
+
-
xf ( x )dx =
+
-
1
x
e
2πσ
( x - μ )2
2σ 2
dx
x-μ
, 则
令 t=
σ
E(X) =
+
-
t2
2
t2
+ 2
-
1
μ
( μ + t σ)
+
若级数 | g( xk ) | pk < + , 则 Y = g( X ) 的数学期望为
k =1
+
E(Y ) = E(g( X )) = g( xk ) pk
k =1
随机变量的数字特征
首页 返回 退出
定理4.2 (连续型随机变量函数的数学期望) 设连续型随
机变量X的概率密度函数为f(x),若
随机变量的数字特征
第一节 随机变量的数学期望
第二节 方差
第三节 协方差和相关系数
第四节 R实验
随机变量的数字特征
首页 返回 退出
第一节 随机变量的数学期望
一、离散型随机变量数学期望
二、连续型随机变量数学期望
二、随机变量函数的数学期望
三、数学期望的性质
随机变量的数字特征
首页 返回 退出2
§4.1随机变量的数学期望
P{X = xi } = pi , i = 1,2,
如果
+
| x
i
.
| pi < +
随机变量的数字特征

1 2 3 求E(Z)
-1 0 0.1 1
0.4 0.2 0.4
解:方法一:
(1) E(X)=1*0.4+2*0.2+3*0.4=2 E(Y)=-1*0.3+0*0.4+1*0.3=0
方法二:
(1)E(X)=0.2*1+0.1*2+0*0.3+0.1*1+0*2+0.3*3+0.1*1+0.1*2+0.1*3=2
E( X ) xk pk . k 1
E( X ) 0 0.2 0.2 0.2 0.2 0.2 1 (元)
例题:有 5 个相互独立工作的电子装置,它们的寿命Xk (k 1, 2,3,4,5) 服从同一指数分布,其概率密度为
f
(
x
)
1
e
x
/
,
x 0, 0.
0,
x 0,
1) 若将5个装置串联成整机,求整机寿命 N 的数学期望;
若 g(xk )pk 绝对收敛,则有
k 1
E(Y ) E[g( X )] g(xk )pk .
k 1
2). X 是连续型随机变量,概率密度为 f (x),
若 g(x) f (x)dx 绝对收敛,则有
E(Y ) E[g( X )] g(x) f (x)dx
(证明超过范围,略)
说明: 在已知Y是X的连续函数前提下,当我们求
E(Y)时不必知道Y的分布, 只需知道X的分布就可
以了.
Y x42
0
4
例: 设随机变量 X 的分布律为 X -2
0
2
求:E( X ), E( X 2 ), E(3X 2 5). P 0.4 0.3 0.3 解:(1)E(X) 2 0.4 0 0.3 2 0.3 0.2,
随机变量的数字特征

为该生各门课程的算术平均成绩.
而
n
xω
xi
ωi
n
i1
ωj
n
xivi , 其中 vi ωi
i 1
j1
n
ωj ,
j1
则称 xω为该生的加权平均成绩. 显然算术平均成绩是加权平均成绩的一种
特例,
即
vi
1 n
,
可见加权平均才充分的体现了
平均值的意义.
2. 离散型随机变量的数学期望
k 1
注1º EX是一个实数, 而非变量, 它是一种加 权平均, 与一般的平均值不同, 它从本质上体现 了随机变量 X 取可能值的真正的平均值, 也称 均值.
注2º 级数的绝对收敛性保证了级数的和不随 级数各项次序的改变而改变, 之所以这样要求 是因为数学期望是反映随机变量X 取可能值的 平均值, 它不因可能值的排列次序而改变.
本章即将学习的数字特征是: 数学期望、方差、相关系数、矩.
§4.1 随机变量的数学期望
一、数学期望的概念
二、随机变量函数的数学期望
三、数学期望的性质 四、应用实例
回
停 下
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒
约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
3. 常见离散型随机变量的数学期望
例1 (二项分布) 设随机变量X~Bn, p, 求EX. 解 设随机变量 X 服从参数为 n, p 二项分布, 其分布律为
概率论数字特征

在概率论中,数字特征是用来描述随机变量分布特征的数字指标。
以下是概率论中常见的数字特征:
1. 期望:
-期望是随机变量概率分布的均值,反映随机变量的平均取值水平,通常用E(X) 表示。
-期望可以通过对随机变量的每种可能取值乘以其对应的概率,再求和得到。
2. 方差:
-方差是随机变量与其期望的离差平方的平均值,反映随机变量取值的分散程度,通常用Var(X) 或σ^2 表示。
-方差可以通过将随机变量每种可能取值减去其期望,然后平方,再乘以对应的概率,再求和得到。
3. 标准差:
-标准差是方差的算术平方根,通常用σ表示,具有与原始数据相同的单位。
-标准差可以用来衡量随机变量取值的波动程度。
4. 偏态:
-偏态是随机变量分布的不对称程度,若右侧尾部更长,则为正
偏态;若左侧尾部更长,则为负偏态。
-偏态可以通过随机变量的三阶中心矩计算得到。
5. 峰态:
-峰态是随机变量分布的峰度,反映随机变量分布曲线的陡峭程度,通常用K 表示。
-峰态可以通过随机变量的四阶中心矩计算得到。
6. 分位数:
-分位数是将随机变量分为若干部分的数字点,例如中位数就是将随机变量分为两部分的点,25%分位数就是将随机变量分为四部分的点等等。
-分位数可以用来表示随机变量分布的位置和离散程度。
在实际应用中,以上数字特征经常被用来描述随机变量分布的性质和特征,例如对于正态分布,期望和方差可以完全描述其分布特征。
对于非正态分布,还需要考虑偏态和峰态等特征。
概率教材第4章随机变量的数字特征

第4章随机变量的数字特征前面我们讨论的随机变量的分布函数,能够完整地描述随机变量的统计规律性,但是在许多实际问题中,人们并不需要去全面考察随机变量的变化情况,而只要知道它的某些特征即可.例如,评定射击运动员的射击水平时,常感兴趣的是他命中的环数的平均值,以及命中点的集中程度.命中环数的平均值越大,说明运动员的水平越高;命中点越集中,说明运动员水平越稳定.这些与随机变量有关的数值,我们称之为随机变量的数字特征,这些数字特征在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望和方差、随机变量的矩以及两个随机变量的协方差和相关系数.4.1随机变量的数学期望一、离散型随机变量的数学期望平均值是日常生活中最重要的数字特征之一,已经广泛应用于社会生活和生产实践的各个领域,它对评判事物、做出决策等具有重要作用.例如,在某次教师技能大奖赛上,七位评委为某选手打出的分数如下:9.5,8.9,9.5,9.8,9.6,9.5,9.7,去掉一个最高分和一个最低分后,该教师的平均分是多少?如果用随机变量X表示有效分数,则X的概率分布为:X9.59.69.7P0.60.20.2这时该选手的平均分为:39.519.619.75⨯+⨯+⨯=0.69.50.29.60.29.79.56⨯+⨯+⨯=这个平均分数称为随机变量的数学期望,不难看出,它等于随机变量的取值与对应概率乘积的和,下面我们把这个现象用分析的语言描述出来.定义1设离散型随机变量X 的概率分布为:X 1x 2x …n x …P1p 2p …np …即{},1,2,i i P X x p i ===…,若级数11221iin n i x px p x p x p ∞==++⋅⋅⋅++⋅⋅⋅∑绝对收敛(即1iii x p∞=<+∞∑),则称其和为X 的数学期望,简称期望,也叫均值,记作EX ,即1i ii EX x p ∞==∑(4.1)否则,称X 的数学期望不存在.例1设随机变量X 服从参数为p 的0—1分布,求EX .解由题设知,X 的概率分布为:于是0(1)1EX p p p =⋅-+⋅=.例2一批产品中有一、二、三等品及废品四种,相对应的比例分别为%%%60,20,10和%10,若各等级产品对应的产值分别为6元,4.8元,4元和0元,求产品的平均产值.X 01P1p-p解设产品的产值为X 元,根据题意X 的概率分布为:X 04 4.86P0.10.10.20.6于是40.1 4.80.260.6 4.96EX =⨯+⨯+⨯=(元).例3设随机变量~(,)X B n p ,求EX .解因为~(,)X B n p ,所以X 的概率分布为:{}(1),0,1,2,,.k kn k n P X k C p p k n -==-= 于是00!(1)(1)!()!nnkkn kk n knk k kn EX kC p p p p k n k --===-=--∑∑1(1)(1)1(1)!(1)(1)![(1)(1)]!k n k nk np n p p k n k ----=--=----∑1[(1)]n np p p np -=+-=.例4设随机变量X 服从参数为λ的泊松分布,求EX .解根据题意,X 的概率分布为:{},0,1,2,,.!m e P X m m n m λλ-=== 于是101!(1)!m m m m e EX m e e e m m λλλλλλλλλ--∞∞--======-∑∑.二、连续型随机变量的数学期望定义2设连续型随机变量X 的概率密度为()f x ,若()xf x dx +∞-∞⎰绝对收敛(即()xf x dx +∞-∞<+∞⎰),则称()xf x dx +∞-∞⎰为X 的数学期望,记作EX ,即()EX xf x dx+∞-∞=⎰(4.2)否则,称X 数学期望不存在.例5设随机变量X 服从区间[,]a b 上的均匀分布,求EX .解根据题意得1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他,于是1()baEX xf x dx x dx b a+∞-∞==⋅-⎰⎰2122b ax a bb a +==-.该例表明,一维均匀分布的期望为该随机变量取值区间的中点.