化工原理上册第3章第5节固定床课件PPT

合集下载

化工原理:3.5-固定床

化工原理:3.5-固定床

3.5.1 固定床的床层简化模型
流体通过固定床的阻力:
清液
滤饼
过滤介质
数值上等于床层中所有颗粒所受曳力的总和。
确定流体通过床层阻力的方法--实验方法
流动情况:流体在床层的空隙中流动; 复杂性:孔道的形状、数目、流动状态随机 孔道中流动属层流,但局部出现湍流 处理方法:简化床层→管外流问题为管内流问题 优点:用简化的模型来代替床层内的真实流动,便 于用数学方法来处理,然后再通过实验加以校正 。
简化模型条件
3.5.1 固定床的床层简化模型
( 1 )颗粒床层由许多平行的细管组成,孔道长度与 床层高度成正比;
l ' cL
c 1
u —— 空床流速
u’—— 孔道内流速
s0—— 床层自由截面积分率 l’ ——细管长度
u u u' S0
(2) 孔道内表面积之和 等于全部颗粒的表面积
--------------------
p f
(1 ) 2 u u 2 (1 ) 150 1.75 3 2 3 L da da
称为欧根(Ergun)方程。
3.5.3 欧根方程的其它形式
p f (1 ) 2 u u 2 (1 ) 150 1.75 3 2 L da da 3
fF与ReP/(1-ε定床层的阻力
模型:流体通过固定床层的流动可看作是直管内的流动问题。 (1) 流体层流流动 用哈根 — 泊谡叶( Hagen—Poiseuille )方程计算
床层的阻力:
结合实验结果
32 cLu p f d e2
p f
l ' cL
(1 ) 2 u 150 L 3 d a2

固定床和流化床反应器ppt课件

固定床和流化床反应器ppt课件
层,可采用离心流动或向心流动,床层同外界无 热交换。径向反应器与轴向反应器相比,流体流 动的距离较短,流道截面积较大,流体的压力降较小。 但径向反应器的结构较轴向反应器复杂。以上两 种形式都属绝热反应器,适用于反应热效应不大,或 反应系统能承受绝热条件下由反应热效应引起的 温度变化的场合。
• ③列管式固定床反应器。
• 当流体通过床层的速度逐渐提高到某值时,颗粒 出现松动,颗粒间空隙增大,床层体积出现膨胀。 如果再进一步提高流体速度,床层将不能维持固 定状态。此时,颗粒全部悬浮与流体中,显示出 相当不规则的运动。随着流速的提高,颗粒的运 动愈加剧烈,床层的膨胀也随之增大,但是颗粒 仍逗留在床层内而不被流体带出。床层的这种状 态和液体相似称为流化床。其中,流化床的种类 有:最小流化床,鼓泡流化床,腾涌流化床。
固定床反应器的结构
1.绝热式固定床反应器 1.1单段绝热式
1-矿渣棉2-瓷环3-催化剂 1-催化剂 2-冷却器
固定床反应器有三种基本形式
• 固定床反应器有三种基本形式: • ①轴向绝热式固定床反应器。流体沿轴向自上而
下流经床层,床层同外界无热交换。 • ②径向绝热式固定床反应器。流体沿径向流过床
固定床反应器
• 固定床反应器又称填充床反应器,装填有固体催化剂或固 体反应物用以实现多相反应过程的一种反应器。固体物通 常呈颗粒状,粒径2~15mm左右,堆积成一定高度或厚 度的床层。床层静止不动,流体通过床层进行反应。
固定床 反应器
分类及其应用
不同 的传 热要 求和 传热 方式
单段绝热式
二段
绝 热 式 多段绝热式
真思考如何为以后的发展开好头。
Thank you
流化床反应器的结构
流化床反应器类型 ➢ 按固体颗粒是否在系统内循环分

