北邮_模拟集成电路设计_期末实验报告

合集下载

集成电路实验报告

集成电路实验报告

班级:XX姓名:XXX学号:XXXXXX指导老师:XXX实验日期:XXXX年XX月XX日一、实验目的1. 理解集成电路的基本组成和工作原理。

2. 掌握基本的集成电路设计方法,包括原理图设计、版图设计、仿真分析等。

3. 学习使用集成电路设计软件,如Cadence、LTspice等。

4. 通过实验加深对集成电路理论知识的理解,提高动手能力和问题解决能力。

二、实验内容本次实验主要包括以下内容:1. 原理图设计:使用Cadence软件绘制一个简单的CMOS反相器原理图。

2. 版图设计:根据原理图,使用Cadence软件进行版图设计,并生成GDSII文件。

3. 仿真分析:使用LTspice软件对设计的反相器进行仿真分析,测试其性能指标。

4. 版图与原理图匹配:使用Cadence软件进行版图与原理图的匹配,确保设计正确无误。

三、实验步骤1. 原理图设计:- 打开Cadence软件,选择原理图设计模块。

- 根据反相器原理,绘制相应的电路符号,包括NMOS和PMOS晶体管、电阻和电容等。

- 设置各个元件的参数,如晶体管的尺寸、电阻和电容的值等。

- 完成原理图设计后,保存文件。

2. 版图设计:- 打开Cadence软件,选择版图设计模块。

- 根据原理图,绘制晶体管、电阻和电容的版图。

- 设置版图规则,如最小线宽、最小间距等。

- 完成版图设计后,生成GDSII文件。

3. 仿真分析:- 打开LTspice软件,选择仿真模块。

- 将GDSII文件导入LTspice,生成对应的原理图。

- 设置仿真参数,如输入电压、仿真时间等。

- 运行仿真,观察反相器的输出波形、传输特性和功耗等性能指标。

4. 版图与原理图匹配:- 打开Cadence软件,选择版图与原理图匹配模块。

- 将原理图和版图导入匹配模块。

- 进行版图与原理图的匹配,检查是否存在错误或不一致之处。

- 修正错误,确保版图与原理图完全一致。

四、实验结果与分析1. 原理图设计:- 成功绘制了一个简单的CMOS反相器原理图,包括NMOS和PMOS晶体管、电阻和电容等元件。

集成电路设计实验报告

集成电路设计实验报告

集成电路设计实验报告时间:2011年12月实验一原理图设计一、实验目的1.学会使用Unix操作系统2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件二:实验内容使用schematic软件,设计出D触发器,设置好参数。

二、实验步骤1、在桌面上点击Xstart图标2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入用户密码,在protocol:中选择telnet类型3、点击菜单上的Run!,即可进入该用户unix界面4、系统中用户名为“test9”,密码为test1234565、在命令行中(提示符后,如:test22>)键入以下命令icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。

出现的主窗口所示:6、建立库(library):窗口分Library和Technology File两部分。

Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。

如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。

如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。

7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。

当然在Tool工具中还有很多别的工具,常用的像Composer-symbol、virtuoso-layout等,分别建立的是symbol、layout 的视图(view)。

集成电路设计实验报告

集成电路设计实验报告

集成电路设计实验报告院别:电信学院专业:电子科学与技术班级:\ 姓名:学号:\ 组序:52实验(一)题目名称:熟悉L-EDIT软件工具成绩:教师签名:批改时间:一、实验目的:学会使用集成电路版图设计L-EDIT软件工具,熟练画电路版图的操作指令和各种快捷命令,并熟悉应用特定工艺库即工艺文件来实现电路。

通过该实验,使学生掌握L-EDIT的设计方法,加深对课程知识的感性认识,增强学生的设计与综合分析能力,为将来成为优秀的后端工程师做准备。

二、实验要求:如将设计好的电路制成实际使用的集成块,就必须利用版图工具将设计的电路采用标准工艺文件转换成可以制造的版图。

然后再将版图提交给集成电路制造厂家(foundry),完成最后的集成块制造,所以画版图的本质就是画电路原理图。

在画版图时,首先要明白工艺文件的含义,每一种工艺文件代表一条工艺线所采用的光刻尺寸,以及前后各个工序等等;其次要懂得所使用的工具步骤及各个菜单及菜单栏的内容,以便熟练使用该软件;最后对所画版图进行验证,确保不发生错误。

此外,还必须了解所使用的版图设计法则,对于不同的工艺尺寸其法则有所不同,这就要求设计者在应用该软件时,必须熟悉相应的设计法则,为完成正确的版图做准备。

该实验原理是画常用的NMOS管,画图时要求熟悉NMOS的工艺过程及设计法则。

三、实验方法:熟悉L-EDIT版图软件工具及工艺库相关内容,熟练该软件工具菜单功能及使用方法。

以PMOS器件为例,在调用相应的工艺文件基础上,画元器件的物理实现版图(如选用几微米的工艺线、设计法则等),设计完成后运用该软件的设计规则对所画的版图进行DRC验证,并修改不正确的部分,直至设计无错误。

四、实验内容:1.安装L-EDIT仿真软件:先点击Daemon.exe文件,用虚拟光驱将.ISO文件载入,并点击L-EDIT的Setup.exe文件即可。

2.按照Crack方式注册该软件,并运行。

3.以MOSIS提供的morbn20.tdb工艺库为例,从ReadMe中可以了解许多信息:工艺提供制造商、工艺尺寸、设计规则及器件剖面图等。

北邮模电综合实验报告

北邮模电综合实验报告

电子电路综合实验设计实验名称:阶梯波发生器的设计与实现学院:班级:学号:姓名:班内序号:实验6 阶梯波发生器的设计与实现一. 摘要阶梯波是一种特殊波形,在一些电子设备及仪表中用处极大。

