中考复习专题-二元一次方程组练习题及答案

合集下载

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

九年级中考数学复习二元一次方程专题练习(含答案)

九年级中考数学复习二元一次方程专题练习(含答案)

中考数学-二元一次方程专题练习(含答案)一、单选题1.用含盐15%与含盐8%的盐水配含盐10%的盐水300千克,设需含盐15%的盐水x千克,含盐8%盐水y千克,则所列方程组为()A. B.C. D.2.若二元一次方程组的解也是二元一次方程3x-4y=6的解,则k的值为()A.4B.8C.6D. -63.已知,且,则k的取值范围为A. B. C.D.4.已知实数a,b分别满足,且a≠b,则的值是( )A.7B.-7C.11D.-115.二元一次方程组的解是()A. B. C. D.6.方程组的解为,则“△”、“□”代表的两个数分别为()A.5,2B.1,3C.4,2D.2,37.若x4﹣3|m|+y|n|﹣2=2019是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A. -4B.2C.4D. -28.一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A. B. C. D.9.若m、n满足|m﹣2|+(n+3)2=0,则n m的值为()A.9B. -8C.8D. -910.如果,其中xyz≠0,那么x:y:z=()A.1:2:3B.2:3:4C.2:3:1D.3:2:111.2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡每小时分别运x吨与y吨垃圾,则可列方程组()A. B. C.D.12.二元一次方程x+2y=5有无数多个解,但它的正整数解只有()组.A.1B.2C.3D.413.下列方程是二元一次方程的是()A. B. C.D.14.若是方程2mx﹣ny=﹣2的一个解,则3m+3n﹣5的值等于()A.﹣8B.﹣4C.﹣2D.2二、填空题15.已知二元一次方程2x-3y=-4,用含x代数式表示y,y=.16.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.17.某超市将甲、乙两种商品进价各自提价30%后,又同时降价30元出售,售出后两种商品的总利润为60元,则甲、乙两种商品进价之和为________元.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是________.19.由3x﹣2y=5,得到用x表示y的式子为:y=________.20.把方程2(x+y)﹣3(x﹣y)=3改写成用含y代数式表示x的形式,得________三、计算题21.(1)计算(-2)2+( -π)0+|1— |;(2)解方程组:22.方程组的解x、y满足x是y的2倍,求a的值.23.综合题(1)计算(﹣)﹣| ﹣|(2)解方程组(3)解不等式1﹣>(4)解不等式组,并把它的解集表示在数轴上.24.计算。

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)一、选择题。

(在每小题给出的四个选项中,只有一个选项是符合题目要求的。

)1、下列各式中是二元一次方程的是()。

A、6x+2y=zB、+2=3yC、x-5=y2D、2x+5y=132、二元一次方程组的解是()。

3、若方程4x-3ky=12有一组解是,则k的值等于()。

A、-4B、4C、5D、-54、当方程kx+4y=9x-8是二元一次方程时,k的取值为()。

A、k≠0B、k≠-9C、k≠9D、k≠45、如果是二元一次方程组的解,那么m+n=()。

A、-1B、1C、-5D、56、可以使得方程x+5y=8和3x+y=-4同时成立的x、y的值分别为()。

A、x=2且y=2B、x=-2且y=2C、x=2且y=-2D、x=-2且y=27、方程5x-y=8的非负整数解有()。

A、2组B、3组C、4组D、无数组8、已知新星学校和山泉中学相距4千米,苏兰和肖英两人分别从新星学校和山泉中学同时出发,若同向而行,苏兰2小时可追上肖英;若两人相向而行,1小时相遇。