例6设随机变量X 服从参数0λλ>()的指数分布,求EX .解根据题意得,0,~()0,x e x X f x λλ-⎧>=⎨⎩其他,于是()x EX xf x dx xe dxλλ+∞+∞--∞==⎰⎰xx xe e dx λλ+∞+∞--=-+⎰+011xeλλλ∞-=-=.例7已知连续型随机变量X 的分布函数0,01(),0221,2x F x x x x ≤⎧⎪⎪=<≤⎨⎪>⎪⎩,求EX .解根据题意随机变量X 的密度函数为1,02,()()20,x f x F x ⎧<≤⎪'==⎨⎪⎩其他,所以222001()124x EX xf x dx x dx +∞-∞==⋅==⎰⎰.例8已知随机变量X 的概率密度为:,01()0,ax b x f x +≤≤⎧=⎨⎩其他且7=12EX ,求a 与b 的值.解根据题意1()()12af x dx ax b dx b +∞-∞=+=+=⎰⎰1207()()3212a b EX xf x dx ax bx dx +∞-∞==+=+=⎰⎰解关于a 与b 的方程组得,1a =,1=2b .定义3在考虑n 维随机向量12(,,,)Tn X X X 时,若每个iEX (1,2,,)i n = 都存在,则称12(,,,)T n EX EX EX 为n 维随机向量12(,,,)T n X X X 的数学期望或均值.三、随机变量函数的数学期望设X 是随机变量,()g x 为实函数,则()Y g X =也是随机变量.理论上,可以通过X 的分布求出()Y g X =的分布,再按定义求出数学期望[()]E g X ,但是这种求法一般比较复杂,下面的定理给出了一种直接求解方法.定理1设X 是随机变量,Y 是随机变量X 的函数,()Y g X =,其中()y g x =是一元连续函数.(1)若X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,i = ,如果无穷级数1()iii g x p∞=∑绝对收敛,即1|()|iii g x p∞=<+∞∑,则Y 的数学期望为1[()]()i i i EY E g X g x p ∞===∑.(4.3)(2)若X 为连续型随机变量,其概率密度为()f x ,如果广义积分()()g x f x dx +∞-∞⎰绝对收敛,即|()|()g x f x dx +∞-∞<+∞⎰,则Y 的数学期望为[()]()()EY E g X g x f x dx +∞-∞==⎰.(4.4)根据定理1,求随机变量()Y g X =的数学期望时,只需知道X 的分布,无需求Y 的分布,这给我们计算提供了极大的方便.上述定理可以推广到二元或二元以上随机变量函数的情形.定理2设(,)X Y 是二维随机向量,Z 是关于随机向量X 和Y 的函数,(,)Z g X Y =,其中(,)Z g x y =是二元连续函数.(1)若(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2i j = ,,并且11|(,)|i j ij i j g x y p ∞∞==<+∞∑∑,则11[(,)](,)i j ij i j EZ E g X Y g x y p ∞∞====∑∑.(4.5)(2)若(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|(,)|(,)g x y f x y dxdy +∞+∞-∞-∞<+∞⎰⎰,则[(,)](,)(,)EZ E g X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.(4.6)定理1和定理2的证明超出本书范围,略.例9设(,)X Y 的概率分布为:Y X 0123103838031818求EX ,EY ,2EX 和()E XY .解关于X 和Y 的边缘分布为:于是31313442EX =⨯+⨯=,13313=0+1+2+3=88882EY ⨯⨯⨯⨯22231=1+3=344EX ⨯⨯,331()(10)0(11)(12)(13)0(30)88819(31)0(32)0(33).84E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=例10随机变量X 服从区间],0[π上的均匀分布,求EX ,2EX ,)(sin X E 及2)]([X E X E -解1()2EX xf x dx x dx πππ+∞-∞==⋅=⎰⎰,22221()3EX x f x dx x dx πππ+∞-∞==⋅=⎰⎰,0112(sin )sin ()sin (cos )0E X xf x dx x x πππππ+∞-∞==⋅=-=⎰⎰X 13i p ⋅3414Y 0123jp ⋅18383818222201[()]()()2212E X E X E X X dx πππππ-=-=-⋅=⎰.例11假定国际市场对我国某种商品的需求量是随机变量X (单位:吨),它服从区间[2000,4000]上的均匀分布,每销售出一吨该商品,可为国家赚取外汇3万元,若销售不出去,则每吨商品需贮存费1万元,问如何计划出口量,能使国家收益最大?解设计划年出口量为t 吨,国家年收益Y 万元,根据题意20004000t ≤≤,且有120004000,~()20000,x X f x ⎧≤≤⎪=⎨⎪⎩,其它,3,=()4,t X t Y g X X t X t ≥⎧=⎨-<⎩,,于是由(4.4)式有400020001()()()2000EY g x f x dx g x dx +∞-∞==⎰⎰400020001(4)32000tt x t dx tdx ⎡⎤=-=⎢⎥⎣⎦⎰⎰()26170004101000t t =-+-⨯易得当3500t =时,EY 达到最大,所以计划出口量为3500吨时,国家年收益最大.例12已知随机变量X 表示某电子元件的使用寿命(单位:小时),并且服从参数为0.001的指数分布,若规定使用寿命X 在500小时以下为废品,产值为0元;在500到1000小时之间为次品,产值为10元;在1000到1500小时之间为二等品,产值为30元;在1500小时以上者为一等品,产值为40元,求该电子元件的平均产值.解设该电子元件的产值为Y 元,由题设知0.0010.001,0,~()0,0,x e x X f x x -⎧>=⎨≤⎩0,500,10,5001000,()30,10001500,40,1500.X X Y g X X X <⎧⎪≤<⎪==⎨≤<⎪⎪≥⎩于是由(4.4)式有()()EY g x f x dx +∞-∞=⎰50010000.0010.00105000(0.001)10(0.001)x x e dx e dx --=⋅+⋅⎰⎰15000.001100030(0.001)xedx -+⋅⎰0.001150040(0.001)x e dx+∞-+⋅⎰15.65≈(元).该例表明,在利用定理1求[()]E g X 时,允许函数()y g x =不连续.例13设,01,01,(,)~(,)0,x y x y X Y f x y +≤≤≤≤⎧=⎨⎩其他,求2EX ,()E X Y +及()E XY .解由(4.6)式,有11222005(,)()12EX x f x y dxdy x x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰,112007()()(,)()6E X Y x y f x y dxdy x y dxdy +∞+∞-∞-∞+=+=+=⎰⎰⎰⎰,11001()(,)()3E XY xyf x y dxdy xy x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰.四、数学期望的性质设,,a b c 为常数,X 和Y 是随机变量,且EX 和EY 都存在,则数学期望有下列性质:性质1Ec c =.(4.7)性质2()E aX b aEX b +=+.(4.8)性质1请读者自己证明,下面给出性质2的证明.证明令Y aX b =+,因为y ax b =+是单调的,所以可以排除X 是连续型随机变量而Y 却是离散型随机变量的可能,也就是说只需分两种情况来证明,即X 与Y 都是离散型随机变量或者X 与Y 都是连续型随机变量.1.当X 为离散型随机变量时,设X 的概率分布为{}1,2,i i P X x p i === ,.则Y 的概率分布为{}i i P Y ax b p =+=,1,2i = .于是1()()i ii EY E aX b ax b p ∞==+=+∑11i i i i i a x p b p ∞∞===+∑∑aEX b =+.2.当X 为连续型随机变量时,设~()X X f x ,并且不失一般性地假设0a ≠(显然Eb b =),则1~()()Y X y bY f y f a a-=.于是()()Y EY E aX b yf y dy +∞-∞=+=⎰1[(X y by f dy a a+∞-∞-=⎰()()X y ax b ax b f x dx +∞-∞=++⎰令()()X X a xf x dx b f x dx+∞+∞-∞-∞=+⎰⎰aEX b =+.性质3()E X Y EX EY ±=±.(4.9)性质3可以推广到任意有限个随机变量的情况,即1212()()()()n n E X X X E X E X E X ±±⋅⋅⋅±=±±⋅⋅⋅±.(4.10)性质4设X 与Y 相互独立,则()E XY EX EY =⋅.(4.11)性质4可以推广到任意有限个相互独立的随机变量的情况,即设12,,,n X X X ⋅⋅⋅相互独立,则1212()()()()n n E X X X E X E X E X ⋅⋅⋅=⋅⋅⋅.(4.12)下面我们来证明性质3和性质4.证明仅就(,)X Y 为二维连续型随机向量的情形加以证明.