大连理工-化工原理课件

大连理工-化工原理课件

目录绪论前言第1章流体流动1.1 概述1.2 流体静力学1.3_流体动力学1.4 流体流动阻力1.5 管路计算1.6 流速与流量的测定1.7 流体流动与动量传递第2章流体输送设备2.1 概述2.2 离心泵2.3 容积式泵2.4 其他类型的叶片式泵2.5 各类泵的比较与选择2.6 通风机、鼓风机、压缩机和真空泵第3章流体相对颗粒(床层)的流动及机械分离3.1 概述3.2 颗粒及颗粒床层的特性3.3 颗粒与颗粒间的相对运动3.4 沉降3.5 流体通过固定床的流动3.6 过滤3.7 固体流态化及气力输送3.8 气体的其他净化方法第4章传热4.1 概述4.2 热传导4.3 对流传热4.4 表面传热系数的经验关联4.5 辐射传热4.6 传热过程计算4.7 换热器第5章蒸发5.1 概述5.2 蒸发设备5.3 单效蒸发计算5.4 多效蒸发和提高加热蒸汽经济性的其他措施第6章蒸馏6.1 概述6.2 溶液气液相平衡6.3 简单蒸馏和平衡蒸馏6.4 精馏6.5 双组分连续精馏的设计计算6.6 间歇精馏6.7 恒沸精馏和萃取精馏6.8 多组分精馏6.9 特殊蒸馏6.10 板式塔大连理工大学化工原理(参赛课件)第7章气体吸收7.1 概述7.2 吸收过程中的质量传递7.3 相际间的质量传递7.4 低浓度气体吸收7.5 高浓度气体吸收7.6 多组分吸收过程7.7 化学吸收7.8 解吸操作7.9 填料塔第8章萃取8.1 概述8.2 液液相平衡关系8.3 部分互溶物系的萃取计算8.4 完全不互溶物系的萃取计算8.5 溶剂的选择及其他萃取方法8.6 浸取与超临界萃取8.7 萃取设备第9章干燥9.1 概述9.2 湿空气的性质及湿度图9.3 固体物料干燥过程的相平衡9.4 恒定干燥条件下的干燥速率9.5 干燥过程的设计计算9.6 干燥器第10章膜分离和吸附分离过程10.1 概述10.2 膜分离10.3 吸附化工原理实验是深入学习化工过程及设备原理、将过程原理联系工程实际、掌握化工单元操作研究方法的重要课程,是培养和训练化工技术人才分析解决工程实际问题能力的重要环节。

化工原理课件(天大版)

化工原理课件(天大版)

反应热与反应焓
反应方向与平衡常数
反应速率与活化能
反应熵与反应吉布斯能
05
化工动力学基础
反应速率方程
添加标题
添加标题
添加标题
添加标题
反应速率方程:描述反应速率与反应物浓度及其他因素关系的数学表达式
反应速率定义:单位时间内反应物浓度的减少量或生积成正比的比例系数
催化剂:使用催化剂可以降低反应活化能,提高反应速率
反应物浓度:反应物浓度增大,反应速率加快
06
分离过程原理及应用
分离过程分类与特点
分离过程的分类:根据不同的原理和操作方式,分离过程可以分为多种类型,如蒸馏、萃取、结晶、过滤等。
R
分离过程的特点:不同的分离过程具有不同的特点和应用范围,需要根据具体需求进行选择。
A
分离过程的原理:每种分离过程都有其特定的原理和操作方式,需要掌握其基本原理和操作方法。
C
分离过程的应用:分离过程在化工、医药、食品等领域有着广泛的应用,需要根据具体需求进行选择和应用。
I
单击此处输入你的智能图形项正文
文字是您思想的提炼
单击此处输入你的智能图形项正文
文字是您思想的提炼
单击此处输入你的智能图形项正文
07
化学反应器原理及应用
化学反应器分类与特点
塔式反应器的特点:适用于气液相反应,具有较大的接触面积和适宜的停留时间
固定床反应器的特点:催化剂固定在反应器内,适用于气固相或液固相反应
流化床反应器的特点:催化剂悬浮在反应器内,适用于气固相或液固相反应
反应器分类:釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等
化学反应器的设备:介绍反应器的主要设备,如搅拌器、换热器、塔器等。