求苏兰、肖英两人的速度各是多少?如果设苏兰的速度为x千米/时,肖英的速度为y千米/时,则可以得一个二元一次方程组为()。

9、有一个两位数,它的十位数字与个位数字之和为8,则符合条件的两位数有()。

A、6个B、7个C、8个D、9个10、已知是二元一次方程组的解,则(3m+n)3的值为()。

A、1B、-1C、2D、-2二、填空题。

(将正确的答案填在括号里。

)1、若是二元一次方程,则m=(),n=()。

2、若是二元一次方程2x-ky=11的一个解,则k=()。

3、如果关于x、y的二元一次方程组的解满足2(x+y)-16≤0,则t的取值范围为()。

4、若(4x+y-13)2+│3x+2y-1│=0 则x-4y=()。

5、育龙中学组织一场知识竞赛。

规定知识竞赛的记分为:答对一题得3分,答错一题扣1分。

已知九(1)班答了12道题,共得24分,那么九(1)班答对了()道题。

2025年中考数学复习好题集锦之二元一次方程组

2025年中考数学复习好题集锦之二元一次方程组

2025年中考数学复习好题集锦之二元一次方程组一.选择题(共10小题)1.(2024•乌当区一模)如图所示为两个形状、大小完全一样的小长方形拼接而成的图形.已知AB=5,CD=3,则此图形的面积为()A.6B.8C.10D.122.(2024•工业园区校级二模)《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,多你一倍之上;乙说得甲九只羊,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为()A.B.C.D.3.(2024•景德镇二模)我国古典数学文献《增删算法统宗•六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲说得乙六只羊,多乙一倍之上,乙说得甲六只,两家之数相当,二人闲坐恼心肠,画地算了半晌”其大意为:甲,乙两人一起放牧,两人心里暗中数羊.如果乙给甲6只羊,那么甲牧羊的数量为乙的2倍;如果甲给乙6只羊,那么两人的牧羊的数量相同.请问甲,乙各有多少只羊?设甲有羊x只,乙有羊y只,根据题意列方程组正确的为()A.B.C.D.4.(2024•凉州区二模)已知二元一次方程组的解是,则*表示的方程可能是()A.x﹣y=﹣3B.x+y=4C.2x﹣y=﹣3D.2x+3y=﹣4 5.(2024•增城区二模)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”意思是:用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?设绳子长x尺,长木长y尺,则所列方程组正确的是()A.B.C.D.6.(2024•红花岗区一模)如图,用10个形状、大小完全相同的小长方形拼成一个大长方形,设每个小长方形的长和宽分别为x cm和y cm,则可列方程组为()A.B.C.D.7.(2024•黑龙江三模)某校将举办主题为“激情三月,学习雷锋精神”的演讲比赛活动,学校计划用150元钱购买A,B,C三种奖品(三种都买),A种奖品每个10元,B种奖品每个20元,C种奖品每个30元,在C种奖品不超过两个且钱全部用完的情况下,购买方案有()A.6种B.7种C.8种D.9种8.(2024•黑龙江四模)五四青年节某校举办歌咏比赛,为鼓励本班同学们积极参加,刘老师花了48元钱买了甲、乙两种(两种都买)碳素笔作为奖品.已知甲种碳素笔每支6元,乙种碳素笔每支4元,则老师购买碳素笔的方案共有()A.4种B.3种C.2种D.1种9.(2024•中山市校级三模)我国古代数学著作《增删算法统宗》记载:绳索量竿问题,“一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”.其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺,如果将绳索对半折后再去量竿,就比竿短5尺.设竿长x尺,绳索长y尺,则符合题意的方程组是()A.B.C.D.10.(2024•开江县二模)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x只,兔有y只,则所列方程组正确的是()A.B.C.D.二.填空题(共10小题)11.(2024•枣阳市模拟)《孙子算经》是中国古代重要的数学著作,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?答:(1)木长.尺;(2)绳长尺.12.(2024•五峰县模拟)古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”此题笼里的鸡有只,兔有只.13.(2024•大同三模)某元宵生产商家受原料保质期影响,在购买元宵主要原料糯米粉和黄油时分三次购买,每次购买价格不变,购进原料价格和数量如表所示:第一次第二次糯米粉/千克1012黄油/千克23总金额/元310405若第三次购进糯米粉20千克,黄油5千克,则第三次购买的总金额为元.14.(2024•十堰一模)我国古代数学名著《九章算术》中记载:“今有黄金九枚,白银十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”译文为:现有一袋黄金9枚,一袋白银11枚,这两袋的重量恰好相等.若两袋中交换1枚黄金和1枚白银,则原来装黄金的袋子比原来装白银的袋子轻13两,问黄金和白银1枚各重几两.答:(1)1枚黄金重两;(2)1枚白银重两.15.(2024•茅箭区校级一模)《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五:人出八,不足三.问人数几何?”题意是:若干人共同出资买羊,每人出6元,则差45元;每人出8元,则差3元.则买羊的人有个.16.(2024•竹山县模拟)我国古代数学名著《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?根据题意,可求得共有人.17.(2024•姜堰区二模)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?请你算算看,木长尺.18.(2024•吴兴区二模)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为.19.(2024•南昌模拟)《九章算术》中记载了这样一个问题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲、乙持钱各几何?译文:今有甲、乙两人持钱不知有多少.甲得到乙所有钱的,而有钱数为50,乙得到甲所有钱的,而也有钱50.问甲、乙持钱各是多少?设甲持钱数为x钱,乙持钱数为y钱.根据题意,可列方程组为.20.(2024•秦淮区二模)化学方程式等号两边的同种原子的个数是相等的,例如,乙烷充分燃烧的化学方程式是2C2H6+7O2=4CO2+6H2O,其中,等号左边“O”原子的个数是7×2=14,右边“O”原子的个数也是4×2+6×1=14.若己烷充分燃烧的化学方程式是aC6H14+19O2=bCO2+cH2O(a,b,c为常数),则b的值是.三.解答题(共10小题)21.(2024•虎林市校级四模)某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.22.(2024•邗江区校级三模)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).23.(2024•任丘市校级四模)在3月12日植树节活动中,某校组织甲乙两队参加义务植树活动,并购买队服(每人一套).该表是服装厂给出的服装的价格表:购买服装的套数1~39套(含39套)40~69套(含69套)70套及以上每套服装的价格80元70元60元甲乙两个植树队共75人,其中甲队人数较多,不少于40人,乙队人数较少,但不少于10人,如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装可以节省元.(2)甲、乙两队各有多少人?(列方程组解决问题)(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队.现已知重新组队后,甲队平均每人需植树1棵:乙队平均每人需植树4棵:丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请求出所有的抽调方案(要求从每队抽调的人数不少于10人).24.(2024•河口区模拟)为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林”的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元,据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵?(2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵?25.(2024•市中区校级三模)某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?26.(2024•鞍山模拟)某商场用相同的价格分两次购进2匹和3两种型号的立地式空调,两次购进情况如下表.次2匹(台)3匹(台)总售价(元)第一次2030260000第二次1020160000(1)求该商场购进2匹和3匹立地式空调的单价各为多少元?(2)已知商场2匹立地式空调的标价为每台5400元,3匹立地式空调的标价为每台8400元,两种立地式空调销售一半后,为了促销,剩余的2匹立地式空调打九折,3匹立地式空调打八折全部销售完,问两种立地式空调商场获利多少元?27.(2024•榕江县模拟)“快乐村超,活力四射”,榕江某村超产品制造商制作村超小摆件、蜡染背心、民族服饰,其中制作小摆件的数量是民族服饰数量的5倍,制造商制作每件产品所需时间和利润如下表:产品民族服饰小摆件蜡染背心制作一件产品所需时间(小时)1制作一件产品所获利润(元)20310(1)若制作三种产品共计需要25小时,所获利润为450元,求制作小摆件、蜡染背心和民族服饰的数量;(2)若制造商所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.28.(2024•驻马店模拟)随着新能源汽车的增加,我区为加快公共领域充电基础设施建设,准备改造部分停车场.计划购买A ,B 两种型号的充电桩.已知购买3个A 型充电桩和7个B 型充电桩的总费用是11.1万元,且A 型充电桩比B 型充电桩的单价少0.3万元.(1)求A ,B 两种型号充电桩的单价各是多少万元?(2)若停车场改造计划需购买30个A ,B 型充电桩,且B 型充电桩的购买数量不少于A 型充电桩购买数量的,问购买A ,B 型充电桩各多少个时总费用最少?请说明理由.29.(2024•钢城区校级三模)某文具店分两次购进毛笔字书写纸、钢笔字练习纸两种商品进行销售,两次购进同一种商品的进价相同.第一次购进毛笔字书写纸30件,钢笔字练习纸20件,共花费1900元;第二次购进毛笔字书写纸40件、钢笔字练习纸30件、共花前2700元.(1)求毛笔字书写纸、钢笔字练习纸两种商品每件的进价分别是多少元;(2)该文具店决定将毛笔字书写纸以每件45元的价格出售,钢笔字练习纸以每件75元的价格出售.为满足消费者的需求,需购进两种商品共1000件,且毛笔字书写纸的数量不少于钢笔字练习纸数量的4倍,请你求出获利最大的进货方案,并确定最大利润.30.(2024•顺义区一模)杆秤是我国度量衡“三大件(尺斗秤)”重要组成部分,是中华民族衡重的基本量具.