本实验电路是由窄脉冲-锯齿波发生器构成。

通过将运算放大器的几个典型电路:方波发生器、积分器和迟滞电压比较器,加以改进组合,设计成了阶梯波发生器。

实验用两个二极管作为控制门,一个是阶梯波形成控制门,另一个是阶梯波返回控制门,控制阶梯波的周期。

调节相应电位器的阻值就能改变阶梯数、阶梯幅值和阶梯周期。

关键字:阶梯波方波发生器迟滞电压比较器积分器二. 实验任务及设计要求1、 基本要求:1) 利用所给元器件设计一个阶梯波发生器,500,3opp f H z U V ≥≥,阶数6N =;2) 设计该电路的电源电路(不要求实际搭建),用PROTEL 软件绘制完整的电路原理图(SCH )及印制电路板图(PCB )。

2、 提高要求:利用基本要求里设计的阶梯波发生器设计一个三极管输出特性测试电路,在示波器上可以观测到基极电流为不同值时的三极管的输出特性曲线束。

3、 探究环节:能否提供其他阶梯波发生器的设计方案?如果能提供,请通过仿真或实验对结果加以证明;三. 设计思路及结构框图1. 设计思路仔细阅读试验原理及要求分块设计阶梯波发生器窄带脉冲发生器积分器迟滞比较器计算电阻电容等器件参数计算机仿真若波形不符合则重新计算参数在电路板上搭建电路认真检查连接保证正确实验室实际调试2总体结构框图本实验中阶梯波发生器电路是由方波-三角波发生器与迟滞电压比较器构成。

图1中,运算放大器U1构成迟滞电压比较器,U3是积分器,U2为窄脉冲发生器。

两个二极管,其中D1是阶梯形成控制门,D2是阶梯返回控制门。

由于U2的同相输入端加入一个正参考电压,U2输出为负脉冲。

在负脉冲持续期间,二极管D1导通,积分器U3对负脉冲积分,其输出电压上升。

负脉冲消失后,D1截止,积分器输入、输出电位保持不变,则形成一个台阶,积分器U3的输出的阶梯波就是迟滞比较器U1的输入,该值每增加一个台阶,U1的输入电压增加一个值。

北邮模电综合实验报告

北邮模电综合实验报告

电子电路综合实验设计简易声光控照明系统的设计与实现学院:电子工程学院班级:2011211202学号:2011210876姓名:孙月鹏班内序号:05简易声光控照明系统的设计与实现一、摘要声光控照明系统由整流稳压电路,可控硅开关 MCR话筒放大电路,光敏控制电路,音频放大电路,检波电路,延迟电路七部分组成,是一种利用声、光双重控制的的无触点开关照明电路。

它的主要功能是把声信号转化为电信号,经过两级放大电路,在光控电路的控制下,由可控硅开关实现灯的亮灭,并且利用延时器实现一定的延时时间。

是一种又节能又方便的自动开关电路,在生活中有广泛的应用。

关键字:声光控制自动照明延时电路二、设计任务要求1、基本要求a)当环境明亮情况下,照明系统自动关闭;b)当环境昏暗情况下,可以通过声音自动触发照明系统;c)最小照明时间要求不低于10s;d)用PROTEK件绘制电路的印刷电路板图(PCB)。

2、提咼要求a)最小照明时间可调节,调节范围为:5~ 60s;b)照明亮度根据环境亮度可以调节,分为3个等级:暗、普通、高亮<3、探究要求采用非本资料提供的原理及方法,另外设计一种简易自动照明控制系统。

三、设计思路及总体结构框图2总体结构框图首先由整流稳压电路输出12V电压,灯泡在可控硅的控制下实现亮灭。

在光照的情况下,可控硅只能达到低电压,灯泡不亮。

在光暗的情况下,当MIC得到外界的一个声音信号,经由两级放大电路发大,是可控硅通过控制电路得到一个高电压,灯泡导通。

并且由于延迟电路的作用,灯泡会在一段时间后自动熄灭加入声音信号声控电路*两级放大电路ir可控硅开关延时电路四、电路的设计过程1、电路图2、电路分块分析(1)整流稳压电路:由桥式整流电路(由D1〜D4组成),二极管稳压电路D5,加上稳压管DW12V和滤波电容C1构成。

目的是将家庭中常见的220V 交流电压转换成稳定的12V直流电压。

(2)可控硅开关MCR:起开关作用,由这个开关去控制整流电路的工作与否,从而控制灯的亮和灭。

集成电路实验报告

集成电路实验报告

集成电路实验报告第一篇:集成电路实验报告集成电路实验报告班级:姓名:学号:指导老师:实验一:反相器的设计及反相器环的分析一、实验目的1、学习及掌握cadence图形输入及仿真方法;2、掌握基本反相器的原理与设计方法;3、掌握反相器电压传输特性曲线VTC的测试方法;4、分析电压传输特性曲线,确定五个关键电压VOH、VOL、VIH、VIL、VTH。

二、实验内容本次实验主要是利用 cadence 软件来设计一基本反相器(inverter),并利用仿真工具Analog Artist(Spectre)来测试反相器的电压传输特性曲线(VTC,Voltage transfer characteristic curves),并分析其五个关键电压:输出高电平VOH、输出低电平VOL、输入高电平VIH、输入低电平VIL、阈值电压 VTH。

三、实验步骤1.在cadence环境中绘制的反相器原理图如图所示。

2.在Analog Environment中,对反相器进行瞬态分析(tran),仿真时间设置为4ns。

其输入输出波形如图所示。

分开查看:分析:反相器的输出波形在由低跳变到高和由高跳变到底时都会出现尖脉冲,而不是直接跳变。

其主要原因是由于MOS管栅极和漏极上存在覆盖电容,在输出信号变化时,由于电容储存的电荷不能发生突变,所以在信号跳变时覆盖电容仍会发生充放电现象,进而产生了如图所示的尖脉冲。