设二维连续型随机向量(,)X Y 的概率密度为(,)f x y ,其关于X 和关于Y 的边缘概率密度分别为()X f x 和()Y f y ,则()()(,)E X Y x y f x y dxdy +∞+∞-∞-∞±=±⎰⎰(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞-∞-∞-∞-∞=±⎰⎰⎰⎰EX EY =±.性质3得证.又若X 与Y 相互独立,此时(,)()()X Y f x y f x f y =⋅.于是()(,)E XY xyf x y dxdy+∞+∞-∞-∞=⎰⎰()()X Y xf x dx yf y dy +∞+∞-∞-∞=⋅⎰⎰EX EY =⋅.性质4得证.注意到:只要将证明中的“积分”用“和式”代替,就能得到(,)X Y 为二维离散型随机向量情形的证明.性质4的逆命题不成立,即由()E XY EX EY =⋅不能得到X 与Y 一定独立.例如,在例9中,我们已经计算得()94E XY EX EY =⋅=,但{1,0}0,P X Y ==={1}3{0}18,P X P Y ====显然{1,0}{1}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.例14已知X 与Y 的概率分布分别为并且()8.5E X Y +=,求(1)EX ,(2)E X ,EY ;(2)2(23)E Y +.解(1)10.320.530.2 1.9EX =⨯+⨯+⨯=.由(4.8)式及(4.9)式,有(2)22 1.9 3.8E X EX ==⨯=,()8.5 1.9 6.6EY E X Y EX =+-=-=.(2)由于60.40.6 6.6EY a =⨯+⨯=,故7a =.由(4.3)式,有222(23)(263)0.4(273)0.690.6E Y +=⨯+⨯+⨯+⨯=.这里我们也可以利用定义1计算(2)E X 和2(23)E Y +,只是需要先求出2X 和223Y +的概率分布.例15设(,)X Y 等可能地取(1,0)-,(0,1)-,(1,0)和(0,1),试判断(1)()E XY 与EX EY ⋅是否相等;(2)X 与Y 是否独立.解由题设知(,)X Y 的概率分布为:Y X 1-011-0140014014114X 123P0.30.50.2Y 6a P0.40.6()(1)(1)0E XY =-⨯-⨯11(1)0(1)100(1)00044+-⨯⨯+-⨯⨯+⨯-⨯+⨯⨯1014+⨯⨯1(1)0+⨯-⨯11011004+⨯⨯+⨯⨯=,11(1)0(1)(1)0044EX EY ==-⨯+-⨯+-⨯+⨯1000104+⨯+⨯+⨯111004+⨯+⨯=,于是()E XY EX EY =⋅.(2)由于{0,0}0P X Y ===,并且111{0}{0}0442P X P Y ====++=,于是{0,0}{0}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.这里已知(,)X Y 的概率分布,也可以利用期望的定义4.1计算()E XY ,EX 和EY .4.2随机变量的方差上一节我们介绍了随机变量的数学期望,它主要用来描述随机变量的平均特征,但是在许多实际问题中,仅仅知道平均值是不够的,为此本节我们引入方差的概念,用它来描述随机变量取值的离散程度.一、方差的概念先看一个例子.设甲、乙两位射击运动员打中靶的环数分别为1X ,2X ,其概率分布为:1X 78910P0.40.30.20.12X 05610计算两位运动员打中靶的环数的期望为170.480.390.2100.18EX =⨯+⨯+⨯+⨯=200.0450.1660.2100.68EX =⨯+⨯+⨯+⨯=虽然两位运动员打中靶环数的期望相同,但是比较两组数据可知甲射手比乙射手技术稳定,因此甲打中靶的环数比较集中.可见在实际问题中,仅仅靠期望来描述随机变量的分布特征还不够完善,还需要进一步研究其离散程度,通常人们关心的是随机变量X 对均值EX 的离散程度.定义4如果随机变量X 的数学期望EX 存在,则称X EX -为随机变量X 的离差.显然,随机变量X 离差的期望为零,即()=0E X EX -.(4.13)这样,如果用()E X EX -来度量X 与EX 的偏差,结果是正负偏差相互抵消,为了消除离差X EX -的符号,通常用2()E X EX -来度量X 与EX 的偏差.定义5设X 是一个随机变量,若2()E X EX -存在,则称其为X 的方差,记作DX 或VarX ,即2()DX E X EX =-.(4.14)为X 的标准差或均方差.由定义5知,方差实际上就是随机变量函数2()X EX -的数学期望,所以可以用求随机变量函数2()X EX -的数学期望的方法来求随机变量X 的方差.1.设X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,,i = P 0.040.160.20.6若21()ii i x EX p +∞=-<+∞∑,则21()i i i DX x EX p +∞==-∑.(4.15)2.设X 为连续型随机变量,其概率密度为()f x ,若2()()x EX f x dx +∞-∞-<+∞⎰,则2()()DX x EX f x dx +∞-∞=-⎰.(4.16)可见,随机变量的方差是一个非负数.当X 的可能值密集在它的期望值EX 附近时,方差较小,反之则方差较大.因此,方差刻画了随机变量的取值的离散程度.由方差的定义式容易得到下面的常用计算式22()DX EX EX =-.(4.17)证明2()DX E X EX =-22[2()]E X X EX EX =-⋅+222()EX EX EX EX =-⋅+22()EX EX =-.(4.17)式表明2EX 不小于2()EX ,而且提供了一种计算方差的主要方法,即它把方差的计算归结为计算两个容易求得的期望EX 和2EX .例16设随机变量X 服从参数为p 的0—1分布,求DX .解由题设知,X 的概率分布为X 01P1p-p由例1知,EX p =,再由(4.3)式2220(1)1EX p p p =⋅-+⋅=,于是222()(1)DX EX EX p p p p =-=-=-.例17在本节开始所举甲、乙两位射击运动员射击一例中,求1DX 及2DX .解前面已经计算过128EX EX ==,又22222170.480.390.2+100.165EX =⨯+⨯+⨯⨯=22222200.0450.1660.2+100.671.2EX =⨯+⨯+⨯⨯=,所以22111()1DX EX EX =-=,22222()7.2DX EX EX =-=.例18设X 服从区间[,]a b 上的均匀分布,求DX .解由题设知1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他.由(4.4)式,有222221()3ba a ab b EX x f x dx x dx b a +∞-∞++==⋅=-⎰⎰,由例5知,2a bEX +=,于是222222()()()3212a ab b a b b a DX EX EX +++-=-=-=.*例19设随机变量~()X P λ,其中0λ>,求DX .解X 的概率分布为{}!m P X m e m λλ-==,(0,1,2,...)m =.由例4可知=EX λ,根据(4.3)式2201(11)!(1)!m m i i EX m e m em m λλλλ∞∞--====-+-∑∑21(2)!(1)!m m m m e e m m λλλλ∞∞--===+--∑∑2122010(2)!(1)!m m m m e e m m λλλλλλ--∞∞---=-==+--∑∑2λλ=+.因此利用(4.17)式有2222()()DX EX EX λλλλ=-=+-=.即=EX DX λ=.例20设X 服从参数为λ的指数分布,即X 的概率密度为,0,()0,x e x f x λλ-⎧>=⎨⎩其他.其中0λ>,求DX .解由例6可知1=EX λ,再由(4.4)式,有2220()x EX x f x dx x e dxλλ+∞+∞--∞==⎰⎰220xx x e xe dxλλ+∞--+∞=-+⎰22λ=.因此,利用(4.17)式有2221()DX EX EX λ=-=.*例21设随机变量2~(,)X N μσ,即X的概率密度为22()2(),x f x μσ--=(x -∞<<+∞),其中μ,σ为实数,并且0σ>,求,EX DX .解根据题意得22()2()x EX xf x dx dxμσ--+∞+∞-∞-∞==⎰⎰令x y μσ-=,则dxdy σ=,由泊松积分221y dy -+∞-∞=⎰,有22y EX dy-+∞-∞=⎰2222y y yedyμ--+∞+∞-∞-∞=+⎰μ=.由(4.16)式,有2()()DX x EX f x dx+∞-∞=-⎰22()22x e dxμσ--+∞-∞=⎰2222y y e d y-+∞-∞⎰=222y de σ-+∞-∞=-⎰222222y y ye dyσ--+∞-∞+∞=+-∞⎰2σ=.特别地,若~(0,1)X N ,则0EX =,1DX =.定义4.6在考虑n 维随机向量12(,,,)Tn X X X 时,若每个i DX (1,2,)i = 都存在,则称12(,,,)T n DX DX DX 为n 维随机向量12(,,,)T n X X X 的方差.二、方差的性质关于方差,我们有下面几个重要性质.设X ,Y 是随机变量,a ,b ,c 为实值常数,则性质10Dc =.(4.18)性质22()D aX a DX =.(4.19)性质3()D X b DX +=.(4.20)性质1到性质3的证明留给读者自己完成.性质42()D aX b a DX +=.