杆秤依据杠杆原理制作而成,一般由秤钩(秤盘)、秤杆和秤砣三部分组成,秤杆上的刻度叫做“秤星”,古时候秤杆叫做“权”,秤砣叫做“衡”,“权衡”一词就来源于此.如图是小阳同学利用自制杆秤称重的示意图,使用时将货物放在秤盘上,用手提起B(相当于支点)处的秤纽,在秤杆上移动秤砣的位置,当秤杆水平平衡时,可根据秤砣在秤杆上的位置读出货物的质量.如图1所示,称量货物甲时,秤砣在C处秤杆平衡,此时可读出货物甲的质量是40g;如图2所示,称量货物乙时,秤砣在D处秤杆平衡,此时可读出货物乙的质量是60g.根据图中所给数据,求这把杆秤的秤星E对应的刻度是多少克.2025年中考数学复习好题集锦之二元一次方程组参考答案与试题解析一.选择题(共10小题)1.(2024•乌当区一模)如图所示为两个形状、大小完全一样的小长方形拼接而成的图形.已知AB=5,CD=3,则此图形的面积为()A.6B.8C.10D.12【分析】设小长方形的长为x,宽为y,根据各边之间的关系,列出二元一次方程组,解之得出x、y的值,即可解决问题.【解答】解:设小长方形的长为x,宽为y,由题意得:,解得:,∴2xy=2×4×1=8,即此图形的面积为8,故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.(2024•工业园区校级二模)《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,多你一倍之上;乙说得甲九只羊,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为()A.B.C.D.【分析】根据“我若得你9只羊,我的羊多你一倍.”和“我若得你9只羊,我们两家的羊数就一样多”为等量关系,列出方程组即可.【解答】解:由题意得:,故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,根据等量关系列出方程组是解题的关键.3.(2024•景德镇二模)我国古典数学文献《增删算法统宗•六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲说得乙六只羊,多乙一倍之上,乙说得甲六只,两家之数相当,二人闲坐恼心肠,画地算了半晌”其大意为:甲,乙两人一起放牧,两人心里暗中数羊.如果乙给甲6只羊,那么甲牧羊的数量为乙的2倍;如果甲给乙6只羊,那么两人的牧羊的数量相同.请问甲,乙各有多少只羊?设甲有羊x只,乙有羊y只,根据题意列方程组正确的为()A.B.C.D.【分析】根据“如果乙给甲6只羊,那么甲牧羊的数量为乙的2倍;如果甲给乙6只羊,那么两人的牧羊的数量相同”,列出二元一次方程组,即可求解.【解答】解:由“如果乙给甲6只羊,那么甲牧羊的数量为乙的2倍,”可列式:x+6=2(y﹣6),由“如果甲给乙6只羊,那么两人的牧羊的数量相同,”可列式:x﹣6=y+6,根据题意可列二元一次方程组:,故选:D.【点评】本题考查了二元一次方程组的实际应用,解题的关键是:正确理解题意,列出等量关系.4.(2024•凉州区二模)已知二元一次方程组的解是,则*表示的方程可能是()A.x﹣y=﹣3B.x+y=4C.2x﹣y=﹣3D.2x+3y=﹣4【分析】根据方程组的解使方程组中的每一个方程都成立,求出a的值,再将方程组的解分别代入各个选项中,进行判断即可.【解答】解:∵二元一次方程组的解是,∴﹣1+a=1,∴a=2,∴,∴x﹣y=﹣1﹣2=﹣3,x+y=1,2x﹣y=﹣4,2x+3y=4;故*表示的方程可能是x﹣y=﹣3;故选:A.【点评】本题考查二元一次方程组的解,理解方程组的解是本题的关键.5.(2024•增城区二模)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”意思是:用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?设绳子长x尺,长木长y尺,则所列方程组正确的是()A.B.C.D.【分析】根据“用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵用绳子去量长木,绳子还剩余4.5尺,∴x﹣y=4.5;∵将绳子对折再量长木,长木还剩余1尺,∴x+1=y.∴所列方程组为,即,故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.(2024•红花岗区一模)如图,用10个形状、大小完全相同的小长方形拼成一个大长方形,设每个小长方形的长和宽分别为x cm和y cm,则可列方程组为()A.B.C.D.【分析】根据图示可得:矩形的宽可以表示为(x+2y)厘米,宽又是25厘米,故x+2y=25,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图题意得.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.7.(2024•黑龙江三模)某校将举办主题为“激情三月,学习雷锋精神”的演讲比赛活动,学校计划用150元钱购买A,B,C三种奖品(三种都买),A种奖品每个10元,B种奖品每个20元,C种奖品每个30元,在C种奖品不超过两个且钱全部用完的情况下,购买方案有()A.6种B.7种C.8种D.9种【分析】有两个等量关系:购买A种奖品钱数+购买B种奖品钱数+购买C种奖品钱数=150;C种奖品个数为1或2个.设两个未知数,得出二元一次方程,根据实际含义确定解.【解答】解:设购买A种奖品m个,购买B种奖品n个,当C种奖品个数为1个时,根据题意得10m+20n+30=150,整理得:m+2n=12,∵m、n都是正整数,∴0<2n<12,∴n=1,2,3,4,5共5种;当C种奖品个数为2个时,根据题意得10m+20n+2×30=150,整理得:m+2n=9,∵m、n都是正整数,∴0<2n<9,∴n=1,2,3,4共4种;∴有5+4=9种购买方案,故选项D正确.故选:D.【点评】本题主要考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.要注意题中未知数的取值必须符合实际意义.8.(2024•黑龙江四模)五四青年节某校举办歌咏比赛,为鼓励本班同学们积极参加,刘老师花了48元钱买了甲、乙两种(两种都买)碳素笔作为奖品.已知甲种碳素笔每支6元,乙种碳素笔每支4元,则老师购买碳素笔的方案共有()A.4种B.3种C.2种D.1种【分析】设刘老师购买x本甲种碳素笔,y本乙种碳素笔,利用总价=单价×数量,可得出关于x,y 的二元一次方程,结合x,y均为正整数,即可得出张老师购买碳素笔的方案共有3种.【解答】解:设刘老师购买x本甲种碳素笔,y本乙种碳素笔,根据题意得:6x+4y=48,∴∵x,y是正整数,∴或或∴刘老师购买碳素笔的方案共有3种.故选:B.【点评】本题考查了二元一次方程的应用,能找到等量关系是解题的关键.9.(2024•中山市校级三模)我国古代数学著作《增删算法统宗》记载:绳索量竿问题,“一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”.其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺,如果将绳索对半折后再去量竿,就比竿短5尺.设竿长x尺,绳索长y尺,则符合题意的方程组是()A.B.C.D.【分析】设,竿子长为x尺,索长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.(2024•开江县二模)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x只,兔有y只,则所列方程组正确的是()A.B.C.D.【分析】根据鸡有两条腿,兔子有四条腿,共有35个头,94条腿,列出二元一次方程组即可.【解答】解:由题意得:,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二.填空题(共10小题)11.(2024•枣阳市模拟)《孙子算经》是中国古代重要的数学著作,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?答:(1)木长 6.5.尺;(2)绳长11尺.【分析】设木长x尺,绳子长为y尺,根据用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,列出二元一次方程组,解方程组即可.【解答】解;设木长x尺,绳子长为y尺,由题意得:,解得:,答:(1)木长为6.5尺,故答案为:6.5;(2)绳长为11尺,故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.(2024•五峰县模拟)古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”此题笼里的鸡有23只,兔有12只.【分析】设鸡有x只,兔有y只,根据今有鸡兔同笼,上有三十五头,下有九十四足.列出二元一次方程组,解方程组即可.【解答】解:设鸡有x只,兔有y只,由题意得:,解得:,即鸡有23只,兔有12只,故答案为:23,12.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.(2024•大同三模)某元宵生产商家受原料保质期影响,在购买元宵主要原料糯米粉和黄油时分三次购买,每次购买价格不变,购进原料价格和数量如表所示:第一次第二次糯米粉/千克1012黄油/千克23总金额/元310405若第三次购进糯米粉20千克,黄油5千克,则第三次购买的总金额为675元.【分析】设糯米粉每千克的单价为x元,黄油每千克的单价为y元,根据题意列得二元一次方程组,求得x和y的值,再代入20x+5y,计算即可求解.【解答】解:设糯米粉每千克的单价为x元,黄油每千克的单价为y元,依题意得,解得,∴20x+5y=400+275=675(元),故答案为:675.【点评】本题考查了二元一次方程组的应用,关键是根据题意找到等量关系式.14.(2024•十堰一模)我国古代数学名著《九章算术》中记载:“今有黄金九枚,白银十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”译文为:现有一袋黄金9枚,一袋白银11枚,这两袋的重量恰好相等.若两袋中交换1枚黄金和1枚白银,则原来装黄金的袋子比原来装白银的袋子轻13两,问黄金和白银1枚各重几两.答:(1)1枚黄金重两;(2)1枚白银重两.【分析】设1枚黄金重x两,1枚白银重y两,根据现有一袋黄金9枚,一袋白银11枚,这两袋的重量恰好相等.若两袋中交换1枚黄金和1枚白银,则原来装黄金的袋子比原来装白银的袋子轻13两,列出二元一次方程组,解方程组即可.【解答】解:设1枚黄金重x两,1枚白银重y两,由题意得:,解得:,故答案为:(1);(2).【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.(2024•茅箭区校级一模)《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五:人出八,不足三.问人数几何?”题意是:若干人共同出资买羊,每人出6元,则差45元;每人出8元,则差3元.则买羊的人有21个.【分析】设买羊的人有x个,羊价为y元,根据若干人共同出资买羊,每人出6元,则差45元;每人出8元,则差3元.列出二元一次方程组,解方程组即可.【解答】解:设买羊的人有x个,羊价为y元,由题意得:,解得:,即买羊的人有21个,。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