3.测试反相器的电压传输特性曲线,采用的是直流分析(DC),我们把输入信号修改为5V直流电源,如图所示。

4.然后对该直流电源从0V到5V进行线性扫描,进而得到电压传输特性曲线如图所示。

5.为反相器创建symbol,并调用连成反相器环,如图。

6.测量延时,对环形振荡器进行瞬态分析,仿真时间为4ns,bcd 节点的输出波形如图所示。

7.测量上升延时和下降延时。

(1)测量上升延时:可以利用计算器(calculator)delay函数来计算信号c与信号b间的上升延时和下降延时如图所示。

cmos模拟集成电路设计-实验报告

cmos模拟集成电路设计-实验报告

cmos模拟集成电路设计-实验报告————————————————————————————————作者:————————————————————————————————日期:北京邮电大学实验报告实验题目:cmos模拟集成电路实验姓名:何明枢班级:2013211207班内序号:19学号:2013211007指导老师:韩可日期:2016 年 1 月16 日星期六目录实验一:共源级放大器性能分析 (1)一、实验目的 (1)二、实验内容 (1)三、实验结果 (1)四、实验结果分析 (3)实验二:差分放大器设计 (4)一、实验目的 (4)二、实验要求 (4)三、实验原理 (4)四、实验结果 (5)五、思考题 (6)实验三:电流源负载差分放大器设计 (7)一、实验目的 (7)二、实验内容 (7)三、差分放大器的设计方法 (7)四、实验原理 (7)五、实验结果 (9)六、实验分析 (10)实验五:共源共栅电流镜设计 (11)一、实验目的 (11)二、实验题目及要求 (11)三、实验内容 (11)四、实验原理 (11)五、实验结果 (15)六、电路工作状态分析 (15)实验六:两级运算放大器设计 (17)一、实验目的 (17)二、实验要求 (17)三、实验内容 (17)四、实验原理 (22)五、实验结果 (23)六、思考题 (24)七、实验结果分析 (25)实验总结与体会 (26)一、实验中遇到的的问题 (26)二、实验体会 (26)三、对课程的一些建议 (27)实验一:共源级放大器性能分析一、实验目的1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法;2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真;3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线;4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响二、实验内容1、启动synopsys,建立库及Cellview文件。

北邮模拟集成电路设计CMOS实验报告概论

北邮模拟集成电路设计CMOS实验报告概论

模拟集成电路设计仿真实验报告姓名:________ X ____学号:______2013210XXX_________班级:______201321120X_________端口号码:______a219 __________学院:_____电子工程学院________专业:____电子科学与技术_______班内序号: XXX目录实验一:共源级放大器性能分析 (2)一、实验目的 (2)二、实验要求 (2)三、实验电路及实验结果 (2)(一)负载电阻R=10K (2)(二)负载电阻R=1K (4)四、实验分析 (6)实验二:差分放大器设计 (6)一、实验目的 (6)二、实验要求 (6)三、实验原理 (7)四、实验结果 (7)五、思考题 (9)实验三:电流源负载差分放大器设计 (9)一、实验目的 (9)二、实验要求 (9)三、实验原理 (9)四、实验结果 (11)五、实验分析 (12)实验五:共源共栅电流镜设计 (12)一、实验目的 (12)二、实验要求 (12)三、实验内容 (13)四、实验结果 (16)实验六:两级运算放大器设计 (17)一、实验目的 (17)二、实验要求 (17)三、实验内容 (18)四、实验原理 (22)五、实验结果 (23)六、思考题 (24)七、实验分析 (24)实验总结及问题解决 (25)一、实验中的问题 (25)二、实验心得体会 (26)实验一:共源级放大器性能分析一、实验目的1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法;2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真;3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线;4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响二、实验要求1、启动synopsys,建立库及Cellview文件。

2、输入共源级放大器电路图。

cmos模拟集成电路设计_实验报告概论

cmos模拟集成电路设计_实验报告概论

北京邮电大学实验报告实验题目:cmos模拟集成电路实验姓名:何明枢班级:2013211207班内序号:19学号:2013211007指导老师:韩可日期:2016 年 1 月16 日星期六北京邮电大学电子工程学院2013211207班何明枢CMOS模拟集成电路与设计实验报告目录实验一:共源级放大器性能分析 (1)一、实验目的 (1)二、实验内容 (1)三、实验结果 (1)四、实验结果分析 (3)实验二:差分放大器设计 (4)一、实验目的 (4)二、实验要求 (4)三、实验原理 (4)四、实验结果 (5)五、思考题 (6)实验三:电流源负载差分放大器设计 (7)一、实验目的 (7)二、实验内容 (7)三、差分放大器的设计方法 (7)四、实验原理 (7)五、实验结果 (9)六、实验分析 (10)实验五:共源共栅电流镜设计 (11)一、实验目的 (11)二、实验题目及要求 (11)三、实验内容 (11)四、实验原理 (11)五、实验结果 (15)六、电路工作状态分析 (15)实验六:两级运算放大器设计 (17)一、实验目的 (17)二、实验要求 (17)三、实验内容 (17)四、实验原理 (21)五、实验结果 (23)六、思考题 (24)七、实验结果分析 (24)实验总结与体会 (26)一、实验中遇到的的问题 (26)二、实验体会 (26)三、对课程的一些建议 (27)实验一:共源级放大器性能分析一、实验目的1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法;2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真;3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线;4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响二、实验内容1、启动synopsys,建立库及Cellview文件。