(4.21)证明222()[()()][()]D aX bE aX b E aX b E a X EX +=+-+=-222()a E X EX a DX =-=.性质5若X 与Y 相互独立,则()D X Y DX DY ±=+.(4.22)证明由(4.17)式,有22()()[()]D X Y E X Y E X Y ±=±-±2222(2)[()2()]E X XY Y EX EX EY EY =±+-±⋅+2222[2()][()2()]EX E XY EY EX EX EY EY =±+-±⋅+2222[()][()]2[()]EX EX EY EY E XY EX EY =-+-±-⋅2[()]DX DY E XY EX EY =+±-⋅.由X 与Y 独立,有()E XY EX EY =⋅.于是()D X Y DX DY ±=+.性质5的逆命题不成立,即由()D X Y DX DY ±=+,不能得到X 与Y 相互独立.但是它可以推广到任意有限个相互独立的随机变量的情形,即若12,,,n X X X 相互独立,则11()n niii i D X DX===∑∑.(4.23)例22设随机变量~(,)X B n p ,求DX .解根据题意{}ii n in P X i C p q-==,(0,1,,)i n = ,则X 可以理解为n 重伯努利试验中“成功”的次数.若令1,1,2,,,0,i i X i n i ⎧==⎨⎩ 第次成功,第次失败,则12n X X X X =++⋅⋅⋅+,并且(1,2,,)i X i n = 相互独立同服从参数为p 的0—1分布,于是i EX p =,i DX pq =,(1,2i = ,).由(4.10)式及(4.23)式,有11()nni ii i EX E X EXnp =====∑∑,11()nni ii i DX D X DXnpq =====∑∑.例23设随机变量X 与Y 相互独立,并且0EX EY ==,2DX DY σ==,求2()E X Y -.解由(4.9)式,有()0E X Y EX EY -=-=,由X 与Y 独立,得222()2D X Y DX DY σσσ-=+=+=,于是2222()()[()]202E X Y D X Y E X Y σσ-=-+-=+=.4.3常用分布及其数学期望与方差表为了方便今后查询,现将七种常用分布的期望与方差总结为下表.表4—1常用分布及其数学期望与方差总结表4.4协方差与相关系数前面我们介绍了随机变量的数学期望和方差,本节将讨论反映多维随机变量的两个分量之间关系的强弱的数字特征.一、协方差在证明方差的性质时,我们已经知道,在X 与Y 相互独立的条件下,有[()()]0E X EX Y EY --=,可知,当[()()]0E X EX Y EY --≠时,X 与Y 一定不独立.这说明[()()]E X EX Y EY --在一定程度上反映了随机变量X 与Y 之间的关系.定义7设(,)X Y 为二维随机向量,EX 和EY 均存在,若数学期望[()()]E X EX Y EY --存在,则称数值[()()]E X EX Y EY --为X 与Y的协方差,记作cov(,)X Y ,即cov(,)[()()]X Y E X EX Y EY =--.(4.24)显然,cov(,)X X DX=(4.25)由定义7知,X 与Y 的协方差实际上就是二元随机变量函数()()X EX Y EY --的数学期望,因此由定理2有(1)设(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2,i j = ,并且|()()|ij ijijx EX y EY p--<+∞∑∑,则cov(,)()()i j ij ijX Y x EX y EY p =--∑∑.(4.26)(2)设(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|()()|(,)x EX y EY f x y dxdy +∞+∞-∞-∞--<+∞⎰⎰,则cov(,)()()(,)X Y x EX y EY f x y dxdy +∞+∞-∞-∞=--⎰⎰.(4.27)此外,协方差还有下面常用性质:1.cov(,)()X Y E XY EX EY =-⋅.(4.28)证明cov(,)()()X Y E X EX Y EY =--()E XY XEY YEX EX EY =--+⋅()E XY EX EY =-⋅.公式(4.28)提供了一种计算协方差的主要方法,即它将协方差的计算归结为计算三个数学期望EX ,EY 和()E XY .2.cov(C,X)0,=C 为任意常数.3.cov(X,X)DX =.4.设X 与Y 独立,则cov(,)0X Y =.5.()2cov(,)D X Y DX DY X Y ±=+±.(4.29)6.对称性cov(,)cov(,)X Y Y X =.(4.30)7.齐次性cov(,)cov(,)aX bY ab X Y =.(4.31)8.可加性cov(,)cov(,)cov(,)X Y Z X Z Y Z ±=±.(4.32)性质2至性质8的证明留给读者自行完成.二、相关系数和相关性协方差在一定程度上反映了X 与Y 相互间的关系,但它还受X 与Y 本身度量单位的影响.例如,kX 和kY 之间的统计关系与X 和Y 之间的统计关系应该是一样的,但协方差却扩大了2k 倍,即2cov(,)cov(,)kX kY k X Y =为了克服这一缺点,可将每个随机变量标准化,即取*X=*Y =并将**cov(,)X Y 作为X 和Y 之间相互关系的一种度量,而********cov(,)()()()()X Y E X Y E X E Y E X Y =-=E===此结果表明,可利用标准差对协方差进行修正,从而得到一个新的数字特征—相关系数.定义8设(,)X Y 为二维随机向量,0DX >,0DY >,则称为X 与Y 的相关系数,记作XY ρ,也可简记为ρ,即XYρ==(4.33)显然,XY ρ的协方差.定理3设X 与Y 是两个随机变量,并且XY ρ存在,则有||1XY ρ≤.证明由定义8知,只需证明2cov (,)X Y DX DY ≤⋅.由于任何随机变量的方差都是一个非负实数,所以对任意实数k ,恒有()D Y kX -2()E Y kX EY kEX =--+222[()2()()()]E Y EY k Y EY X EX k X EX =----+-0≥,即22cov(,)0DY k X Y k DX -+≥.上面不等式的左边是一个关于k 的一元二次函数,因此该不等式成立的充分必要条件为判别式0∆≤,即2[2cov(,)]40X Y DX DY ∆=--⋅≤,于是2cov (,)X Y DX DY ≤⋅.定理4设Y 是随机变量X 的线性函数:Y aX b =+,则当0a >时,1XY ρ=;当0a <时,1XY ρ=-.证明由定义7知cov(,)()()X Y E X EX Y EY =--()[()()]E X EX aX b E aX b =-+-+2()aE X EX =-aDX =.因为2()DY D aX b a DX =+=,所以||||XY aDX aa DX a ρ===,即当0a >时,1XY ρ=;当0a <时,1XY ρ=-.以上两个定理表明,当Y aX b =+时,XY ρ的绝对值达到最大值1.事实上,还可以证明定理4的逆命题也是成立的.因此,X 与Y 的相关系数XY ρ反映了X 与Y 线性关系的密切程度.定义9设XY ρ为X 与Y 的相关系数.(1)如果0XY ρ≠,则称X 与Y 是相关的(实为一定程度的线性相关).其中当||1XY ρ=时,称X 与Y 是完全相关的;当0XY ρ>时,称X 与Y 正相关;当0XY ρ<时,称X 与Y 负相关.(2)如果0XY ρ=,则称X 与Y 不相关(实为线性无关).显然,若X 与Y 相互独立,则0XY ρ=.例24设(,)X Y 的概率分布为Y X 1231-0.10.20.1000.20.110.20.1求X 与Y 的协方差及相关系数.解由(,)X Y 的概率分布,不难得到其关于X 和关于Y 的边缘概率分布为于是(1)0.400.310.30.1EX =-⨯+⨯+⨯=-,10.320.530.2 1.9EY =⨯+⨯+⨯=.由(4.3)式及(4.5)式,有222(1)0.410.30.7EX =-⨯+⨯=,222210.320.530.2 4.1EY =⨯+⨯+⨯=,()(1)10.1(1)20.2(1)30.1010020.2E XY =-⨯⨯+-⨯⨯+-⨯⨯+⨯⨯+⨯⨯030.1110.2120.11300.4+⨯⨯+⨯⨯+⨯⨯+⨯⨯=-.于是222()0.7(0.1)0.69DX EX EX =-=--=,222() 4.11.90.49DY EY EY =-=-=,cov(,)()0.40.11.90.21X Y E XY EX EY =-⋅=-+⨯=-,0.210.360.830.7XY ρ-===-⨯.例25已知随机变量X 服从区间[0,2]π上的均匀分布,并且sin Y X =,sin()Z X k =+,k 为常数,求Y 与Z 的相关系数YZ ρ.解由题设知1,[0,2],~()20,X x X f x ππ⎧∈⎪=⎨⎪⎩其他.由(4.4)及(4.6)式,有201(sin )sin 02EY E X xdx ππ===⎰,X 1-01P0.40.30.3Y 123P0.30.50.2201[sin()])02EZ E X k x k dx ππ=+=+=⎰,222201(sin )sin 0.52EY E X xdx ππ===⎰,222201[sin ()]sin ()0.52EZ E X k x k dx ππ=+=+=⎰,()[sin sin()]E YZ E X X k =+201sin sin()2x x k dx ππ=+⎰201[cos cos(2)]4k x k dxππ=-+⎰1cos 2k =.