中考数学二元一次方程专题训练100题(含答案)

中考数学二元一次方程专题训练100题(含答案)
14.如图,面积为64的正方形 ,分成4个全等的长方形和一个面积为4的小正方形,则小长方形的长和宽分别是()
A.32,2B.16,1C.8,2D.5,3
15.我国明代数学读本《算法统宗》一书中有这样一道题:“一支杆子一条索,索比杆子长一托,对折索子来量杆,却比杆子短一托.”若1托为5尺,则杆子、索长分别为____尺( )
A. B.
C. D.
10.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果 个,买苦果 个,则下列关于 、 的二元一次方程组中符合题意的是()
A. B.
C. D.
24.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有( )
A. B. C. D.
25.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知是多少,若甲得到乙的钱线数的 ,则甲的钱数为50,若乙得到甲的钱数的 ,则乙的钱数也能为50.问甲、乙各有多少钱?设甲有钱为x,乙有钱为y,可列方程组为( )
2:1
2:0
1:2
2:0
x
13
B
1:2
m
0:2
1:2
0
y
C
0:2
n
1:2
2:1
2
p
D
2:1
2:0
2:1
1:2

2024年中考数学复习专题:二元一次方程组(含答案)

2024年中考数学复习专题:二元一次方程组(含答案)

2024年中考数学复习专题:二元一次方程组一、单选题1.已知2524a b a b +=⎧⎨+=⎩是关于a 、b 的二元一次方程组,求a b +是( ) A .15 B .3 C .9 D .12 2.某网友的QQ 号码是M ,M 被10000除所得的商与余数之和为18889,M 被100000除所得的商与余数之和为58741,则M 的千位数字是( )A .4B .5C .6D .7 3.下列四组数是二元一次方程26x y -=的解的是( )A .14x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .32x y =⎧⎨=⎩4.小明计划用21元钱购买A 、B 两种笔记本,A 种每个3元,B 种每个2元,在钱全部用完的情况下,有多少种购买方案( )A .5种B .4种C .3种D .2种 5.若458kx y x -=+是关于x 、y 的二元一次方程,则k 的取值范围是( ) A .0k ≠ B .5k ≠ C .3k ≠ D .1k ≠-6.与方程组480240x y x y +-=⎧⎨+=⎩有相同解的方程是( ) A .480x y +-=B .240x y +=C .(48)(24)0x y x y +-+=D .2(48)|24|0x y x y +-++= 7.已知关于x 与y 的方程组321431x y m x y m +=+⎧⎨+=-⎩的解满足0x y ->,则m 应满足( ) A .6m >- B .6m <C .1m >D .11m -<< 8.某品牌汽车经销商在7月份售出手动型和自动型汽车共900台,8月份售出这两种型号的汽车共1145台,其中手动型和自动型汽车8月份的销售量分别比7月份增长30%和25%,问7月份销售的手动型和自动型汽车分别为多少台?若设7月份销售的手动型和自动型汽车分别x 台,y 台,则可列方程组为( )A .()()900130%125%1145x y x y +=⎧⎨-+-=⎩B .()()900130%125%1145x y x y +=⎧⎨+++=⎩C .()()1145130%125%900x y x y +=⎧⎨+++=⎩D .()()1145130%125%900x y x y +=⎧⎨-+-=⎩二、填空题9.若()143a a x y -+=是关于x y ,的二元一次方程,则=a .10.已知不等式组213x a x b +>⎧⎨-<⎩的解集为11x -<<,则()()11a b ++的值是 . 11.我国明代数学读本《算法统宗》中有一道题, 其题意为:客人一起分银子,若每人7两, 还剩4两;若每人9两,还差8两;则①人数为 人;②银子共有 两. 12.某学校计划为“建党百年,铭记党史”演讲比赛购买奖品,已知购买2个A 种奖品和4个B 种奖品共需100元:购买5个A 种奖品和2个B 种奖品共需130元,求A 、B 两种奖品的单价.设A 种奖品的单价为x 元,B 种奖品的单价为y 元,那么可列方程组为 .13.已知关于x ,y 的方程组212ax y x by +=⎧⎨-=⎩,小明看错a 得到的解为12x y =⎧⎨=-⎩,小亮看错了b 得到的解为11x y =⎧⎨=⎩,则原方程组正确的解为 .三、解答题14.解方程组(1)用代入法解:32143x y x y +=⎧⎨=+⎩ (2)用加减法解:43525x y x y +=⎧⎨-=-⎩15.已知方程组33121x y m x y m +=+⎧⎨+=-⎩的解满足x y >,求m 的取值范围.16.若方程组37x yax y b-=⎧⎨+=⎩和方程组28x by ax y+=⎧⎨+=⎩有相同的解.(1)求方程组正确的解.(2)求a,b的值.17.已知用2辆A型车和1辆B型车载满货物一次可运货10t;用1辆A型车和2辆B型车载满货物一次可运货11t.某物流公司现有31t货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.18.如图,现要在长方形草坪中规划出3块大小、形状一样的小长方形(图中阴影部分)区域种植鲜花.(1)如图①,大长方形的相邻两边长分别为60m和45m,求小长方形的相邻两边长;(2)如图①,设大长方形的相邻两边长分别为a和b,小长方形的相邻两边长分别为x和y,1个小长方形的周长与大长方形的周长的比值是否为定值?若是,请求出这个值;若不是,请说明理由.参考答案:1.B2.D3.B4.C5.B6.D7.A8.B9.1-10.4-11. 6 4612.2410052130x y x y +=⎧⎨+=⎩13.32x y =⎧⎨=⎩ 14.(1)41x y =⎧⎨=⎩; (2)13x y =-⎧⎨=⎩.15.3m >16.(1)32x y =⎧⎨=⎩ (2)a 的值是75-,b 的值是11517.(1)1辆A 型车载满货物一次可运3t,1辆B 型车载满货物一次可运4t (2)解:由(1),得3431a b +=,3143b a -∴=.,a b 都是正整数,91a b =⎧∴⎨=⎩,,或5,4,a b =⎧⎨=⎩或17a b =⎧⎨=⎩,. ∴有3种租车方案:方案一:A 型车9辆,B 型车1辆;方案二:A 型车5辆,B 型车4辆;方案三:A 型车1辆,B 型车7辆.(3)租A 型车1辆,B 型车7辆,最少租车费为940元18.(1)设小长方形的宽为m m ,长为m n . 根据题意,得260245m n m n +=⎧⎨+=⎩解得1025m n =⎧⎨=⎩答:小长方形的相邻两边长分别是10m ,25m .(2)是定值13,理由如下: 根据题意可知1个小长方形的周长()2C x y =+小. 根据题意可知2a x y =+,2b x y =+,大长方形的周长()()()22226C a b x y x y x y =+=+++=+大. 可得()()2163x y C C x y +==+小大. 所以,1个小长方形的周长与大长方形的周长的比值是定值,为13.。

中考真题二元一次方程组计算题专项练习题有答案样本

中考真题二元一次方程组计算题专项练习题有答案样本

中考真题之《二元一次方程组计算题》-----专项练习50题(•德州)已知, 则a+b等于()..... .......C. .....D..12.(菏泽)已知是二元一次方程组解, 则算术平方根为()A. ±2B.C. 2D. 43. (临沂)关于x、y方程组解是则值是()A. 5B. 3C. 2D. 14.(•杭州)已知关于x, y方程组, 其中﹣3≤a≤1, 给出下列结论:①是方程组解;②当a=﹣2时, x, y值互为相反数;③当a=1时, 方程组解也是方程x+y=4﹣a解;④若x≤1, 则1≤y≤4.其中对的是()A. ①②B. ②③C. ②③④D. ①③④5.(广东湛江.请写出一种二元一次方程..... , 使它解是.6. (广东)若x, y为实数, 且满足|x﹣3|+ =0, 则()值是 1 .7.(安顺)以方程组解为坐标点(x, y)在第象限.8. (•连云港)方程组解为.9.(•广州)解方程组.10. (广东)解方程组: .11.(•黔东南州)解方程组.12.(湖南常德)解方程组:13.(湖南益阳, 2, 4分)二元一次方程有无数各种解, 下列四组值中不是该方程解是A. B. C. D.14.(四川凉山州,3,4分)下列方程组中是二元一次方程组是.. )A. B. C. D.15.(广东肇庆, 4, 3分)方程组解是A. B. C. D.16.(山东东营,4,3分)方程组解是A. B. C. D.17.(山东枣庄,6,3分)已知是二元一次方程组解,则值为.. )A. -1B. 1C. 2D. 318.(安徽芜湖, 13, 5分)方程组解.......19.(江西, 12, 3分)方程组解......20.(福建泉州, 12, 4分)已知x、y满足方程组则x-y值为 . .21.(山东潍坊, 15, 3分)方程组解是___________________.22.(江西南昌, 12, 3分)方程组 解......23.(安徽芜湖,13,5分)方程组 解.......24.(湖北鄂州, 7, 3分)若关于x, y 二元一次方程组 解满足 , 则a 取值范畴为______.25.(湖南怀化, 18, 6分)解方程组:26.(上海,20,10分)解方程组:27. (湖北黄石, 20, 8分)解方程: 。

中考数学《二元一次方程组》专项练习题及答案

中考数学《二元一次方程组》专项练习题及答案

中考数学《二元一次方程组》专项练习题及答案一、单选题1.某公司上半年生产甲、乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架设甲种型号无人机有x 架,乙种型号无人机有y 架,根据题意可列出的方程组是( )A .{x =13(x +y)+11y =12(x +y)+2B .{x =13(x +y)+11y =12(x +y)−2C .{x =13(x +y)−11y =12(x +y)+2D .{x =12(x +y)+11y =13(x +y)−22.对于非零的两个实数a ,b ,规定a⊕b=am ﹣bn ,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为( ) A .﹣13B .13C .2D .﹣23.若二元一次方程组 {x −y =a,x +y =3a 的解是二元一次方程 3x −5y −7=0 的一个解,则 a 为( ) A .3B .5C .7D .94.关于x 、y 的方程组 {2x +3y =k3x +5y =k +2 的解x 、y 的和为12,则k 的值为( )A .14B .10C .0D .﹣145.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则正确方程组是( ) A .{x =y +512x =y −5B .{x =y +512x =y +5C .{x =y +52x =y −5D .{x =y −52x =y +56.有两种文具,每种价格分别是2元、3元,现在有19元钱,两种文具都要买,恰好使钱用完的买法数有( ) A .3种B .4种C .5种D .6种7.下列四个方程组中,属于二元一次方程组的是( ) ①{1x +y =116x −6y =−9②{xy =9x +2y =16③{2x +y =1x +z =9④{x =2y =3.A .①B .②C .③D .④8.下列方程组中,是二元一次方程组的是( )A .{2x −y =73y =2x −3B .{x +y =1xy =12C .{y 3−x 2−12x 2+3y −15D .{1x −2y =1x +y =109.我国明代数学读本《算法统宗》一书中有这样一道题:“一支竿一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托。