2、输入共源级放大器电路图。

北邮模电反馈仿真实验报告

北邮模电反馈仿真实验报告

仿真一:负反馈减小非线性失真
不加反馈电压时(交流时电容C3相当于短路,R4被短路)仿真电路图:
输出波形出现饱和失真(R1为20KΩ时)
输出波形出现截止失真(R1为12KΩ时)
加反馈电压R4时仿真电路图
波形失真减小,同时增益也降低(R1为20KΩ)
波形失真减小,同时增益也降低(R1为12KΩ)
仿真二:负反馈稳定静态工作点
反馈电阻R4的引入对静态工作点的影响仿真电路图
负反馈电阻取不同值时对工作点电流的稳定
由仿真实验一可知,引入负反馈可以减小放大电路的非线性失真,改善了电路的输出波形。

但是若输入信号保持不变,闭环增益则会下降至开环增益的1/|AF+1|。

因此在实际电路中,应权衡多方面,考虑实际需要来设计电路。

由仿真实验二可知,引入负反馈也可以稳定静态工作点。

引入负反馈后,当晶体管的放大系数在较大范围内变化时,其集电极电流的变化范围也小了很多,从而保持了工作点的稳定。

此外还可看出,随着负反馈电阻阻值的增大反馈深度也逐渐增大,对工作点电流的稳定作用也随之增强。

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现姓名:班级:学号:一、摘要:运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波一三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。

关键字:模拟电路,高低电平,运算放大器,振荡,比较二、设计任务要求:利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1〜R5)重复地依次点亮再依次熄灭(全灭- R1-R1R2f R1R2RI R1R2R3R4^ R1R2R3R4R5> R1R2R3R- R1R2R—R1R2^ R1f 全灭),同时让排成一排的6个绿色发光二极管(G1〜G6)单光点来回扫描点亮(G仆GAG4G4G5^G4G5 宀G4G4GMG1)o要求:彩灯的变化速度均匀且可以调节,而且人眼能够识别彩灯的变化,所拥有的供电条件为直流电源土12V。

三、设计思路,总体结构框图:根据任务要求,可以设计一个如图2-27所示的电路,图中振荡电路产生频率可调的三角波信号,三角波信号被送入比较器电路与一系列直流电平比较,根据三角波信号瞬时值的大小不同,比较器的输出端会分别输出高电平或低电平,这些高、低电平可以按照任务要求的顺序点亮或熄灭接在比较器输出端的发光管,达到任务要求的彩灯显示效果。

三角波图20丈验电路惟图四、分块电路和总体电路的设计:1、振荡电路的设计:二角波振荡电路可以米用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A i接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。

假设迟滞电压比较器输出U oi初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。

北邮数电实验下实验报告(3篇)

北邮数电实验下实验报告(3篇)

第1篇一、实验目的1. 熟悉数字电子技术实验的基本流程和注意事项。

2. 掌握数字电路的基本测试方法和实验技巧。

3. 理解数字电路的基本原理,加深对数字电子技术的认识。

4. 提高动手能力和团队协作能力。

二、实验内容及要求1. 实验一:TTL与非门参数测试(1)测试TTL与非门的外形和管脚排列。

(2)测试TTL与非门的逻辑功能。

(3)测试TTL与非门的主要参数,如低电平输出电源电流IccL和高电平输出电源电流IccH。

2. 实验二:组合逻辑电路设计(1)设计一个4位二进制加法器。

(2)设计一个奇偶校验电路。

(3)设计一个编码器。

3. 实验三:时序逻辑电路设计(1)设计一个异步复位D触发器。

(2)设计一个同步复位D触发器。

(3)设计一个计数器。

4. 实验四:数字电子钟设计(1)设计一个秒表。

(2)设计一个定时器。

(3)设计一个闹钟。

三、实验电路1. 实验一:TTL与非门参数测试电路- 使用74LS20 TTL与非门芯片。

- 使用万用表测试低电平输出电源电流IccL和高电平输出电源电流IccH。

2. 实验二:组合逻辑电路设计电路- 使用74LS00 TTL与非门芯片。

- 使用电阻、电位器等元件设计加法器、奇偶校验电路和编码器。

3. 实验三:时序逻辑电路设计电路- 使用74LS74 TTL触发器芯片。

- 使用电阻、电容等元件设计异步复位D触发器、同步复位D触发器和计数器。

4. 实验四:数字电子钟设计电路- 使用555定时器芯片。

- 使用电阻、电容、二极管等元件设计秒表、定时器和闹钟。

四、实验结果记录1. 实验一:TTL与非门参数测试结果- 低电平输出电源电流IccL:0.5mA- 高电平输出电源电流IccH:1.2mA2. 实验二:组合逻辑电路设计结果- 4位二进制加法器:功能正常,能够实现4位二进制加法运算。

- 奇偶校验电路:功能正常,能够实现奇偶校验。

- 编码器:功能正常,能够实现8-3编码。

3. 实验三:时序逻辑电路设计结果- 异步复位D触发器:功能正常,能够实现异步复位。

数电实验报告北邮(3篇)

数电实验报告北邮(3篇)

第1篇一、实验名称数字电路基础实验二、实验目的1. 熟悉数字电路的基本原理和组成。

2. 掌握常用数字电路元件(如逻辑门、触发器、计数器等)的功能和使用方法。

3. 培养动手能力和实验技能。

三、实验原理数字电路是由逻辑门、触发器、计数器等基本元件组成的。

逻辑门是数字电路的基本单元,用于实现基本的逻辑运算。

触发器是数字电路中的记忆单元,用于存储信息。

计数器是数字电路中的时序单元,用于实现计数功能。

四、实验仪器与设备1. 数字电路实验箱2. 万用表3. 导线4. 74LS00集成电路5. 74LS20集成电路五、实验内容1. 组合逻辑电路分析(1)搭建一个4输入与非门电路,输入端分别为A、B、C、D,输出端为Y。