于是22()0.5DY EY EY =-=,22()0.5DZ EZ EZ =-=,cov(,)()Y Z E YZ EY EZ =-⋅1cos 2k =,1cos 2cos YZ k k ρ==.若2k π=,则0YZ ρ=,此时221Y Z +=.但由于Y 与Z 满足关系221Y Z +=,所以Y 与Z 不独立.例26对于二维随机向量(,)X Y ,设X 服从[1,1]-上的均匀分布,并且2Y X =,证明0XY ρ=.证明由题设知1,[1,1],~()20,X x X f x ⎧∈-⎪=⎨⎪⎩其他.于是0EX =.由(4.4)式及(4.28)式,有13311()02E X x dx -==⎰,cov(,)()X Y E XY EX EY =-⋅3()0E X ==,因此0XY ρ=.但由于X 与Y 满足关系2Y X =,所以X 与Y 不独立.上两例表明,X 与Y 不相关,但它们不独立.因此,由X 与Y 不相关不能得到X 与Y 相互独立.事实上,X 与Y 不相关是指没有线性关系,但并不排除存在其他关系,如平方关系.*例27设二维随机向量1212(,)~(,,,,)X Y N μμσσρ,求X 与Y 的相关系数XY ρ.解根据二维正态分布的边缘概率密度知221212,,,EX EY DX DX μμσσ====而12cov(,)()()(,)X Y x y f x y dxdyμμ+∞+∞-∞-∞=--⎰⎰12()()x y μμ+∞+∞-∞-∞=--⎰222112211()exp 2y x x dxdy μμμρσσσ⎡⎤⎫---⎥⨯--⎪⎥⎭⎦令211211,,y x x t u μμμρσσσ⎛⎫---=-=⎪⎭则有222()/21121cov(,)()2ut X Y u e dtduσσρσσπ+∞+∞-+-∞-∞=+⎰⎰2221222()()2u tu e du e dt ρσσπ+∞+∞---∞-∞=⎰⎰2222)()u tue du te dt +∞+∞---∞-∞⎰⎰12ρσσ==于是XYρρ==.注 1.二维正态分布随机向量(,)X Y 的概率密度中的参数ρ是X 与Y 的相关系数,X 和Y 的各自的数学期望、方差及它们的相关系数可以确定二维正态随机向量的分布;2.在第三章已经讲过,若(,)X Y 服从二维正态分布,则X 和Y 相互独立的充分必要条件为0ρ=.现知XY ρρ=,故对于二维正态随机向量(,)X Y 来讲,X 和Y 不相关与X 和Y 相互独立是等价的.4.5矩、协方差矩阵与相关矩阵本节在推广随机变量的期望、方差和两个随机变量的协方差、相关系数等数字特征基础上,引入矩、协方差矩阵和相关矩阵这些概念.一、矩定义10设X 为随机变量,若1,2,k EX k =,…存在,则称其为X 的k 阶原点矩,(简称k 阶矩),也记作k v .若()2,3,k E X EX k -=,…存在,则称其为X 的k 阶中心矩,也记作k μ.若2,3,kE X EX k -=,…存在,称其为X 的k 阶绝对中心矩.对于二维随机向量X Y (,),若(,1,2,k l E X Y k l =),…存在,则称其为X 和Y 的+k l 阶混合矩.若[()(),1,2,k l E X EX Y EY k l --=],…存在,则称其为X 和Y 的+k l 阶混合中心矩.注1.随机变量X 的数学期望EX 是X 的一阶原点矩;2.随机变量X 的方差DX 是X 的二阶中心矩.二、协方差矩阵与相关矩阵定义11设12(,,,)n X X X 是n 维随机向量,并且(1,2,,)i DX i n = 存在,则以cov(,)i j X X 为元素的n 阶矩阵111212122212.....................n n n n nn v v v v v v V v v v ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,ii i v DX =,cov(,)ij i j v X X =,,1,2,,i j n = 称为该n 维随机向量的协方差矩阵,记作V .显然,协方差矩阵V 是对称矩阵,即ij ji v v =,,1,2,,i j n = .定义12设12(,,,)n X X X 是n 维随机向量,其任意两个分量i X 与j X 的相关系数ij ρ(,1,2,,i j n = )都存在,则以ij ρ为元素的n 阶矩阵111212122212.....................n n n n nn R ρρρρρρρρρ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦称为该n 维随机向量的相关矩阵,记作R .由于cov(,)i i i X X DX =,1,2,,i n =,因此1ii ρ==,(1,2,,i n = ),ij ρ==(,1,2,,i j n = ).对于协方差矩阵和相关矩阵,我们主要讨论2n =的情况.例28已知二维随机向量(,)X Y 的协方差矩阵为251236a V ⎡⎤=⎢⎥⎣⎦,求参数a 以及相关矩阵R .解根据题意知11221ρρ==,1221120.456ρρ====⨯又由对称性知12a =,因此10.40.41R ⎡⎤=⎢⎥⎣⎦.例29已知随机变量X 的方差2DX σ=,并且32Y X =-,求(,)X Y 的协方差矩阵及相关矩阵.解211v DX σ==,222(32)4v DY D X σ==-=.由于32Y X =-为线性函数,所以1XY ρ=-,即12211ρρ==-.于是2122112cov(,)2XY v v X Y ρρσ===-.因此222221222424V σσσσσ-⎡⎤-⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,1111R -⎡⎤=⎢⎥-⎣⎦.例30计算例24中(,)X Y 的协方差矩阵V .解由于110.69v DX ==,220.49v DY ==,12cov(,)0.21v X Y ==-,因此0.690.210.210.49V -⎡⎤=⎢⎥-⎣⎦.例31设(,)X Y 的概率密度为221,1,(,)0,x y f x y π⎧+≤⎪=⎨⎪⎩其他,求(,)X Y 的相关矩阵R .解由(4.6)式,有11()()0E XY dy -==⎰11()0EX EY dy -===⎰于是cov(,)()0X Y E XY EX EY =-⋅=显然0DX DY =>,所以120ρ==于是1001R ⎡⎤=⎢⎥⎣⎦.习题四1.盒中有5个球,其中有3个白球、2个黑球,从中一次任取两个球,求取得白球数X 的数学期望与方差.2.设随机变量X 的概率分布为{}1(2,4,,18,20),10P X k k ===…求EX .3.袋中有5个乒乓球,编号为1,2,3,4,5,现从中一次任取3个,用X 表示取出的3个球中最大编号,求EX .4.设随机变量X 的概率分布为求EX ,2EX 和2(35)E X +.5.连续型随机变量X 的概率密度为,01()0,kx x f x α⎧<<=⎨⎩其他,,0k α>(),且0.75EX =,求(1),k α;(2)DX .6.一个螺丝钉的重量是随机变量,平均重10克,标准差为1克,求100个同型号螺丝钉重量的数学期望和方差.7.设随机变量X 的概率密度为110()1010x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩,,,其他,求EX 和DX .8.设随机变量||1~()0x X f x <=⎩,其他,求EX 和DX .X 2-02P0.40.30.39.设随机变量X 的概率密度为0()00,x e x f x x -⎧≥=⎨<⎩,,,求:(1)2Y X=的数学期望;(2)2XY e-=的数学期望.10.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x x f x ≤≤⎧=⎨⎩2,,,其他和55()05,y Y e y f y y -⎧>=⎨≤⎩,,,求()E XY .11.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x f x ≤≤⎧=⎨⎩1,,,其他和0()00,y Y e y f y y -⎧>=⎨≤⎩,,,求()E X Y +.12.设随机变量X 服从柯西分布,即其概率密度为21()(),(1)f x x x π=-∞<<+∞+试证明X 的数学期望不存在.13.设随机变量X 的分布函数为10()0x e x F x λ-⎧->=⎨⎩,,其他,求EX 和DX .14.一台实验仪器中有3个元件,各元件发生故障是相互独立的,其概率分别为0.2,0.3,0.4,求发生故障的元件数的数学期望及方差.15.同时掷2颗骰子,设随机变量X 表示出现点数的最大值,求EX 和DX .16.把4只球随机的投入4个盒子中,设X 表示空盒子的个数,求EX 和DX .17.一批零件中有9个合格品和3个废品,在安装机器时,从这批零件中任取1个,如果取出的是废品就不再放回去.求在取得合格品以前,已经取出废品数的数学期望和方差.18.调查结果表明:某地区的科技人员年龄X 具有如下概率密度4(24)(84),2484,()0,k x x x f x ⎧--≤≤=⎨⎩其他,(1)求常数k 的值;(2)计算该地区科技人员的平均年龄.19.设随机变量X 服从参数为λ的指数分布,并且Y =,求Y 的数学期望与方差.20.设随机变量X 服从区间[0,2]上的均匀分布,并且|1|Y X =-,求EY 和DY .21.对某一目标进行射击,每次射击相互独立并且击中概率为p ,(1)若直到击中为止,求射击次数的数学期望与方差;(2)若直到击中k 次为止,求射击次数的数学期望与方差.22.设X 服从参数为2的泊松分布,32Y X =-,试求,,EY DY cov(,)XY X Y ρ及.23.