化工原理 第三章 机械分离与固体流态化 课件解剖

化工原理 第三章 机械分离与固体流态化 课件解剖

u
V
滤饼过滤过程中,滤饼逐渐增厚,流动阻力也随之逐 渐增大,所以过滤过程属于不稳定的流动过程。故
u
dV
Ad
ddq
其中q V A
29
《化工原理》电子教案/第三章
二、过滤基本方程
1、过滤基本方程的推导
------滤液量V~过滤时间的关系
L
le
u
u
de
u 真实速度
流体在固定床内流动的简化模型
简化模型:假定:
16
《化工原理》电子教案/第三章
增稠器(沉降槽)
用于分离出液-固混合物
加料
结构:请点击观看动画
与降尘室一样, 沉降槽的生产能
水平
力是由截面积来 挡板
保证的,与其高
度无关。故沉降 槽多为扁平状。

除尘原理:与降尘室相同
稠浆 连续式沉降槽
《化工原理》电子教案/第三章
清液溢流 清液
17
增稠器(沉降槽)
(1)细管长度le与床层高度L成正比
le K0L
(2)细管的内表面积等于全部颗粒的表面积, 滤饼体积
流体的流动空间等于床层中颗粒之间的全部空隙体积。
de
4润流湿通周截边面积细 4细 管管 的的 全流 部动 内 a4BV V空 表 a间 面 14 积
aBa1
颗粒的比
表30面积
《化工原理》电子教滤案/饼第的三比章表面积
停 留 时 间 = 沉 降 时 间 r
几点假设:
❖假设器内气体速度恒定,且等于进口气速ui; ❖假设颗粒沉降过程中所穿过的气流的最大
厚度等于进气口宽度B;
❖假设颗粒沉降服从斯托克斯公式。
含 尘 ui
气体

化工原理上册 第3章 流体相对颗粒(床层)的流动及机械分离

化工原理上册 第3章 流体相对颗粒(床层)的流动及机械分离

τm
AP
(a)
(b)
(c)
图3-5 物体的不同形状和位向对曳力的影响 (a)-平板平行于流向;(b)-平板垂直于流向;(c)-流线型物体
水平方向,颗粒所受曳力:
颗粒微元: dFD p cosdA w sindA
总曳力:FD p cosdA w sindA
A
A
Pcosa dA PdA
τwdA
aB
A VB
V
A a(1 ) (1 )
aB a
3.3 流体和颗粒的相对运动
流体和颗粒相对运动的情况:
① 颗粒静止,流体绕过颗粒流动; ② 流体静止,颗粒流动; ③ 颗粒和流体都运动,维持一定相对速度。
3.3.1 流体绕过颗粒的流动
(1) 曳力 阻力:颗粒对流体的作用力 曳力:流体对颗粒的作用力
② 非球形颗粒的曳力系数 计算方法: ◇ 近似用球形颗粒公式,ds→da 或 dv ◇ 实测ξ-Rep 关系(书P168 图3.3.2)
3.3.2 颗粒在流体中的流动
(1) 颗粒在力场中的受力分析
Fb
① 质量力 Fe mae Vs sae

浮力
Fb
m
s
ae
Vs ae

曳力
FD
AP
1 2
u 2
1
)3
( 6dV2 / a )1/3 ( 6dV2 )1/3
a
因此, dV
6
a
2)等比表面积当量直径 da 指:与非球形颗粒比表面积相等的球形颗粒的直径
a
as
d
2 s
6
d
3 s
6/ ds
da
因此,da 6 / a