(2)搭建一个2输入与非门电路,输入端分别为A、B,输出端为Y。

(3)搭建一个4输入与非门电路,输入端分别为A、B、C、D,输出端为Y。

要求输出Y为A、B、C、D的异或运算结果。

2. 触发器应用(1)搭建一个D触发器电路,输入端为D,输出端为Q。

(2)搭建一个JK触发器电路,输入端为J、K,输出端为Q。

(3)搭建一个计数器电路,使用D触发器实现一个4位二进制计数器。

3. 计数器应用(1)搭建一个十进制计数器电路,使用74LS90集成电路实现。

(2)搭建一个任意进制计数器电路,使用74LS90集成电路实现。

(3)搭建一个分频器电路,使用计数器实现。

六、实验步骤1. 根据实验原理和电路图,在实验箱上搭建实验电路。

2. 使用万用表测试电路的各个节点电压,确保电路连接正确。

3. 根据实验要求,输入不同的信号,观察输出结果。

4. 记录实验数据,分析实验结果。

七、实验结果与分析1. 组合逻辑电路分析(1)4输入与非门电路:当A、B、C、D都为0时,Y为1;否则,Y为0。

(2)2输入与非门电路:当A、B都为0时,Y为1;否则,Y为0。

(3)4输入与非门电路:当A、B、C、D中有奇数个1时,Y为1;否则,Y为0。

北邮模拟集成电路设计CMOS实验报告

北邮模拟集成电路设计CMOS实验报告

北邮模拟集成电路设计CMOS实验报告实验名称:CMOS集成电路设计实验一、实验目的:1.理解CMOS集成电路的基本原理和设计方法;2.掌握CMOS逻辑门电路的设计过程;3.学会使用EDA软件进行CMOS集成电路的仿真和布局。

二、实验原理:CMOS逻辑门电路常用的基本逻辑门有与门(AND)、或门(OR)、非门(NOT)和异或门(XOR)等。

通过适当的连接和组合可以实现各种复杂的逻辑功能。

三、实验仪器和材料:1.电脑:用于运行EDA软件进行仿真和布局;2. EDA软件:如Cadence、Virtuoso等。

四、实验步骤:1.设计CMOS逻辑门电路。

a.确定逻辑门的功能要求,选择合适的逻辑门类型;b.根据逻辑门的真值表进行逻辑电路的设计;c.根据逻辑电路设计生成CMOS电路原理图。

2.仿真验证电路功能。

a.在EDA软件中加载CMOS电路原理图;b.设置输入信号,并运行仿真进行波形分析;c.验证逻辑门电路的功能和时序响应。

3.进行电路布局。

a.根据设计要求和布局规范进行电路布局;b.确保电路布局符合工艺和物理约束条件;c.生成电路布局图。

4.查看布局成果。

a.在EDA软件中加载电路布局图;b.观察和分析电路布局的效果和问题;c.对电路布局进行进一步优化和调整。

五、实验结果和分析:在实验中,我们选择设计了一个4输入与门电路。

通过EDA软件仿真,我们可以看到当所有输入均为高电平时,输出才为高电平;否则,输出为低电平。

仿真结果符合与门的逻辑功能要求,说明我们的设计是正确的。

同时,我们也进行了电路的布局,保证了电路的正确性和合理性。

通过查看布局成果,我们发现一些电路单元之间的间距不合适,会造成电路性能的影响。

因此,我们对电路布局进行了调整和优化,使其满足工艺和物理要求。

六、实验总结:通过本次实验,我们深入理解了CMOS集成电路的基本原理和设计方法。

通过搭建CMOS逻辑门电路,我们掌握了逻辑电路的设计过程,并借助EDA软件进行了仿真和布局。

北邮电子院asic实验报告

北邮电子院asic实验报告

专用集成电路实验报告学院:电子工程学院专用集成电路实验报告一、实验目的:1、学习和掌握利用Verilog进行专用集成电路设计的流程与方法。

2、熟悉编写较完整的测试模块进行接近真实的完整测试。

3、理解掌握HDB3译码的方法。

4、熟悉nc_verilog仿真软件的使用方法。

二、实验器材:计算机,相关软件三、实验原理:1.HDB3码:由功率谱的特性,我们知道,NRZ 单极性不归零码不适合在信道上传输,传号交替反转码(AMI马)为一种双极性码,为了克服AMI 码连零可能较多的缺点,必须提出新的编码方案,对NRZ码中的连零作适当的处理。

高密度双极性码就是针对这一问题而提出来的一种编码方案。

所谓高密度,是指传输码中“l”码的密度较高,连“0”码的个数最多为n 个,这种码叫BPn码。

在实用中,n 一般等于3,这就是HDB3 码。

当连零数不大于3 时,HDB3 码与AMI 码的编码规则相同。

当连零数超过3 时,以四个连零作为“一节”,分别用不同的取代节取代这四个连零。

取代节有两种,分别为“000V”和“B00V”,这里的B 和V 均为传号脉冲。

这样,传输码中的连零数就被控制在3 个以内。

在取代节中,V 叫做破坏点,用它在码流中破坏极性交替这一原则,以便接收端识别。

B 码是为了平衡正负极性而加入的一个附加传号,它并不破坏极性交替的原则,因此又称它为非破坏点。

HDB3 码的取代原则为:(1)出现四个连零用取代节取代;(2)当相邻破坏点V 中间有奇数个原始传号(不包括B 码)时,用"000V”取代;(3)当相邻破坏点V 中间有偶数个原始传号时,用"B00V'取代;(4)用"B00V'取代时,B 码和V 码与它们前面一个原始传号(或V 码)极性相反;(5)用"000V'取代时,V 码与它前面的传号极性相同。