设随机向量(,)X Y 的概率密度为1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩,其他,试求,,cov(,)()XY EX EY X Y D X Y ρ+,,.24.设随机向量(,)X Y 的概率密度为(),0,0,(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其他,求cov(,)X Y .25.设随机变量X 的方差16DX =,随机变量Y 的方差25DY =,又X 与Y 的相关系数0.5XY ρ=,求()D X Y +与()D X Y -.26.设随机向量(,)X Y 服从单位圆域{}22(,)1x y x y +≤上的均匀分布,试证明X ,Y 不相关.27.将3个球随机地放入4个盒子,记(1,2)i X i =表示第i 个盒子内球的个数,求随机向量12(,)X X 的协方差矩阵.28.设随机变量X 的概率密度为0.5,02()0,x x f x <<⎧=⎨⎩其他,求随机变量X 的1至4阶原点矩和中心距.29.设随机变量X 服从拉普拉斯分布,即其概率密度为1(),2xf x e x λλ-=-∞<<+∞,其中0λ>为常数,求X 的k 阶中心距.30.设随机向量21.502,01(,)~(,)0xy x y X Y f x y ⎧≤≤≤≤=⎨⎩,,其他,求随机向量(,)X Y 的均值和协方差矩阵.31.设随机向量22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae -+++-+-=,试确定A 的值,并求X 与Y 的相关矩阵.32.设二维随机向量(,)X Y 的概率密度为sin()(,)(,)0A x y x y Df x y +∈⎧=⎨⎩,,其他,其中D 为矩形区域(,)0,022x y x y ππ⎧⎫≤≤≤≤⎨⎬⎩⎭.(1)求系数A ;(2)求EX EY DX 及DY ;(3)求cov(,)X Y 及XY ρ;(4)求协方差矩阵C 及相关系数矩阵R .选做题四1.某流水生产线上每个产品部合格的概率为01p p <<(),各产品合格与否相互独立,当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求X 的数学期望E X ()和方差D X ().2.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格产品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望;(2)从乙箱中任取一件产品是次品的概率.3.设随机变量X 的概率密度函数为()1cos ,0,220,x x f x π⎧≤≤⎪=⎨⎪⎩其他,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.4.设两个随机变量,X Y 相互独立,且都服从均值为0,方差为12的正态分布,求随机变量X Y -的方差.5.假设二维随机向量,X Y ()在矩形(){},02,01G x y x y =≤≤≤≤上服从均匀分布,记0,,1,X Y U X Y ≤⎧=⎨⎩若若>,0,2,1,2,X Y V X Y ≤⎧=⎨>⎩若若(1)求U V 和的联合分布;(2)求U V 和的相关系数γ.6.箱中装有6个球,其中红、白、黑球个数分别为1,2,3,现从箱中随机地取出2个球,记X 为取出红球的个数,Y 为取出白球的个数.(1)求随机向量,X Y ()的概率分布;(2)求Cov(,)X Y .7.设二维离散型随机向量,X Y ()的概率分布为Y X 012014014101302112112(1)求{}2P X Y =;(2)求Cov(,)X Y Y -.8.设A B 和为随机事件,且()14P A =,()13P B A =,()12P A B =,令110X Y ⎧⎧==⎨⎨⎩⎩, A发生,, B发生,0,A不发生,,B不发生.(1)求二维随机向量(),X Y 的概率分布;(2)求X Y 和的相关系数XY ρ.9.游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的第5分钟、25分钟和55分钟从底层起行.假设一游客在早晨8点的第X 分钟到底层候梯处,且X 在[0,60]上服从均匀分布,求该游客等候时间的数学期望.10.两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自行开动,试求两台记录仪无故障工作的总时间T 的概率密度f t ()、数学期望和方差.11.一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布,商品每销售出一单位商品获得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获得利润500元,试计算此商点经销该种商品每周所得利润的期望值.12.设,A B 是两个随机事件,随机变量111,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩,若出现,,若出现,若不出现,若不出现,试证明:随机变量X Y 和不相关的充分必要条件是A B 与相互独立.13.假设随机变量U 在区间[2,2]-上服从均匀分布,随机变量11111,11,1U U X Y U U ≤-≤⎧⎧==⎨⎨->-->⎩⎩,若,,若,若,若,试求:(1)X Y 和的联合概率分布;(2)()D X Y +.14.设随机变量X 的概率密度为()1,10,21,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩,其他,令()2,,Y X F x y =为二维随机向量(),X Y 的分布函数,求:(1)Y 的概率密度()Y y f ;(2)()Cov ,X Y ;(3)1,42F ⎛⎫- ⎪⎝⎭.。
第三章 随机变量的数字特征

第三章 随机变量(向量)的数字特征
§3.1 随机变量的数学期望 §3.2 随机变量的方差 §3.3 协方差与相关系数
为了完整的描述随机变量的统计特性,自然应该知道 其分布函数,因为随机变量的分布函数可以反映随机变量 取值的规律。但是在实际问题中,一方面随机变量的分布 或分布函数并不都是容易求得的,另一方面,往往也不需 要知道随机变量的详尽的概率分布,而仅需要知道其某些
四、随机变量函数的数学期望 1. 一元随机变量函数的情况 设Y g( X )是随机变量 X的函数, (1)离散型
如果随机变量X 的概率函数为 P{ X xk } pk k 1, 2, 则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1
(2)连续型
x2
1 n
Pk
n
… xi … 1 n
… xn … 1 n
E ( X ) x1 1 x2 1 ... xn 1 1 xi n n n n
i 1
2.两点分布 由数学期望的定义
E( X ) p
X pi
0
1
q
p
3. 二项分布 若随机变量 X ~ B(n, p) ,其概率函数为
xR
( x )2 2 2
1 E ( X ) xf ( x)dx xe 2 t2 (x ) 1 令t ( t )e 2 dt 2 t2 1 e 2 dt 2
dx
解:由上面的公式
1 1 2 E (W ) kv f (v)dv kv dv ka a 3 0
2 2 a
例3.6 设X与Y相互独立,它们的概率密度函数分别为
随机变量的数字特征

第四章随机变量的数字特征讨论随机变量数字特征的原因(1)在实际问题中,有的随机变量的概率分布难确定,有的不可能知道,而它的一些数字特征较易确定。
(2)实际应用中,人们更关心概率分布的数字特征。
(3)一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,只要知道了它们的某些数字特征,就能完全确定其具体的分布。
§4.1 数学期望一、数学期望的概念1.离散性随机变量的数学期望例4.1:大学一年级某班有32名同学,年龄情况如下:求该班同学的平均年龄。
平均年龄=14810721224218201019718217+++++⨯+⨯+⨯+⨯+⨯+⨯把上式改写为:设X为从该班任选一名同学的年龄,其概率分布为定义4.1:设离散型随机变量X的分布列为:若∑kkkpx绝对收敛(即+∞<=∑∑kk kkkkpxpx),则称它为X的数学期望或均值(此时,也称X的数学期望存在),记为E(X),即若∑kkkpx发散,则称X的数学期望不存在。
(1)随机变量的数学期望是一个实数,它体现了随机变量取值的平均;(2)要注意数学期望存在的条件:∑kkkpx绝对收敛;(3)当X服从某一分布时,也称某分布的数学期望为EX 。
例4.2:设X服从参数为p的两点分布,求EXEX=p例4.3:设X?B(n,p),求EXEX=np例4.4:设X服从参数为?的泊松分布,求EXEX=λ2.连续型随机变量的数学期望定义 4.2: 设连续型随机变量X 的概率密度为f(x).若积分⎰+∞∞-dxxxf)(绝对收敛,(即⎰∞∞-+∞<dxxfx)(),则称它为X的数学期望或均值(此时,也称X的数学期望存在),记为E(X),即)()(⎰∞∞-=dxxxfXE若⎰∞∞-+∞=dxxfx)(,则称X的数学期望不存在。
例4.5:设X服从U[a,b],求E(X)。
EX=2ba+例4.6:设X服从参数为?的指数分布,求EX EX=λ例4.7:),(~2σμNX,求EXEX=μ下面分析书上P101---P104例。
随机变量的5个数字特征

随机变量的5个数字特征。
随机变量的5个数字特征
随机变量是一种可以在多种不同情况下表现出不同数值的变量,它的数字特征可以帮助我们更加深入的了解一个随机变量的性质。
