从梯子的倾斜度谈起

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?
[生]梯子AB比梯子EF更陡.
[师]你是如何判断的?
[生]从图中很容易发现∠ABC>∠EFD,所以梯子AB比梯子EF陡.
[生]我觉得是因为AC=ED,所以只要比较BC、FD的长度即可知哪个梯子陡.BC
[师]我们再来看一个问题(用多媒体演示)
[生]在上图中,我们能够知道Rt△AB1C1,和Rt△AB2C2是相似的.因为∠B2C2A=∠B1C1A=90°,∠B2AC2=∠B1AC1,根据相似的条件,得Rt△AB1C1∽Rt△AB2C2.
[生]由图还可知:B2C2⊥AC2,B1C1⊥AC1,得B2C2//B1C1,Rt△AB1C1∽Rt△AB2C2.
2.前面我们讨论了梯子的倾斜水准,课本图1-3,梯子的倾斜水准与tanA相关系吗?
[生]1.∠B的正切记作tanB,表示∠B的邻边的比值刻画了梯子的倾斜水准,所以,在图1-3
中,梯子越陡,tanA的值越大;反过来,tanA的值越大,梯子越陡.
[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.
因为直角三角形中的锐角A确定以后,它的对边与邻边之比也随之确定,所以我们有如下定义:(多媒体演示)
如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边之比便随之确定,
这个比叫做∠A的正切(tangent),记作tanA,即
[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?
[问题2]随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,"上海最高大厦"的桂冠早已被其他高楼取代,你们知道当前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?
分析:要求tanA,tanB的值,根据勾股定理先求出直角边AC的长度.
解:在△ABC中,∠C=90°,
所以AC=
=16(cm),
tanA=
tanB=
所以tanA=,tanB=.
Ⅳ,随堂练习
1.如图,△ABC
是等腰直角三角形,
你能根据图中所给
数据求出tanC吗?
分析:要求tanC.需从图中找到∠C所在的直角三角形,因为BD⊥AC,所以∠C在Rt△BDC中.然后求出∠C的对边与邻边的比,即的值.
[生]相似三角形的对应边成比例,得
.
如果改变B2在梯子上的位置,总能够得到Rt△B2C2A∽Rt△Rt△B1C1A,仍能得到所以,无论B2在梯子的什么位置(除A外),总成立.
[师]也就是说无论B2在梯子的什么位置(A除外),∠A的对边与邻边的比值是不会改变的.
现在如果改变∠A的大小,∠A的对边与邻边的比值会改变吗?
解:∵△ABC是等腰直角三角形,BD⊥AC,
∴CD=AC=×3=1.5.
在Rt△BDC中,tanC===1.
2.如图,某人从山
脚下的点A走了200m后
到达山顶的点B,已知点
B到山脚的垂直距离为55
m,求山的坡度.(结果精确到0.001)
分析:由图可知,∠A是坡角,∠A的正切即tanA为山的坡度.
解:根据题意:
(二)水平训练要求
1.经历观察、猜想等数学活动过程,发展合情推理水平,能有条理地,清晰地阐述自己的观点.
2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提升解决实际问题的水平.
3.体会解决问题的策略的多样性,发展实践水平和创新精神.
教学过程
1.创设问题情境,引入新课
用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:
[生]∠A的大小改变,∠A的对边与邻边的比值会改变.
[师]你又能得出什么结论呢?
[生]∠A的对边与邻边的比只与∠A的大小相关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.
[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?
在Rt△ABC中,AB=200 m,BC=55 m,
AC==192.30(m).
TanA=
所以山的坡度为0.286.
Ⅴ.课时小结
本节课从梯子的倾斜水准谈起,经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在"Rt△"中定义了tanA=.
[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山
坡的坡度、堤坝的坡度.
如图,有一山坡在
水平方向上每前进100
m,就升高60 m,那么山
坡的坡度(即坡角α的正
切--tanα就是
tanα=α.
这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.
(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?
(2)和有什么关系?
(3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?
[师]我们已经知道能够用梯子的垂直高度和水平宽度的比描述梯子的倾斜水准,即用倾斜角的对边与邻边的比来描述梯子的倾斜水准.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.
通过本章的学习,相信大家一定能够解决.
这节课,我们就先从梯子的倾斜水准谈起.(板书课题§1.1.1从梯子的倾斜水准谈起).
Ⅱ.讲授新课
用多媒体演示如下内容:
[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的"陡",那个梯子放的"平缓",人们是如何判断的?"陡"或"平缓"是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)
接着,我们研究了梯子的倾斜水准,工程中的问题坡度与正切的关系,了解了正切在
现实生活中是一个具有实际意义的一个很重要的概念.
Ⅵ.课后作业
1.习题1.1第1、2题.
2.观察学校及附近商场的楼梯,哪个更陡.
Ⅶ.活动与探究
(2003年江苏盐城)
如图,Rt△ABC是一防
洪堤背水坡的横截面
图,斜坡AB的长为
12 m,它的坡角为45°,为了提升该堤的防洪水平,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号)
教学设计(教案)——模板
基本信息
年 级
9
教学形式
新授
教 师
单 位
课题名称
从梯子的倾斜度谈起
学情分析
在代数式,三角形的直角三角形及勾股定理的基础上实行教学
教学目标
分析要点:1.知识目标;2.水平目标;3.情感态度与价值观。
1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜水准、坡度等,外能够用正切实行简单的计算.
x2+x2=122,
x=6,
所以BC=AC=6.
在Rt△ADC中,tanD=,
即CD=9.
所以DB=CD-BC=9-6=3(m).
板书设计
作业或预习
自我评价
组长评议或同行评议(可选多人):
评议一单位: 姓名: 日期:
(2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的?
[师]我们观察上图直观判断梯子的倾斜水准,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?
[生]在第(1)问的图形中梯子的垂直高度即AC和ED是相等的,而水平宽度BC和FD不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.
[师]这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子
AB和EF的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB和EF哪一个更陡呢?
[生],
.
∵,
∴梯子EF比梯子AB更陡.
多媒体演示:
想一想
如图,小明想通过测量B1C1:及AC1,算出它们的比,来说明梯子的倾斜水准;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜水准.你同意小亮的看法吗?
Ⅲ.例题讲解
多媒体演示
[例1]如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?
分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tanα、tanβ的值,比较大小,越大,扶梯就越陡.
解:甲梯中,
tanα= .
乙梯中,
tanβ=.
因为tanβ>tanα,所以乙梯更陡.
[例2]在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.
[过程]要求DB的长,需分别在Rt△ABC和Rt△ACD中求出BC和DC.根据题意,在Rt△ABC中,∠ABC=45°,AB=12 m,则可根据勾股定理求出BC;在Rt△ADC中,坡比为1:1.5,即tanD=1:1.5,由BC=AC,可求出CD.
[结果]根据题意,在Rt△ABC中,∠ABC=45°,所以△ABC为等腰直角三角形.设BC=AC=xm,则
tanA= .
注意:
1.tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号"∠".
2.tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.
3.tanA不表示"tan"乘以"A".
4.初中阶段,我们只学习直角三角形中,∠A是锐角的正切.
思考:1.∠B的正切如何表示?它的数学意义是什么?
[生]小明和小亮的做法都能够说明梯子的倾斜水准,因为图中直角三角形中的锐角A是确定的,所以它的对边与邻边的比值也是唯一确定的,与B1、B2在梯子上的位置无
关,即与直角三角形的大小无关.
[生]但我觉得小亮的做法更实际,因为要测量B1C1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就能够完成.
相关文档
最新文档