化工原理课件PPT

化工原理课件PPT
物理量的基本量的量纲为其本身。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。

化工原理第三章PPT

化工原理第三章PPT
第三章 非均相物系的分离
1 重力沉降
重力: 浮力: Fg Fb 6 6 4 d
2
d sg
3
阻力Fd 浮力Fb
d g
3
阻力:
Fd

u 2
2
6
d ( s )
3
4
d
2
u t 2
2
ut
4 d ( s )g 3
V2=KA2θ
q2=Kθ
• 例 拟在9.81kPa的恒定压强差下过滤悬浮于水中直径为 0.1mm的球形颗粒物质,悬浮液中固相体积分率为10%, 水的粘度为1×10-3Pa· s。过滤过程介质阻力不计,滤饼为 不可压缩滤饼,其空隙率为60%,过滤机过滤面积为10m2, 计算:(1)得到15m3滤液时需过滤时间;(2)若将过滤时间 延长一倍时,可得滤液共为若干? • 例 在100KPa的恒压下过滤某悬浮液,温度30℃,过滤 14 2 1 10 m 面积为40m2 ,并已知滤渣的比阻为 , υ值为 0.05m3/m-3。过滤介质的阻力忽略不计,滤渣为不可压 缩,试求:(1)要获得10m3滤液需要多少过滤时间?(2)若 仅将过滤时间延长一倍,又可以再获得多少滤液?(3)若 仅将过滤压差增加一倍,同样获得10m3滤液时又需要多 少过滤时间?
6.6 恒压过滤 (V+Ve)2=KA2(θ+θe)
(q+qe)2=K(θ+θe)
总结:恒压过滤方程式
以绝对滤液量为基准
(V+Ve)2=KA2(θ+θe) V2+2VeV =KA2θe
以相对滤液量为基准
(q+qe)2=K(θ+θe) q2+2qeq =Kθe qe=Kθe

化工原理ppt课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案全套电子讲义完整版ppt

化工原理ppt课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案全套电子讲义完整版ppt
二、压力、流速和流量的测量
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。

煤化工工艺学课件5.3固定(移动)床气化法

煤化工工艺学课件5.3固定(移动)床气化法
从气化炉出来的气体中含有大量的杂 质,需要进行净化处理,如洗涤、过 滤等。
产品回收
经过净化的气体产品经过冷却、分离 等步骤,得到各种有用的气体组分, 如氢气、一氧化碳等。
固定(移动)床气化法
04
应用和发展
在煤化工领域的应用
生产合成气
固定(移动)床气化法可用于将煤转 化为合成气,合成气是生产各种 化工产品的原料。
固定(移动)床气化法
03
工艺流程
原料准备
01
02
03
原料准备
将煤破碎至一定粒度,去 除其中的杂质,为气化做 好准备。
煤的输送
通过输送设备将破碎后的 煤送至气化炉的进料口。
煤的干燥
在气化前对煤进行干燥, 以降低气化过程中的水蒸 气分压,提高气化效率。
气化剂的准备
空气的压缩
将空气经过压缩,提高其压力和流速,以满足气化炉的需求 。
未来的研究重点将集中在提高气化效率、降低能 耗和减少污染物排放等方面,以实现绿色、低碳 、可持续发展。
同时,加强国际合作与交流,吸收国外先进技术 成果,也是推动我国煤化工行业发展的重要途径 。
THANKS.
移动床气化法的优点
气化强度高,生产效率高;气化温度均匀,煤气 质量稳定;粗煤气中基本不含焦油、酚等杂质; 用水量较少。
固定床气化法的缺点
气化温度较低,反应速度较慢,生产效率较低; 炉内各段反应温度不均,导致粗煤气中含有一部 分焦油、酚等杂质;需要消耗大量的冷却水来冷 却煤气。
移动床气化法的缺点
对原料煤的粒径要求较高,需要使用粒径较小的 煤;操作复杂,投资较大;煤气中甲烷含量较低 ,热值较低。
针对这些问题,本章提供了相应的解 决方案和措施,有助于指导实际生产 操作和提高产品质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p f d a 3 改写为: 2 150(1 ) 1.75 u L 1 uda
1 f F 150(1 ) Re p 1.75
p f d a 3 式中:f F 2 u L 1
Re p
d a u