中考数学专题练习 二元一次方程组(含解析)

中考数学专题练习 二元一次方程组(含解析)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案学校:___________班级:___________姓名:___________考号:___________温故而知新:二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

练习题一、选择题:(本题共8小题,每小题5分,共40分.) 1.方程组02x y x y -=⎧⎨+=⎩的解为( )A .11x y =⎧⎨=-⎩B .11x y =-⎧⎨=⎩C .20x y =⎧⎨=⎩D .11x y =⎧⎨=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x 元,购买1个编程机器人需y 元,则可列方程组为( )A .23473480x y x y =⎧⎨+=⎩B .3=24+7=3480x yx y ⎧⎨⎩C .2=37+4=3480x yx y ⎧⎨⎩D .3=27+4=3480x yx y ⎧⎨⎩3.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( ) A .2a =和5b = B .3a =和2b =C .3a =-和2b =D .2a =和=5b -4.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚( ) A .22 B .16 C .14 D .12 5.已知 12x y =-⎧⎨=⎩是关于 x y 、 的二元一次方程 3mx y -= 的一个解,则 m 的值是( ) A .-1B .1C .-5D .56.若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( )A .-1B .1C .0D .无法确定7.已知关于x ,y 的方程组 111222a x b y c a x b y c +=⎧⎨+=⎩ 的解为 24x y =⎧⎨=⎩,则关于方程组()()()()11122212131213a x b y c a x b y c ++-=⎧⎪⎨++-=⎪⎩ 的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩,有下列说法:①当a =2时,方程的两根互为相反数;②不存在自然数a ,使得x ,y 均为正整数;③x ,y 满足关系式x -5y =6;④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④ B .①③④ C .②③ D .①②④ 二、填空题:(本题共5小题,每小题3分,共15分.)9.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,根据题意可列方程组为 . 10.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支.11.以方程组 12y x y x =+⎧⎨=-+⎩的解为坐标的点(x,y)在第 象限.12.已知 21x y =⎧⎨=⎩ 是二元一次方程组 71ax by ax by +=⎧⎨-=⎩ 的解,则 a b - = 。

中考数学专项复习《二元一次方程组》练习题(附答案)

中考数学专项复习《二元一次方程组》练习题(附答案)

中考数学专项复习《二元一次方程组》练习题(附答案)一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得 1分.七年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( ) A .{y =−x +2y =x −1B .{y =−x +2y =x −1C .{x +y =16x +2y =26D .{x +y =162x +y =262.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问甲乙债券各有多少?( ) A .150,350 B .250,200 C .350,150 D .150,2503.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g 砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡( )A .在糖果的秤盘上加2g 砝码B .在饼干的秤盘上加2g 砝码C .在糖果的秤盘上加5g 砝码D .在饼干的秤盘上加5g 砝码4.小明在解关于x 、y 的二元一次方程组{x +y =△2x −3y =5时解得{x =4y =⊗,则△和△代表的数分别是( ) A .△=1,△=5 B .△=5,△=1 C .△=﹣1,△=3D .△=3,△=﹣15.已知 △ABC 三边为 abc ,满足 (a −17)2+√b −15+c 2−16c +64=0 ,则△ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形以C .以c 为斜边的直角三角形D .不是直角三角形6.已知关于x ,y 的二元一次方程组{ax −by =−2cx +dy =4的解为{x =3y =2,则方程组{ax −by +2a +b =−2cx +dy −d =4−2c的解为( )A .{x =1y =2B .{x =1y =3C .{x =2y =2D .{x =2y =37.方程组 {3x +y =3,−4x −y =3 的解是( )A .{x =0,y =3B .{x =0,y =−3 C .{x =6,y =−15D .{x =−6,y =218.已知关于x ,y 的方程组{x +2y =5−2ax −y =4a −1给出下列结论:①当a =1时方程组的解也是x +y =2a +1的解; ②无论a 取何值x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对; ④若2x +y =8,则a =2. 正确的有几个( ) A .1B .2C .3D .49.对于实数,规定新运算:x△y=ax+by ﹣xy ,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知: √2 △1=﹣ √2 ,(﹣3)△ √2 =8 √2 ,则a△b 的值为( ) A .6﹣2 √2B .6+2 √2C .4+ √2D .4﹣3√210.△ABC 中|sinA −√32|+(cosB −12)2=0,则△ABC 是( )A .等腰但不等边三角形B .等边三角形C .直角三角形D .等腰直角三角形11.已知方程组 {ax −by =4ax +by =2 的解为 {x =2y =1 则 2a −5b 的立方根是( )A .-2B .2C .√53D .−√2312.若满足方程组 {3x +y =m +32x −y =2m −1 的x 与y 互为相反数,则m 的值为( )A .1B .-1C .11D .-11二、填空题13.已知方程组{ax +by =4bx +ay =5的解是{x =2y =1,则a −b 的值为 .14.若|2x-3y-7|+ √x −2y −3 =0,则x-y=15.若3x 2m ﹣3﹣y 2n ﹣1=5是二元一次方程,则m= ,n= . 16.已如等腰 ΔABC 的两边长 a , b 满足 |a −4|+√b −2=0 ,则第三边长 c的值为17.若实数m 、n 满足 (m −3)2+√n +2=0 ,则m n = .18.关于x ,y 的二元一次方程组 {x +y =1−mx −3y =5+3m 中 m 与 方程组的解中的或相等,则m 的值为 .三、综合题19.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x 个,乙每天做y 个. (1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当x =32时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?20.已知关于x 、y 的方程组 {2x +y =m +12x −y =3m −9 的解都不小于1(1)求m 的取值范围; (2)化简|2m ﹣6|﹣|m ﹣4|.21.解下列方程组:(1){2x +3y =7x =−2y +3 (2){2s +3t =−14s −9t =822.如图,在数轴上点A 表示的数是a ,点C 表示的数是c ,且 |a +10|+(c −20)2=0 .(点A 与点C 之间的距离记作AC )(1)求a 和c 的值(2)若数轴上有一点D ,满足CD =2AD ,则点D 表示的数是 ; (3)动点B 从数1对应的点以每秒1个单位长度的速度开始向右匀速运动,同时点A ,C 分别以每秒2个单位长度、每秒3个单位长度的速度在数轴上匀速运动.设运动时间为t 秒.若点A 向右运动,点C 向左运动,当AB =BC 时求t 的值;23.在平面直角坐标系中已知点A(0,m),点B(n ,0),且m ,n 满足(m −n)2+√n −4=0.(1)求点A ,B 的坐标;(2)若点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB ,求点E 的坐标;(3)把线段AB 向左平移a(a >0)个单位长度得到线段A 1B 1. ①直接写出点B 1的坐标: ▲ (用含a 的式子表示) ②若S 四边形ABB 1A 1=3S 三角形AOB ,求a 的值.24.已知代数式 A =x 2−xy B =2x 2+3xy +2y −1 .(1)(x +1)2+|y −2|=0 求 2A −B 的值. (2)若 2A −B 的值与 y 的取值无关,求 x 的值.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】C 13.【答案】-1 14.【答案】4 15.【答案】2;1 16.【答案】4 17.【答案】1918.【答案】2或 −1219.【答案】(1)解:由题意可得(3+6)x +6y =558(2)解:由(1)可得y =−32x +93,当x =32时y =−32×32+93=45.(3)解:当y =48时(3+6)x +6×48=558,x =30.答:若乙每天做48个,则甲每天做30个.20.【答案】(1)解:解:(1)解原方程组可得: {x =m −2y =−m +5 因为方程组的解为一对正数所以有 {m −2≥1−m +5≥1 解得:3≤m≤4即a 的取值范围为:3≤m≤4;(2)解:由(1)可知:2m ﹣6>0,m ﹣4<0 所以|2m ﹣6|﹣|m ﹣4|. =(2m ﹣6)﹣(m ﹣4) =m ﹣2.21.【答案】(1){2x +3y =7(1)x =−2y +3(2)将(2)代入(1)中得2(-2y+3)+3y=7,去括号得-4y+6+3y=7,解得y=-1,将y=-1代入(2)得x=-2×(-1)+3=5 则方程组的解为{x =5y =−1. (2){2s +3t =−1(1)4s −9t =8(2)由3×(1)+(2)得6s+4s=-3+8,解得s=12将s=12,代入(1)中得1+3t=-1,解得y=-23则方程组的解为{s =12t =−23. 22.【答案】(1)解:由非负性得出a+10=0;c-20=0∴a=-10;c=20; (2)-40或0(3)解:当时间为t 时 点A 表示的数为-10+2t 点B 表示的数为1+t 点C 表示的数为20-3tAB= |1+t −(−10+2t)| = |11−t| BC= |1+t −(20−3t)| = |4t −19| ∴|11−t| = |4t −19| 解得:t= 83或t=6.23.【答案】(1)解:∵(m −n)2+√n −4=0∴{m −n =0n −4=0 解得{m =4n =4∴A(0,4),B(4,0);(2)解:∵点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB∴12OE ×OA =13×12OB ×OA 12|x|×4=13×12×4×4 ∵点E(x ,4)为第二象限内 ∴x<0∴x=−43∴E(−43,4)(3)①(4−a ,0);②∵S 四边形ABB 1A 1=3S 三角形AOB∴BB 1×OA =3×12×OA ×OB4a =3×12×4×4 解得a=624.【答案】(1)∵A =x 2−xy , B =2x 2+3xy +2y −1∴2A −B=2(x 2−xy)−(2x 2+3xy +2y −1) =2x 2−2xy −2x 2−3xy −2y +1=−5xy −2y +1∵(x +1)2+|y −2|=0 ∴x +1=0 ∴x =−1∴原式 =−5×(−1)×2−2×2+1=10−4+1=7(2)若 2A −B 的值与 y 的取值无关 即 −5xy −2y +1 的值与 y 的取值无关 ∴−5xy −2y =(−5x −2)y =0 ∴−5x −2=0∴x =−25。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支.【答案】1或2或3【解析】∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只,当买中性笔2只,则可以买橡皮3只,当买中性笔3只,则可以买橡皮1只,【考点】二元一次方程的应用2.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm【答案】C.【解析】设碗的个数为x个,碗的高度为ycm,由题意可知碗的高度和碗的个数的关系式为y=kx+b,由题意得,,解得:,则11只饭碗摞起来的高度为: ×11+5=(cm).更接近23cm.故选C.【考点】二元一次方程组的应用.3.方程组的解是()A.B.C.D.【答案】D.【解析】解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.【考点】解二元一次方程组4.解方程组:.【答案】【解析】由加减消元法即可求出方程组的解试题解析:,①+②得:3x=9,即x=3,将x=3代入②得:y=﹣1,则方程组的解为【考点】二元一次方程组的解法5.解方程组:【答案】或.【解析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.由①得,即或,∴原方程组可化为或.解得;解得.∴原方程组的解为或.【考点】解二元二次方程组.6.(1)计算:(2)A、B两人共解方程组,由于A看错了方程(1)中的a,得到的解是,而B 看错了方程(2)中的b, 得到的解是,试求的值.【答案】(1)9;(2)2.【解析】(1)根据负整数指数幂、零次幂、特殊角的三角函数值及二次根式的意义进行计算即可求出答案.(2)把A解得的方程组的解代入方程组第2个方程,求出b的值,再把B求得的方程组的解代入方程组第一个方程求出a的值,然后把a、b的值代入所给的代数式中,利用乘方的意义进行计算即可.试题解析:(1)原式=9+2+1-3=9.(2)由题意有-12-b=-2,5a+20=15解得a=-1 , b=-10则有=1+1=2.考点: 1.实数的混合运算;2.二元一次方程组的解.7.已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.3【答案】A【解析】∵是二元一次方程组的解,∴解得∴a-b=-1.8.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是9.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A地植树小时后立即转到B地。

