关联规则算法的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关联规则算法在超市物品摆放上的应用

15120832丁冀远

(理工大类)

摘要:使用关联规则算法在大量数据事例中挖掘项集之间的关联或相关联系,通过关联规则分析发现交易数据库中不同的商品(项)之间的联系,找到顾客购买行为模式,如购买某一个商品对其它商品的影响。进而通过挖掘结果应用于我们的超市货品摆放。

关键词:关联规则算法;数据分析;概率:重要性

引言

其实很多电子商务网站中在我们浏览相关产品的时候,它的旁边都会有相关产品推荐,当然这些它们可能仅仅是利用了分类的原理,将相同类型的的产品根据浏览量进而推荐,这也是关联规则应用的一种较简单的方式,而关联规则算法是基于大量的数据事实,通过数据层面的挖掘来告诉你某些产品项存在关联,有可能这种关联关系有可能是自身的,比如:牙刷和牙膏、筷子和碗...有些本身就没有关联是通过外界因素所形成的关系,经典的就是:啤酒和尿布,前一种关系通过常识我们有时候可以获取,但后一种关系通过经验就不易获得,而我们的关联规则算法解决的就是这部分问题。

正文

建立关于客户购买物品的数据表格。

订单号(外键)、购买数量、购买产品

然后开始运用关联规则算法。此种算法有两个参数比较重要:

Support:定义规则被视为有效前必须存在的事例百分比。也就是说作为关联规则筛选的事例可能性,比如设置成10%,也就是说在只要在所有事例中所占比为10%的时候才能进行挖掘。

Probability:定义关联被视为有效前必须存在的可能性。该参数是作为结果筛选的一个预定参数,比如设置成10%,也就是说在预测结果中概率产生为10%以上的结果值才被展示。

下面结果的表格中,第一列概率的值就是产品之前会产生关联的概率,按照概率从大到小排序,第二列为可能性,该度量规则的有用性。该值越大则意味着规则越有用,设置该规则的目的是避免只使用概率可能发生误导,如果仅仅根据概率去推测,这件物品的概率将是1,但是这个规则是不准确的,因为它没有和其它商品发生任何关联,也就是说该值是无意义的,所以才出现了“重要性”列。

经过排序可以看到,上图中的该条规则项为关联规则最强的一种组合:前面的为:山地自行车(Mountain-200)、山地自行车内胎(Mountain Tire Tube)然后关联关系最强的为:自行车轮胎(HL Mountain Tire)

同时可发现自行车(Road-750)、水壶(Water Bottle)->自行车水壶框(Road Bottle Cage)也有强关联,进入“依赖关系网络”面板,分析各种产品之间的关联关系的强弱。

上图中就标示了这玩意相关的商品,看到Mountain Bottle Cage、Road Bottle Cage这两个都是双向关联,然后Road-750、Cycling Cap、Hydration Pack...

结果,通过关联规则分析算法可以得出山地自行车(Mountain-200)、山地自行车内胎(Mountain Tire Tube),自行车轮胎(HL Mountain Tire)摆放在一起能得到更大的经济效益,Mountain Bottle Cage、Road Bottle、CageRoad-750、Cycling Cap、Hydration Pack 同样不错。

相关文档
最新文档