下面就介绍随机变量的5个数字特征:
首先是均值,它是一个随机变量的平均数,用来反映其数值的平均水平,可以帮助我们预测其可能表现出的数值范围;
其次是方差,它反映了一个随机变量的数值水平差异程度,当方差较低时,意味着随机变量的数值波动不大;
接着是标准差,它是方差的平方根,可以反映一个随机变量的数值分散程度,标准差越小,意味着数值的分布越集中;
最后还有三个数字特征,分别是偏度、峰度和相关系数,它们分别反映一个随机变量数值分布的偏斜程度、峭度以及与其他变量之间的关联程度。
总之,随机变量的5个数字特征,即均值、方差、标准差、偏度、峰度和相关系数,可以帮助我们更加深入地了解一个随机变量的性质,从而更好地分析和预测数据作出正确的决策。
(完整)第四章随机变量的数字特征总结,推荐文档

随机变量的数字特征——总结第四章 随机变量的数字特征㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置.1、数学期望的定义(1) 定义 离散型和连续型随机变量X 的数学期望定义为{}⎪⎩⎪⎨⎧==⎰∑∞∞- d )( )()( ,,连续型离散型x x xf x X x X kk k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在.①常见的离散型随机变量的数学期望1、离散型随机变量的数学期望 设离散型随机变量的概率分布为,若,则称级数为随机变量的数学期望(或称为均值),记为, 即2、两点分布的数学期望 设服从0—1分布,则有,根据定义,的数学期望为. 3、二项分布的数学期望 设服从以为参数的二项分布,,则。
4、泊松分布的数学期望 设随机变量服从参数为的泊松分布,即,从而有。
①常见的连续型随机变量的数学期望1)均匀分布设随机变量ξ服从均匀分布,ξ~U [a ,b ] (a <b ),它的概率密度函数为:随机变量的数字特征——总结= 则=∴ E(ξ)=(a+b)/2.即数学期望位于区间的中点.2)正态分布设随机变量ξ服从正态分布,ξ~N(μ,σ2),它的概率密度函数为:(σ>0,- <μ<+)则令得∴ E(ξ)=μ .3)指数分布设随机变量服从参数为的指数分布,的密度函数为 ,则.(2) 随机变量的函数的数学期望设为连续函数或分段连续函数,而X是任一随机变)(xgy=量,则随机变量的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出的概)(XgY=Y率分布再求其数学期望;对于二元函数,有类似的公式:),(YXgZ=(){}⎪⎩⎪⎨⎧===⎰∑∞∞.;(连续型)离散型-d)()()()(xxfxgxXxgXgY kkkPEE()(){}()()()()⎪⎩⎪⎨⎧====⎰⎰∑∑∞∞-∞∞-.;连续型离散型dd,,,,,yxyxfyxgyYxXyxgYXgZi jjijiPEE设(,)X Y为二维离散型随机变量,其联合概率函数(,),,1,2,,i j ijP X a Y b p i j====如果级数(,)i j ijj ig a b p∑∑绝对收敛,则(,)X Y的函数(,)g X Y的数学期望为随机变量的数字特征——总结[(,)](,)ijijjiE g X Y g a b p =∑∑; 特别地();()i ijj ijiij iE X a p E Y b p==∑∑∑∑.设X 为连续型随机变量,其概率密度为()f x ,如果广义积分 ()()g x f x dx+∞-∞⎰绝对收敛,则X 的函数()g X 的数学期望为[()]()()E g X g x f x dx+∞-∞=⎰.设(,)X Y 为二维连续型随机变量,其联合概率密度为(,)f x y ,如果广义积分(,)(,)g x y f x y dxdy+∞+∞-∞-∞⎰⎰绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)(,)E g x y g x y f x y dxdy+∞+∞-∞-∞=⎰⎰;特别地()(,)E x xf x y dxdy +∞+∞-∞-∞=⎰⎰,()(,)E Y yf x y dxdy+∞+∞-∞-∞=⎰⎰.注:求E(X,Y)是无意义的,比如说二维(身高,胖瘦)的数学期望是无意义的,但是二维随机变量函数Z= E(X,Y)是有意义的,他表示的是函数下的另一个一维意义。
《概率论与数理统计》课件 第七章 随机变量的数字特征

i 1,2, , 如果 xi pi , 则称 i 1 E( X ) xi pi 为随机变量X的数学期望; i 1
或称为该分布的数学期望,简称期望或均值.
(2)设连续随机变量X的密度函数为p( x),
如果
+
x p( x)dx ,
则称
-
E( X ) xp( x)dx 为随机变量X的数学期望.
5
例2.求二项分布B(n, p)的数学期望.
P(X
k)
n!
k!n
k !
pk
(1
p)nk ,k
1, 2,
, n.
n
解:EX kP{ X k}
k0
n
k
k0
n!
k!n
k !
pk
(1
p)nk
n
np
k 1
k
n 1! 1!n
pk1
k!
(1
p)nk
np[ p (1 p)]n1 np.
特别地,若X服从0 1分布,则EX p.
6
例3. 求泊松分布P( )的数学期望.
注:P( X k) k e , k 1, 2, .
k!
解:EX k k e e
k1
e
k1
k0 k !
k1 k 1 !
k1 k 1 !
ee
e x 1 x 1 x2 1 xn [这里,x ]
当 a 450时,平均收益EY 最大.
28
第二节 方差与标准差
29
引例
比较随机变量X、Y 的期望
X3 4 5 Y1 4 7 P 0.1 0.8 0.1 P 0.4 0.2 0.4
01 2 3 4 5 67
大学课件概率论与数理统计第4章随机变量的数字特征

(3) Ef (X) g(X) E[f (X)] E[g(X)]
特别地 E[X Y] E[X] E[Y]
E[aX bY c] aE[X] bE[Y] c
(4) 若X, Y相互独立,则E[XY] E[X] E[Y]
(5) 若a X b,则E[X]存在,且a E[X] b
注:这些性质可以推广到多个随机变量上。
E[X] (1) 125 75 2 15 3 1 17 216 216 216 216 216
由于平均赢利小于0,故这一游戏规则对下注 者是不利的。
离散型随机变量函数的数学期望
已知P( X xk ) pk,当 g( xk ) pk 时,
k
g(X)的数学期望为
E[g(X)] g(xk )P(X xk )
E[ X ] 1 0.910 11(1 - 0.910) 7.513 10
结论:分组化验法的次数少于逐一化验法的次数
二、连续型随机变量的数学期望
设X是连续型随机变量,其密度函数为f (x),在
数轴上取很密的分点x0 <x1<x2< …,则X落在小区
间[xi, xi+1)的概率是
阴影面积近似为
9 P(X 9) 10 P(X 10)
由于打出环数的概率不同,所以不 是1到10的算术平均.
1.离散型随机变量的数学期望
设随机变量X的分布律为 P( X xk ) pk ,
若当 xk pk 时,则称 xk pk 为随机
k
k
变量X的数学期望或均值,记作 E[ X ] ,即有
E[ X ] xk pk xk P(X xk )
均匀分布的期望
例7 设X服从均匀分布,其分布密度为
x
b
随机变量的数字特征

随机变量的数字特征
随机变量的数字特征包括均值、方差、标准差、偏度和峰度等。
其中,均值是衡量随机变量中心位置的指标,是所有取值的平均数;方差是随机变量离均值的距离平方的平均数;标准差是方差的算术平方根,也是随机变量离均值距离的度量,具有与随机变量相同的量纲;偏度是随机变量概率分布的偏斜程度,为其分布的非对称程度的度量;峰度则是随机变量概率分布的尖锐程度,衡量随机变量的概率分布在平均值附近的峰值高低。
可以通过计算公式来求解以上数字特征,例如均值的计算公式为所有取值的总和除以取值的数量;方差的计算公式为将每个取值与均值的差值平方后的总和除
以取值的数量;标准差的计算公式则是方差的算术平方根;偏度的计算公式为三阶中心矩与标准差的比值;峰度的计算公式为四阶中心矩与标准差的四次幂的比值。
了解随机变量的数字特征有助于描绘随机变量的特征与规律,进而分析和预测其行为。
同时,对于特定应用领域,也需要针对性地选择数字特征进行分析,以
更好地满足应用的需求。
2.2随机变量的数字特征

x f ( x ) dx
f ( x)
0dx a x f ( x ) dx 0dx b
b
a
b
EX 存在.
例 已知 r .v . X ~ [ a , b ]上的均匀分布, 求 EX
解
1 , X ~ f ( x) b a 0,
a xb
n ' n x n1 ( x n )' x x 1时, n 1 n 1 n 1 2 3 n ' x ' 1 2 ( x x x ... x ...) 1 x (1 x )
二.连续型随机变量 的数学期望
0
1 2 2 1 1 0 sin xdx 2 ( cos x ) 0 2 cos x 2
0 2
0
例 r .v . X ~ [ 0, 2 ]上的均匀分布, 求E (sin X ),
E ( X EX )2
1 2 ,
解 X ~ f ( x)
2
0 x 2
x2 2 EX x f ( x )dx 0dx dx 0dx a ba b
a b
1 b 2 1 x3 b 1 b 3 a 3 a 2 ab b 2 a x dx b a 3 a b a 3 ba 3
例 r .v . X ~ [ 0, 2 ]上的均匀分布, 求E (sin X ),
说明:
x x
n n n
n n
pn x1 p1 x2 p2 ... xn pn ... 收敛
EX x1 p1 x2 p2 ... xn pn ...