可以证明,按照上述原则编出的BPn 码,相邻破坏点V 的极性也是相反的,因此,破坏点的引入不会导致码流的正负不平衡。

北邮-模拟集成电路设计-CMOS-实验报告

北邮-模拟集成电路设计-CMOS-实验报告

模拟CMOS集成电路设计实验报告Synopsis电路仿真实验学院:电子工程学院班级:学号:姓名:指导教师:尹露目录实验一:共源极放大器性能分析 (4)一、实验目的 (4)二、实验内容 (4)三、实验步骤 (4)1. 启动软件 (4)2. 电路原理图绘制 (5)3. 电路仿真 (5)四、实验电路图 (6)五、频率特性曲线 (6)六、实验结果分析与结论 (8)1. 实验器件参数 (8)2. 实验条件 (8)3. 仿真结论 (9)实验二:各类共源极放大器特性分析 (10)一、实验目的 (10)二、实验内容 (10)三、实验步骤 (10)四、电路元件参数对放大电路的影响 (11)1. 实验电路图 (11)2. 测量输出电阻电路图 (12)3. 仿真结果 (13)4. 结果分析 (14)五、用二极管连接作为负载对放大电路的影响 (15)1. 实验电路图 (15)2. 测量输出电阻电路图 (16)3. 仿真结果 (17)4. 结果分析 (18)六、电流源作为负载对放大电路的影响 (18)1. 实验电路图 (19)2. 输出电阻电路图 (20)3. 仿真结果 (20)4. 结果分析 (21)七、共源极作为负载对放大电路的影响 (21)1. 实验电路图 (22)2. 输出电阻电路图 (22)3. 仿真结果 (23)4. 结果分析 (24)实验三:差分放大器设计 (25)一、实验目的 (25)二、实验准备 (25)三、差分放大器的设计方法 (25)四、电路的设计要点 (25)五、实验内容 (26)六、实验步骤 (26)七、实验原理图 (26)八、实验电路图 (27)九、实验结果 (28)1. 幅频特性曲线 (28)2. 不同MOS管宽长比和电阻对应放大倍数 (29)3. 结果分析 (30)十、遇到的问题与解决方法 (31)十一、实验总结与感受 (31)实验一:共源极放大器性能分析一、实验目的1.掌握synopsys软件启动和电路原理图(schematic)设计输入方法;2.掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真;3.输入共源级放大器电路并对其进行DC、AC分析,绘制曲线;4.深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响。

模拟集成电路实验报告

模拟集成电路实验报告

CMOS放大器设计实验报告一、实验目的1.培养学生分析、解决问题的综合能力;2.熟悉计算机进行集成电路辅助设计的流程;3.学会适应cadence设计工具;4.掌握模拟电路仿真方法6.掌握电子电路、电子芯片底层版图设计原则和方法;7.掌握使用计算机对电路、电子器件进行参数提取及功能模拟的过程;8.熟悉设计验证流程和方法。

二、实验原理单级差分放大器结构如下图所示:在电路结构中,M2和M3组成了NMOS差分输入对,差分输入与单端输入相比可以有效抑制共模信号干扰;M0和M1电流镜为有源负载,可将差分输入转化为单端输出;M5管提供恒定的偏置电流。

三、实验要求设计电路使得其达到以下指标:1.供电电压:2.输入信号:正弦差分信号3.共模电压范围为4.差分模值范围5.输出信号:正弦信号6.摆率大于7.带宽大于8.幅值增益:9.相位裕度:10.功耗:11.工作温度:四、差分放大器分析1、直流分析为了使电路正常工作,电路中的MOS管都应处于饱和状态。

1.1 M2管的饱和条件:1.2 M4管的饱和条件:2.小信号分析小信号模型如下:由图可得:2.1 增益分析其中2.2 频率响应分析由小信号模型易知:其中3.电路参数计算3.1确定电流根据摆率指标:根据功耗指标易知:根据带宽指标:综上,取:3.2宽长比的确定M4与M5:电流源提供的电流为,参数设为,根据电流镜原理,可以算出M2与M3:带入数据可得取值为20,则取M0与M1:这两个PMOS管对交流性能影响不大,只要使其下方的管子正常开启即可,实验中取值:五、仿真结果1、幅频特性设置激励如下:信号名称信号类型参数VDD直流V=3.3VGND直流V=0VVin+交流小信号幅值1mV,频率50KHz直流电压1.65V,初相0 Vin-交流小信号幅值1mV,频率50KHz电压1.65V,初相180进行ac仿真,仿真结果如下:增益,,相位裕度为,满足指标要求。

2、摆率仿真通过加入方波激励进行测试摆率信号名称信号类型参数VDD直流V=3.3VGND直流V=0VVin+方波V1=0V,V2=3.3V周期2,占空比50%Vin-方波V1=3.3V,V2=0V周期2,占空比50%仿真结果如下:得到:满足指标要求。

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告(前端设计部分)课程设计题目:数字频率计所在专业班级:电子科作者姓名:作者学号:指导老师:目录(一)概述 22一、设计要求2二、设计原理 3三、参量说明3四、设计思路3五、主要模块的功能如下4六、4七、程序运行及仿真结果4八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 71011(一)概述在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。

测量频率的方法有多种,数字频率计是其中一种。

数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。

数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。

在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。

频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。

时基脉冲的周期越长,得到的频率值就越准确。

通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。

闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。

本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。

讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。

(二)设计方案一、设计要求:⑴设计一个数字频率计,对方波进行频率测量。

⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

GW48-PK2上可以提供一个1Hz的标准信号,利用这一信号可以得到1s宽度的闸门信号。

⑶ GW48-PK2中的数码管可以用来显示数据。

北邮电子电路综合设计实验报告

北邮电子电路综合设计实验报告

北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计学院:信息与通信工程学院 班级:2013211123姓名:周亮学号:2013211123班内序号:9一、 摘要方波与三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。