中考数学真题二元一次方程组(含答案)

中考数学真题二元一次方程组(含答案)

中考真题解析考点汇编解二元一次方程组以及简单的三元一次方程组一、选择题1. 若 a :b :c =2:3:7,且 a -b +3=c -2b ,则 c 值为何?()A .7B .63C .21 D . 2124考点:解三元一次方程组。

专题:计算题。

分析:先设 a =2x ,b =3x ,c =7x ,再由 a -b +3=c -2b 得出 x 的值,最后代入 c =7x 即可. 解答:解:设 a =2x ,b =3x ,c =7x , ∵a -b +3=c -2b ,∴2x -3x +3=7x -6x , 3解得 x = , 2∴c =7× 3 =21 ,22故选C .点评:本题考查了解三元一次方程组,解题的关键是由题意中的比例式设 a =2x ,b =3x ,c=7x ,再求解就容易了.2. 若二元一次联立方程式的解为 x=a ,y=b ,则a+b 之值为何?( )A 、1B 、3C 、4D 、6考点:解二元一次方程组。

分析:将其中一个方程两边乘以一个数,使其与另一方程中 x 的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数. 解答:解:,⎩ ⎩ ⎩ ⎩ ⎩ ⎩ 专题:计算题.分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y ,得到一个关于 x 的一元一次方程,解出 x 的值,再把 x 的值代入方程组中的任意一个式子,都可以求出 y 的值解答:解: ,①﹣2×②得,5y=﹣10,y=﹣2,代入②中得,x+4=7,解得, x=3∴a+b=3+(﹣2)=1, 故选(A )点评:本题主要考查解二元一次方程组:用加减法解二元一次方程组,用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数,把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⎧x + y = 3 3. 方程组⎨x - y = -1的解是()⎧x = 1A 、⎨y = 2⎧x = 1B 、⎨y = -2⎧x = 2C 、⎨y = 1⎧x = 0 D 、⎨y = -1考点:解二元一次方程组. ①+②得:2x=2,x=1,把 x=1 代入①得:1+y=3, y=2,⎧x = 1∴方程组的解为: ⎨ y = 2故选:A ,⎩⎩⎨点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.⎧x + m = 64. 由方程组⎨ y - 3 = m 可得出 x 与y 的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9考点:解二元一次方程组。