Rep/(1-ε)<10时
实验数据:
6 c 3 .5 4
p f
(1 ) u 2 1.75 3 L da
Burke-Plummer方程。 该式适用于高度湍流
3.5.2 流体通过固定床层的阻力
(3) 适用于各种流动条件下的阻力计算式:
层流条件下:Blake—Kozeny方程
+
湍流条件下:Burke-Plummer方程:
u'
u

4 d a de 6 1
•Blake-Kozeny方程 •适用于层流流动
且ε≤0.5的情况
3.5.2 流体通过固定床层的阻力
(2) 床层内的流动为高度湍流
cL u 2 p f de 2
p f 6(1 ) u 2 6 c(1 ) u 2 c 2 L 4d a 2 4 3 2d a

u
L
u
3.5.2 流体通过固定床层的阻力
模型:流体通过固定床层的流动可看作是直管内的流动问题。 (1) 流体层流流动 用哈根 — 泊谡叶( Hagen—Poiseuille )方程计算
床层的阻力:
结合实验结果
32 cLu p f d e2
p f
l ' cL
(1 ) 2 u 150 L 3 d a2
(3)孔道内全部流动空
间等于床层空隙的容积
u
L
u
3.5.1 固定床的床层简化模型
•虚拟细管的水力半径rH为:
流通截面积 4 d a rH d e 4rH 润湿周边长度 6 1 床层内流动空间体积 孔道全部内表面积 V B a BVB d a a (1 ) 6(1 )
fF与ReP/(1-ε)的关系
3.5 流体通过固定床的流动
悬浮液的过滤、流体通过填料层或固体催化剂床层的流动
颗粒的流化过程: (1)固定床:
流体以较小的流速从床层空隙中流动, 颗粒所受的曳力较小而保持静止状态
L
(2) 流化床:
u↑→固定床松动→膨胀→颗粒悬浮在床层内
u
(3) 流体输送
u↑↑ →颗粒被带出→流体输送阶段
悬浮液
3.5.1 固定床的床层简化模型
流体通过固定床的阻力:
清液
滤饼
过滤介质
数值上等于床层中所有颗粒所受曳力的总和。
确定流体通过床层阻力的方法--实验方法
流动情况:流体在床层的空隙中流动; 复杂性:孔道的形状、数目、流动状态随机 孔道中流动属层流,但局部出现湍流 处理方法:简化床层→管外流问题为管内流问题 优点:用简化的模型来代替床层内的真实流动,便 于用数学方法来处理,然后再通过实验加以校正 。
Rep/(1-ε)>1000时
200 100
1 f 150 ( 1 ) Re 150(1 ) Re 1.75 F p
1 p
1 150(1 ) Re 1.75 p
f F 1.75fF源自20 103 2 1 2 3 10 20 100 200 1000
ReP/(1-ε)
简化模型条件
3.5.1 固定床的床层简化模型
( 1 )颗粒床层由许多平行的细管组成,孔道长度与 床层高度成正比;
l ' cL
c 1
u —— 空床流速
u’—— 孔道内流速
s0—— 床层自由截面积分率 l’ ——细管长度
u u u' S0
(2) 孔道内表面积之和 等于全部颗粒的表面积
--------------------
p f
(1 ) 2 u u 2 (1 ) 150 1.75 3 2 3 L da da
称为欧根(Ergun)方程。
3.5.3 欧根方程的其它形式
p f (1 ) 2 u u 2 (1 ) 150 1.75 3 2 L da da 3
相关文档
最新文档