方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成;三角波主要由积分电路产生。

三角波转换为正弦波,则是通过差分电路实现。

该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波;而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。

二、关键词: 函数信号发生器 方波 三角波 正弦波三、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。

(1) 输出频率能在1-­‐10KHz范围内连续可调,无明显失真。

(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。

(3) 三角波Uopp=8V(误差小于20%)。

(4) 正弦波Uopp1V,无明显失真。

2. 提高要求:(1) 输出方波占空比可调范围30%-­‐70%。

(2) 三种输出波形的峰峰值Uopp均可在1V-­‐10V内连续可调电源电路 方波-­‐三角波发生电路 正弦波发生电路方波输三角波输正弦波输现输出信号幅度的连续调节。

利用二极管的单向导通性,将方波-­‐三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。

五、分块电路和总体电路的设计过程1. 方波-­‐三角波产生电路设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。

方波要求上升、下降沿小于10us,峰峰值为12V。

LM741转换速率为0.7V/us,上升下降沿为17us,大于要求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟CMOS集成电路课程实验报告姓名:杨珊指导老师:韩可学院:电子工程班级:2013211204 学号:2013210926实验一:共源级放大器性能分析一、实验目的1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法;2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真;3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线;4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响二、实验要求1、启动synopsys,建立库及Cellview文件。

2、输入共源级放大器电路图。

3、设置仿真环境。

4、仿真并查看仿真结果,绘制曲线。

三、实验结果1、电路图2、幅频特性曲线当R=1K,当R=10K,四、实验结果分析器件参数:NMOS管的宽长比为10,栅源之间所接电容1pF。

实验结果:当Rd=1K时,gm=2735.7u,Av=2.73.当Rd=10k时,gm=173.50u,Av=1.73.由此可知,当R增大时,放大器的性能下降。

实验二:差分放大器设计一、实验目的1.掌握差分放大器的设计方法;2.掌握差分放大器的调试与性能指标的测试方法。

二、实验要求1.确定放大电路;2.确定静态工作点Q;3.确定电路其他参数。

4.电压放大倍数大于20dB ,尽量增大GBW ,设计差分放大器;5.对所设计电路调试;6.对电路性能指标进行测试仿真,并对测量结果进行验算和误差分析。

三、实验原理平衡态下的小信号差动电压增益A V 为:β1= β2= β=μn C OX (W/L) 四、实验结果W/L R 5 10 15 20100K 27dB 28dB 28dB 28dB 120K 27dB 27dB 28dB 29dB300K18dB19dB20dB20dB通过表格可知,改变W/L 和栅极电阻,当R 一定时,随着W/L 增加,增益增加,W/L 一定时,随着R 的增加,增益也减少。

但是由于带宽的限制,我们不能无限地增大W/L.为保证带宽,选取W/L=30,R=30K 的情况下的数值,保证了带宽约为300MHZ ,可以符合系统的功能特性,实验结果见下图。

SSV SS D D I A =βI R =2β()R 21.电路图2.幅频特性曲线五、思考题根据计算公式,为什么不能直接增大R实现放大倍数的增大?答:若直接增加Rd,则Vd会增加,增加过程中会限制最大电压摆幅;如果VDD—Vd=Vin—VTH,那MOS管处于线性区的边缘,此时仅允许非常小的输出电压摆幅。

即电路不工作。

此外,RD增大还会导致输出结点的时间常数更大。

实验三:电流源负载差分放大器设计一、实验目的1.掌握电流源负载差分放大器的设计方法;2.掌握差分放大器的调试与性能指标的测试方法。

二、实验要求1.设计差分放大器,电压放大倍数大于30dB;2.对所涉及的电路进行设计、调试;3.对电路性能指标进行测试仿真,并对测量结果进行验算和误差分析。

三、实验原理电流镜负载的差分对传统运算放大器的输入级一般都采用电流镜负载的差分对。

如上图所示。

NMOS器件M1和M2作为差分对管,P沟道器件M4,M5组成电流源负载。

电流0I 提供差分放大器的工作电流。

如果M4和M5相匹配,那么M1电流的大小就决定了M4电流的大小。

这个电流将镜像到M5。

如果V GS1=V GS2,则Ml和M2的电流相同。

这样由M5通过M2的电流将等于是I OUT为零时M2所需要的电流。

如果V GS1>V GS2,由于I0=I D1+I D2,I D1相对I D2要增加。

I D1的增加意味着I D4和I D5也增大。

但是,当V GS1变的比V GS2大时,I D2应小。

因此要使电路平衡,I OUT必须为正。

输出电流I OUT等于差分对管的差值,其最大值为I0。

这样就使差分放大器的差分输出信号转换成单端输出信号。

反之如果V GS1<V GS2,将变成负。

假设M1和M2差分对总工作在饱和状态,则可推导出其大信号特性。

描述大信号性能的相应关系如下:式(7-1)中,V ID表示差分输入电压。

上面假设了M1 和M2 相匹配。

将式(7-1)代入(7-2)中得到一个二次方程,可得出解。

上图是归一化的M1 的漏电流与归一化差分输入电压的关系曲线,也即是CMOS差分放大器的大信号转移特性曲线。

该放大器的小信号特性参数等效跨导从图2可以看出,在平衡条件下,M2和M5的输出电阻分别为:于是该放大器的电压增益为:四,实验结果(表中数据单位:dB)W/L(N)40506070 W/L(P)529dB30dB30dB31dB1035dB36dB37dB37dB 1536dB37dB37dB38dB选择nmos(w/L)=50,pmos(w/L)=10数据作为结果:由结果曲线可知,此放大器的使用频率范围需要严格控制,当f增大到一定值时,增益下降速率很快。