中考数学总复习《二元一次方程组》专项测试题-附参考答案

中考数学总复习《二元一次方程组》专项测试题-附参考答案

中考数学总复习《二元一次方程组》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列各对数值,是方程2x﹣3y=6的解是()A.{x=0y=4B.{x=1y=−2C.{x=2y=−1D.{x=3y=0 2.在等式y=kx+b中,当x=1时y=2,当x=−1时y=4,则b的值是()A.1B.-1C.3D.-3 3.已知2x+3y=6,用x的代数式表示y得( )A.y=2- 23x B.y=2-2xC.x=3-3y D.x=3- 3 2y4.解三元一次方程组{a+b−c=1①a+2b−c=3②2a−3b+2c=5③具体过程如下:(1 )②-①,得b=2;(2)①×2+③,得4a-2b=7;(3)所以{b=24a−2b=7;(4)把b=2代入4a-2b=7,得4a-2×2=7(以下求解过程略)其中开始出现错误的一步是()A.(1)B.(2)C.(3)D.(4)5.解方程组{2x−3y=2, ⋯⋯①2x+y=10. ⋯⋯②时,由②−①得( )A.2y=8B.4y=8C.−2y=8D.−4y=86.方程2x+y=8的正整数解的个数是( )A.4个B.3个C.2个D.1个7.若∣a+2b−5∣+(2a+b−1)2=0,则(a−b)2等于( )A.±1B.1C.±4D.168.为了绿化校园,甲、乙两班共植树苗 30 棵.已知甲班植树数量是乙班的 1.5 倍,设甲班植树 x 棵,乙班植树 y 棵.根据题意,所列方程组正确的是 ( ) A . {x +y =30,x =2.5yB . {x +y =30,x =1.5yC . {x =y +30,3y =2xD . {x =y +30,x =y +1.5二、填空题(共5题,共15分)9.若 −2x m−n y 2 与 3x 4y 2m+n 是同类项,则 m −3n 的立方根是 .10.已知 m 为整数且方程组 {mx +2y =2m +10,3x −2y =0 有正整数解,则 m = .11.二元一次方程 2x +y =7 的正整数解有 个.12.以方程组 {y =x +2,y =−x +1 的解为坐标的点 (x,y ) 在第 象限.13.某学校要购买电脑,A 型电脑每台 5000 元,B 型电脑每台 3000 元.购买 10 台这两种型号的电脑共花费 34000 元.设购买A 型电脑 x 台,购买B 型电脑 y 台.则根据题意可列方程组为 .三、解答题(共3题,共45分)14.平面直角坐标系中A (a,0),B (0,b ),a ,b 满足 (2a +b +5)2+√a +2b −2=0,将线段 AB 平移得到 CD ,A ,B 的对应点分别为 C ,D ,其中点 C 在 y 轴负半轴上.(1) 求 A ,B 两点的坐标;(2) 如图 1,连 AD 交 BC 于点 E ,若点 E 在 y 轴正半轴上,求BE−OE OC的值;(3) 如图 2,点 F ,G 分别在 CD ,BD 的延长线上,连接 FG ,∠BAC 的角平分线与 ∠DFG 的角平分线交于点 H ,求 ∠G 与 ∠H 之间的数量关系.15.已知方程组 {3x −2y =4,mx +ny =7 与 {2mx −3ny =19,5y −x =3 有相同的解,求 m ,n 的值.16.一艘轮船在相距 90 千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用 6 小时,逆流航行比顺流航行多用 4 小时. (1) 求该轮船在静水中的速度和水流速度;(2) 若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?参考答案1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】B 5. 【答案】B 6. 【答案】B 7. 【答案】D 8. 【答案】B 9. 【答案】 210. 【答案】 −2 或 −1 11. 【答案】 1 12. 【答案】二 13. 【答案】 0 14. 【答案】(1) ∵(2a +b +5)2≥0 √a +2b −2≥0 且 (2a +b +5)2+√a +2b −2=0 ∴{2a +b +5=0a +2b −2=0解得:{a =−4b =3∴A (−4,0) B (0,3). (2) 设 C (0,c ) E (0,y )∵ 将线段 AB 平移得到 CD ,A (−4,0),B (0,3) ∴ 由平移的性质得 D (4,3+c ) 过 D 作 DP ⊥x 轴于 P∴AO =4=OP ,DP =3+c ,OE =y ,OC =−c ∴S △ADP =S △AOE +S 梯形OEDP ∴AP×DP 2=OA×OE 2+(OE+DP )×OP2∴8×(3+c )2=4y 2+(y+3+c )×42解得 y =3+c 2.∴BE −OE =(BO −OE )−OE =BO −2OE =3−2×3+c 2=−c =OC∴BE−OE OC=1.(3) ∠G 与 ∠H 之间的数量关系为:∠G =2∠H −180∘.如图,设 AH 与 CD 交于点 Q ,过 H ,G 分别作 DF 的平行线 MN ,KJ ∵HD 平分 ∠BAC ,HF 平分 ∠DFG∴ 设 ∠BAH =∠CAH =α,∠DFH =∠GFH =β ∵AB 平移得到 CD ∴AB ∥CD ,BD ∥AC∴∠BAH =∠AQC =∠FQH =α,∠BAC +∠ACD =180∘=∠BDC +∠ACD ∴∠BAC =∠BDC =∠FDG =2α ∵MN ∥FQ∴∠MHQ =∠FQH =α,∠NHF =∠DFH =β ∴∠QHF =180∘−∠MHQ −∠NHF =180∘−(α+β) ∵KJ ∥DF∴∠DGK =∠FDG =2α,∠DFG =∠FGJ =2β ∴∠DGF =180∘−∠DGK −∠FGJ =180∘−2(α+β) ∴∠DGF =2∠QHF −180∘.15. 【答案】 ∵ 方程组 {3x −2y =4,mx +ny =7 与 {2mx −3ny =19,5y −x =3 有相同的解∴{3x −2y =4,5y −x =3 与原两方程组同解.由 5y −x =3 可得:x =5y −3将 x =5y −3 代入 3x −2y =4,则 y =1. 再将 y =1 代入 x =5y −3,则 x =2. 将 {x =2,y =1 代入 {mx +ny =7,2mx −3ny =19 得:{2m +n =7, ⋯⋯①4m −3n =19. ⋯⋯② 将 ①×2−② 得:n =−1 将 n =−1 代入①得:m =4.16. 【答案】(1) 设该轮船在静水中的速度是 x 千米/小时,水流速度是 y 千米/小时依题意,得:{6(x +y )=90,(6+4)(x −y )=90,解得:{x =12,y =3.答:该轮船在静水中的速度是 12 千米/小时,水流速度是 3 千米/小时.(2) 设甲、丙两地相距 a 千米,则乙、丙两地相距 (90−a ) 千米 依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.。

中考数学总复习《二元一次方程组》专项提升练习题(附答案)

中考数学总复习《二元一次方程组》专项提升练习题(附答案)

中考数学总复习《二元一次方程组》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,是二元一次方程的是( )A.3x +2y =4B.12xy =5C.12x 2﹣14y =3 D.8x ﹣2x =12.已知方程3x+2y=4,用含x 的式子表示y ,则 ( ) A.y=- 32x+2 B.2y=3x -4 C.y=32x -2 D.y=32x -43.若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( )A.-5B.-1C.2D.74.已知方程组()⎩⎨⎧=-=--13221m yx x m 是二元一次方程组,则m =( ) A.1或﹣1 B.2或﹣2 C.﹣2 D.2 5.二元一次方程组⎩⎨⎧3x +2y =7,6x -2y =11的解是( )A.⎩⎨⎧x =-1,y =5B.⎩⎨⎧x =1,y =2C.⎩⎨⎧x =3,y =-1D.⎩⎨⎧x =2,y =126.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( ) A.2 B.0 C.-1 D.17.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后超过部分每千米收费y 元,则下列方程组正确的是( ) A.⎩⎨⎧x +7y =16,x +13y =28B.⎩⎨⎧ x +(7-2)y =16,x +13y =28C.⎩⎨⎧x +7y =16,x +(13-2)y =28D.⎩⎨⎧x +(7-2)y =16,x +(13-2)y =288.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A.B.C.D.9.四个形状、大小相同的长方形,如图,拼成一个大的长方形,如果大长方形的周长为280厘米,那么,每块小长方形的面积是( )A.900平方厘米B.1200平方厘米C.1600平方厘米D.1800平方厘米 10.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数; ③当a=1时,方程组的解也是方程x +y=4﹣a 的解; ④x ,y 的都为自然数的解有4对. 其中正确的个数为( )A.1个B.2个C.3个D.4个 二、填空题11.若关于x 、y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3y =2,则a =______.12.写出2x ﹣3y =0的一组整数解 .13.已知(x -3)2+│2x -3y+6│=0,则x=________,y=_________. 14.小亮解方程组的解为,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★=15.已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18.设原数的个位数字为x,十位数字为y,可列方程组为.16.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.三、解答题17.解方程组:18.解方程组:19.在解方程组时,由于粗心,甲看错了方程组中的a,而得到方程组的解为,乙看错了方程组中的b,而得到方程组的解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.20.已知关于x、y的方程组的解满足x+y=-10,求式子m2-2m+1的值.21.打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?22.某学校现有甲种材料35㎏,乙种材料29㎏,制作A、B两种型号的工艺品,用料情况如下表:需甲种材料需乙种材料1件A型工艺品0.9㎏0.3㎏1件B型工艺品0.4㎏1㎏(1)利用这些材料能制作A、B两种工艺品各多少件?(2)若每公斤甲、乙种材料分别为8元和10元,问制作A、B两种型号的工艺品各需材料多少钱?23.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置完成的.如图①,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图①所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧x +4y =10,6x +11y =34.请你根据图②所示的算筹图,列出方程组,并求解.参考答案1.A.2.A3.D.4.C.5.D6.D7.D8.A9.B. 10.C. 11.答案为:4 12.答案不唯一,如.13.答案为:x=3,y=4. 14.答案为:-2 15.答案为: 16.答案为:.17.解:x=-6.2,y=-4.4; 18.解:x =1;y =0.19.解:(1)甲把a 看成了4,乙把b 看成了23; (2)x=3,y=4.20.解:关于x 、y 的方程组得(2m -6)+(-m+4)=-10.解得m=-8. ∴m 2-2m+1=(-8)2-2×(-8)+1=81.21.解:(1)设打折前A 商品每件x 元、B 商品每件y 元,根据题意,得 由题意得解之得答:打折前A 商品每件30元、B 商品每件20元. (2)打折前,买100件A 商品和100件B 商品共用: 100×30+100×20=5000 (元) 比不打折少花:5000﹣3800=1200 (元)答:打折后,买100件A 商品和100件B 商品比不打折少花1200元. 22.解:(1)设利用这些材料能制作A 工艺品x 件,B 工艺品y 件 由题意得,,解得:答:利用这些材料能制作A 工艺品30件,B 工艺品20件;(2)制作一件A 型工艺品需要的钱数为:0.9×8+0.3×10=10.2(元) 则制作A 型号的工艺品需材料的钱数为:10.2×30=306(元) 制作一件B 型工艺品需要的钱数为:0.4×8+1×10=13.2(元) 则制作A 型号的工艺品需材料的钱数为:13.2×20=264(元) 答:制作A 、B 两种型号的工艺品各需材料306元,264元. 23.解: 依题意,得⎩⎨⎧2x +y =7, ①x +3y =11. ②由①,得y =7-2x.③把③代入②,得x +3(7-2x)=11.解方程,得x =2. 把x =2代入①,得y =3. ∴方程组的解是⎩⎨⎧x =2y =3.。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.解方程组。