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 随机变量的数字特征第一节 基本概念1、概念网络图⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧→切比雪夫不等式矩方差期望一维随机变量⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧→协方差矩阵相关系数协方差方差期望二维随机变量2、重要公式和结论例4.1:箱内装有5个电子元件,其中2个是次品,现每次从箱子中随机地取出1件进行检验,直到查出全部次品为止,求所需检验次数的数学期望。
例4.2:将一均匀骰子独立地抛掷3次,求出现的点数之和的数学期望。
例4.3:袋中装有标着1,2,…,9号码的9只球,从袋中有放回地取出4只球,求所得号码之和X 的数学期望。
例4.4:设随机变量X 的概率密度为,)(21)(||+∞<<-∞=-x e x f x求E (X )及D (X )。
例4.5:设随机变量X~N (0, 4), Y~U (0, 4),且X ,Y 相互独立,求E (XY ),D (X+Y )及D (2X-3Y )。
例4.6:罐中有5颗围棋子,其中2颗为白子,另3颗为黑子,如果有放回地每次取1子,共取3次,求3次中取到的白子次数X 的数学期望与方差。
例4.7:在上例中,若将抽样方式改为不放回抽样,则结果又是如何? 例4.8:“随机变量X 的数学期望E(X)= μ.”的充分条件:(1)X 的密度函数为f(x)=λμλ--x e21 (λ>0,-∞<x<+∞)(2) X 的密度函数为222)(21)(σμσπ--=x ex f , (+∞<<∞-x )例4.9:利用切比雪夫不等式估计随机变量与其数学期望之差大于3倍标准差的概率。
例4.10:设随机变量X 和Y 的方差存在且不等于0,则D (X+Y )=D (X )+D (Y )是X 和Y(A ) 不相关的充分条件,且不是必要条件; (B ) 独立的充分条件,但不是必要条件; (C ) 不相关的充分必要条件;(D ) 独立的充分必要条件。
( )。
例4.11:设X 与Y 相互独立都服从P (λ),令U=2X+Y ,V=2X-Y 。
求随机变量U 和V 的相关系数.UV ρ例4.12:设(X ,Y )服从D={(x,y)|x 2+y 2≤1|}上的均匀分布,求,XY XY ρσ和并且讨论X与Y 的独立性。
第二节 重点考核点常见分布的数学期望和方差;随机变量矩、协方差和相关系数;独立和不相关第三节 常见题型1、一维随机变量及其函数的数字特征例4.13:判断随机变量X 是否存在期望和方差。
(1) ,2,1,2)1(=-=k k x kkk , k k x X P 21)(==; (2)+∞<<-∞+∙=x xx f ,111)(2π。
例4.14:设随机变量X 在区间[a, b]中取值,证明:a ≤E(X)≤b;例4.15:将n 只球放入到N 只盒子中去,设每只球落入各个盒子是等可能的,求有球盒子数X 的数学期望。
例4.16:一辆送客汽车,载有m 位乘客从起点站开出,沿途有n 个车站可以下车,若到达一个车站,没有乘客下车就不停车。
设每位乘客在每一个车站下车是等可能的,试求汽车平均停车次数。
例4.17:投硬币n 次,设X 为出现正面后紧接反面的次数,求E(X)。
例4.18:一台仪器由5只不太可靠的元件组成,已知各元件出故障是独立的,且第k只元件出故障的概率为101+=k p k ,则出故障的元件数的方差是 A .1.3 B .1.2 C .1.1 D .1.0例4.19:设X 是n 重贝努里试验中事件A 出现的次数,且P(A)=p,令Y= ⎪⎩⎪⎨⎧为奇数当为偶数当X X 10,求Y 的数学期望。
例4.20:设随机变量X 的概率密度为)1(1)(2x x f +=π,),(+∞-∞∈x ,求)]1,[min(X E 。
例4.21:地铁到达一站时间为每个整点的第5分、25分、55分钟,设一乘客在早8点~9点之间随机到达,求侯车时间的数学期望。
例4.22:设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+)6|(|Y X P。
2、二维随机变量及其函数的数字特征例4.23:设两个随机变量X ,Y 相互独立,都服从,21,0⎪⎭⎫⎝⎛N 求D (|X-Y|)。
例4.24:今有两封信欲投入编号为I 、II 、III 的3个邮筒,设X ,Y 分别表示投入第I 号和第II 号邮箱的信的数目,试求(1)(X ,Y )的联合分布;(2)X 与Y 是否独立;(3)令U=max (X,Y), V=min(X,Y),求E (U )和E (V )。
例4.25:假设二维随机变量(X ,Y )在矩形G={(X,Y )|0≤x ≤2, 0≤y ≤1}上服从均匀分布,记⎪⎩⎪⎨⎧>≤=;,1,,0Y X Y X U⎪⎩⎪⎨⎧>≤=.2,1,2,0Y X Y X V(1) 求U 和V 的联合分布; (2) 求U 和V 的相关系数ρ.例4.26:设X ~e (1),⎪⎩⎪⎨⎧>≤=kx kx Y k ,1,0 (k=1, 2),求:(1)),(21Y Y =ξ的分布;(2)21Y Y 与边缘分布,并讨论他们的独立性; (3)).(21Y Y E +例4.27:设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.例4.28:n 封信任意投到n 个信封里去,而每个信封应该对应着唯一的一封信,设信与信封配对的个数为X ,求E(X)与D(X)。
3、独立和不相关例4.29:已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数21-=XY ρ,设.23YX Z +=(1)求Z 的数学期望E (Z )和方差D (Z );(2)求X 与Z 的相关系数XZ ρ;(3)问X 与Z 是否相互独立?为什么?例4.30:设(X ,Y )的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤--=.,0,10,102),(其他y x y x y x ϕ(1) 判别X ,Y 是否相互独立,是否相关; (2) 求E (XY ), D (X+Y )例4.31:如果X 与Y 满足D (X+y )=D (X-Y ),则必有(A )X 与Y 独立。
(B )X 与Y 不相关。
(C )D (Y )=0。
(D )D(X)·D(Y)=0. [ ] 例4.32:将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 与Y 的相关系数等于 (A )-1。
(B )0。
(C )21。
(D )1。
[ ]例4.33:设随机变量X 的分布密度为.,21)(||+∞<<-∞=-x e x f x (1) 求X 的数学期望E (X )和方差D (X );(2) 求X 与|X|的协方差,并问X 与|X|是否不相关? (3) 问X 与|X|是否相互独立?为什么?例4.34:设A ,B 是二随机事件,随机变量⎩⎨⎧-=,,1,,1否则出现若A X⎩⎨⎧-=.,1,,1否则出现若B Y 证明X,Y 不相关与A,B 独立互为充分且必要条件。
例4.35:对于任意二事件A 和B ,0<P(A)<1,0<P(B)<1,)()()()()()()(B P A P B P A P B P A P AB P -=ρ称做事件A 和B 的相关系数。
(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零; (2) 利用随机变量相关系数的基本性质,证明.1||≤ρ4、应用题例4.36:设某种商品每周的需求量X 服从区间[10,30]上的均匀分布的随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元,为使商店所获利润期望值不少于9280元,试确定最少进货量。
例4.37:市场上对商品需求量为X ~U (2000,4000),每售出1吨可得3万元,若售不出而囤积在仓库中则每吨需保养费1万元,问需要组织多少货源,才能使收益最大?第四节 历年真题数学一:1(87,2分)已知连续型随机变量X 的概率密度为1221)(-+-=x x ex f π则EX = ,DX = 。
2(89,6分) 设随机变量X 与Y 独立,且X~N (1,2),Y~N (0,1),试求随机变量Z =2X -Y +3的概率密度函数。
3(90,2分) 已知随机变量X 服从参数为2的泊松分布,且胡机变量Z =3X -2,则EZ = 。
4(90,6分) 设二维随机变量(X ,Y )在区域D :0<X <1, |y |<x 内服从均匀分布,求关于X 的边缘概率密度函数及随机变量Z =2X +1的方差DZ 。
5(91,3分)设随机变量X 服从均值为2、方差为2σ的正态分布,且=<=<<}0{,3.0}42{X P X P 则。
6(92,3分) 设随机变量X 服从参数为1的指数分布,则=+-)(2xe X E。
7(93,6分)设随机变量X 的概率密度为+∞<<-∞=-x e x f x ,21)(|| (1) 求EX 和DX ;(2) 求X 与|X |的协方差,并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立?为什么? 8(94,6分)已知随机变量的相关系数与且,Y X N Y N X ),4,0(~)3,1(~2223,21Y X Z XY +=-=设ρ。
(1) 求EZ 和DZ ;(2) 求X 与Z 的相关系数;XZ ρ(3) 问X 与Z 是否相互独立?为什么?9(95,3分) 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则)(2X E =。
10(96,3分) 设和ξη是两个相互独立且均服从正态分布N (0,21)的随机变量,则=-|)(|ηξE。
11(96,6分) 设和ξη是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为).,min(),,max(3,2,1,31)(ηξηξξ=====Y X i i P 又设 (1) 写出二维随机变量(X ,Y )的分布律; (2) 求EX 。
12(97,3分)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X -2Y 的方差是(A )8 (B )16 (C )28 (D )44 [ ] 13(97,7分) 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是52。