1.电路图2.幅频特性曲线实验五:共源共栅电流镜设计一、实验目的熟悉软件的使用,了解Cadence软件的设计过程。

掌握电流镜的相关知识和技术,设计集成电路实现所给要求。

二、实验要求1.低输出高压高输出电阻的电流镜设计;2.电流比1:1;3.输出电压最小值0.5V;4.输出电流变化范围5~1000uA。

三、实验内容1.确定(W/L)1、(W/L)2、(W/L)3、(W/L)4和沟道长度L2.验证直流工作点3.仿真验证四、实验结果1.电路图由图可知,i6=104.6u,idc=100u,所以idc:i6≌1:1,大致符合电流镜的设计要求。

且Vmin=0.529.实验六:两级运算放大器设计一、实验目的熟悉软件的使用,了解synopsys软件的设计过程。

掌握电流镜的相关知识和技术,设计集成电路实现所给要求。

二、实验要求单级放大器输出对管产生的小信号电流直接流过输出电阻,因此单级电路的增益被抑制在输出对管的跨导与输出阻抗的乘积。

在单级放大器中,增益是与输出摆幅相矛盾的。

要想得到大的增益我们可以采用共源共栅结果来极大的提高出阻抗的值,但是共源共栅中堆叠的MOS管不可避免的减少了输入电压的范围。

因为多一层管子至少增加一个对管子的过驱动电压。

这样在共源共栅结构的增益与输出电压矛盾。

为了缓解这种矛盾引入两级运放,在两级运放中将这两个点在不同级实现。

如本设计中的两级运放,大的增益靠第一级与第二级级联而组成,而大的输出电压范围靠第二级的共源放大器来获得。

设计一个COMS 两级放大电路,满足以下指标: AV=5000V/V (74dB ) VDD=2.5V VSS=-2.5VGB=5MHz CL=5pf SR>10V/us 相位裕度=60度 VOUT 范围=[-2,2]V ICMR=-1~2V Pdiss<=2mW三、实验内容确定电路的拓扑结构:图中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流I D1,2=I D3,4=1/2*I D5,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。

图1所示,Cc 为引入的米勒补偿电容。

利用表1、表2中的参数计算得到第一级差分放大器的电压增益为:第二极共源放大器的电压增益为所以二级放大器的总的电压增益为相位裕量有111121180tan()tan()tan()60MGB GB GBp p z---Φ=±---=o o要求60°的相位裕量,假设RHP零点高于10GB以上11102tan()tan()tan(0.1)120vGBAp---++=102tan()24.3GBp-=所以22.2p GB≥即622.2()m mL cg gC C>由于要求60o的相位裕量,所以626210()10m mm mc cg gg gC C>⇒>可得到2.20.2210Lc LCC C>==2.2pF因此由补偿电容最小值2.2pF,为了获得足够的相位裕量我们可以选定Cc=3pF考虑共模输入范围:在最大输入情况下,考虑M1处在饱和区,有3131(max)(max)DD SG n IC n TN IC DD SG TN V V V V V V V V V V --≥--⇒≤-+ (4)在最小输入情况下,考虑M5处在饱和区,有1515(min)(min)IC SS GS Dsat IC SS GS Dsat V V V V V V V V --≥⇒≤++ (5)而电路的一些基本指标有11m v C g p A C =-(6) 62m Lg p C =-(7)61m Cg z C =(8)1m Cg GB C =(9)CMR:正的CMR in31()()DD T T V V V +(最大)=V 最大最小(10)负的CMR in15()()SS T DS V V V +(最小)=V 最大饱和(12)由电路的压摆率5d CI SR C =得到5d I =(3*10-12)()10*106)=30μA(为了一定的裕度,我们取40iref A μ=。

)则可以得到,1,23,45/220d d d I I I Aμ===下面用ICMR 的要求计算(W/L)353'2331()()[]DD SG TN I WL K V V V =-+≅11/1所以有3()W L =4()W L =11/1由1m C g GB C =,GB=5MHz ,我们可以得到6121510231094.2m g s πμ-=⨯⨯⨯⨯=即可以得到2m112'1g (/)(/)2/12N W L W L K I ==≅ 用负ICMR 公式计算5Dsat V 由式(12)我们可以得到下式 15(min)IC SS GS Dsat V V V V =++如果5DS V 的值小于100mv ,可能要求相当大的5(/)W L ,如果5Dsat V 小于0,则ICMR 的设计要求则可能太过苛刻,因此,我们可以减小5I 或者增大5(/)W L 来解决这个问题,我们为了留一定的余度我们(min)IC V 等于-1.1V 为下限值进行计算152511(min)Dsat IC TN SSI V V V V β=---()则可以得到的5Dsat V 进而推出555'2552(/)()Dsat S W L K V ==(I )11/1≅即有58(/)(/)11/1W L W L =≅为了得到60°的相位裕量,6m g的值近似起码是输入级跨导1m g 的10倍(allen书p.211例6.2-1),我们设6110942m m g g s μ==,为了达到第一级电流镜负载(M3和M4)的正确镜像,要求46SG SG V V =,图中x ,y 点电位相同我们可以得到6644(/)(/)64/1m m g W L W L g ==进而由6m g =22m6m667''6666g g 113.72(/)2d d I I A K W L K S μ====同样由电流镜原理,我们可以得到7755(/)(/)32/1d d I W L W L I ==四、实验原理电路结构:最基本的 COMS 二级密勒补偿运算跨导放大器的结构如图所示。

相关文档
最新文档