【答案】【解析】先用加减消元法,再用代入消元法即可求出方程组的解。

试题解析:,①+②得,4x=14,解得x=,把x=代入①得,+2y=9,解得y=。

故原方程组的解为:【考点】解二元一次方程组。

2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)S=100.【解析】(1)理解题意,观察图形,即可求得结论;(2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b即可求得S.试题解析:(1)根据图形可得:S=3,N=1,L=6;(2)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a,∴S=N+L﹣1,将N=82,L=38代入可得S=82+×38﹣1=100.【考点】1.图形的变化规律2.三元一次方程组的应用.4.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?【答案】(1)0.5万元、1.5万元;(2)15.【解析】(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.试题解析:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30-z)≤30,解得:z≥15,答:至少购买A种设备15台.【考点】1.一元一次不等式的应用;2.二元一次方程组的应用.5.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?【答案】这个队胜9场,负7场.【解析】设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,联立方程组求解即可.试题解析:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.【考点】二元一次方程的应用.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为A.B.C.D.【答案】C.【解析】设∠1=x°,∠2=y°,由题意得:.故选C.【考点】由实际问题抽象出二元一次方程组.7.方程组的解是.【答案】【解析】由两式相加得2x="2" ∴ x="1" ;将x=1代入x+y=3得y=2 ∴【考点】二元一次方程组的解法.8.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【答案】B【解析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.设其中有x张成人票,y张儿童票,根据题意得.【考点】由实际问题抽象出二元一次方程组.9.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【解析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选D10.以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】①+②得,2y=1,解得,y=.把y=代入①得,=-x+2,解得x=.∵>0,>0,根据各象限内点的坐标特点可知,点(x,y)在平面直角坐标系中的第一象限.故选A.考点: 1.解二元一次方程组;2.点的坐标.11.若是方程2x+y=0的一个解,则6a+3b+2=________.【答案】2【解析】把代入方程,得2a+b=03(2a+b)=06a+3b=0∴6a+3b+2=0+2=2.12.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是13.关于的方程组,______.【答案】9.【解析】两个方程直接相加,整理即可得解.试题解析:①+②得,x+m+y-3=6+m,所以,x+y=9.考点: 解二元一次方程组.14.解方程组.【答案】解:,①-2×②得,-7y=7,解得y=-1;把y=-1代入②得,x+2×(-1)=-2,解得x=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习专题一元一次不等式组一、选择题:1、已知甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x元,年支出为y元,则可列方程组为 ( )A.2、小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y元,根据题意列方程组正确的是()A. B. C. D.3、为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元4、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A. B.C. D.5、已知,用含x的代数式表示y正确的是()A. B. C. D.6、方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣87、方程的正整数解有()A.一解B.二解C.三解D.无解8、如果方程组的解使代数式kx+2y-3z的值为8,则k=()A. B. C.3 D.-39、若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<410、若2x+5y+4z=0,4x+y+2z=0,则x+y+z的值等于()A.0B.1C.2D.不能求出.11、若关于x、y的方程组的解都是正整数,那么整数a的值有()A.1个B.2个C.3个D.4个12、若方程组的解是,则方程组解为()A. B. C. D.二、填空题:13、若是二元一次方程,则,.14、已知:,则用x的代数式表示y为.15、方程3x+y=8的正整数解是.16、已知是二元一次方程组的解,则m+3n的值为17、已知关于x,y的二元一次方程组的解互为相反数,则k的值是.18、如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是.19、已知,若y为正数,则m的取值范围是。

20、小明解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两数■和★,请你帮她找回这两个数,■=______,★=______.21、已知(2x+3y﹣4)2+|x+3y﹣7|=0,则x=______,y=______.22、某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元.一个40人的旅游团到该旅店住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费2500元.求两种客房各租住了多少间?若设租住了三人间x间,二人间y间,则根据题意可列方程组为.23、甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元;购甲1件、乙2件、丙3件共需285元,那么购甲乙丙各1件共需______元24、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.三、计算题:25、. 26、27、m为正整数,已知二元一次方程组有整数解,求m的值.28、已知方程组有相同的解,求m、n的值.29、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)小英家3月份用水24吨,她家应交水费多少元?30、2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?31、小明到某服装专卖店去做社会调查,了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法计算薪资,并获得如下信息:假设月销售件数为x,月总收入为y元,销售每件奖励a元,营业员月基本工资为b元.(1)求a、b的值.(2)若营业员小张上个月总收入是1700元,则小张上个月卖了多少件服装?32、某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.33、某文具商店销售功能相同的A,B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1) 求这两种品牌计算器的价格.(2) 学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌的计算器按原价的八折销售,若购买B品牌的计算器5个以上,超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.(3) 小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算? 请说明理由.参考答案1、C.2、B.3、B.4、B.5、C.6、D.7、A.8、A.9、D.10、A. 11、B. 12、C.13、答案为:.14、答案为: 15、答案为:或.16、答案为:3 17、答案为:-1 18、答案为:﹣ 19、答案为:m>-9; 20、答案为:9,﹣3.21、答案为:.22、答案为:.23、答案为:150 24、答案为:80 25、解:①×2+②×3得:11x=22,即x=2,将x=2代入①得:2+3y=﹣1,即y=﹣1,则方程组的解为.26、27、【解答】解:关于x、y的方程组:,①+②得:(3+m)x=10,即x=③,把③代入②得:y=④,∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2.故m的值为2.28、m=4,n=-1.29、【解答】解:(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元.由题意,有,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元;(2)∵每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费,∴当用水24吨时,应交水费:14×1+(24﹣14)×2.5=39(元).答:小英家三月份应交水费39元.补:设每月用水量为a吨,应缴水费为b元,则b与a的函数关系式为:b=(a﹣14)×2.5+14,当a=24吨时,b=39元.30、解:(1)设该酒店2014年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得答:该酒店2014年处理的餐厨垃圾40吨,建筑垃圾150吨;(2)设该酒店2015年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共w元,根据题意得,,解得x≥40.w=100x+30(160-x)=70x+4800,∴k=70>0,∴w的值随x的增大而增大,∴当x=40时,w值最小,最小值=70×40+4800=7600(元).答:2015年该酒店最少需要支付这两种垃圾处理费共7600元.31、【解答】解:(1)设营业员月基本工资为b元,销售每件奖励a元.依题意,得,,解得.(2)设小张上个月卖了x件服装.依题意,3x+800=1700,解得x=300.答:小张上个月卖了300件服装.32、33、(1) 设A品牌的计算器的价格为x元,B品牌的计算器的价格为y元,则解得即A品牌的计算器的价格为30元,B品牌的计算器的价格为32元 (2) 由题意得y1=0.8×30x,即y1=24x.当0≤x≤5时,y2=32x;当x>5时,y2=32×5+32(x-5)×0.7,即y2=22.4x+48 (3) 当购买数量超过5个时,y2=22.4x+48.①当y1<y2时,24x<22.4x+48,解得x<30,即购买计算器的数量超过5个但不足30个时,购买A品牌的计算器更合算;②当y1=y2时,24x=22.4x+48,解得x=30,即购买计算器的数量为30个时,购买A品牌的计算器和B品牌的计算器花费相同;③当y1>y2时,24x>22.4x +48,解得x>30,即购买计算器的数量超过30个时,购买B品牌的计算器更合算.。

相关文档
最新文档