八年级数学下册《四种特殊四边形的命题与证明》导学案 冀教版
最新冀教版八年级数学下册 第二十二章四边形 教案教学设计(含教学反思)
第二十二章四边形22.1 平行四边形的性质 (1)第1课时平行四边形的性质定理1 (1)第2课时平行四边形的性质定理2 (4)22.2 平行四边形的判定 (7)第1课时平行四边形的判定定理1 (7)第2课时平行四边形的判定定理2、3 (9)22.3 三角形的中位线 (12)22.4 矩形 (14)第1课时矩形的性质 (14)第2课时矩形的判定 (17)22.5 菱形 (20)第1课时菱形的性质 (20)第2课时菱形的判定 (24)22.6 正方形 (28)22.7 多边形的内角和与外角和 (33)复习整理 (35)22.1 平行四边形的性质第1课时平行四边形的性质定理1教学目标1.理解平行四边形的概念;(重点)2.掌握平行四边形边、角的性质;(重点)3.利用平行四边形边、角的性质解决问题.(难点)教学过程一、情境导入如图,平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB=∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ) A.35°B.55°C.25°D.30°解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE 中,∵⎩⎪⎨⎪⎧CF =CE ,∠FCP =∠ECP ,CP =CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多. 【类型四】 判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM=∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.三、板书设计1.平行四边形的定义2.平行四边形的边、角特征3.两平行线间的距离教学反思学生通过观看多媒体课件的演示和动手操作的过程,得出并掌握平行四边形的性质,效果比较好.例题能够引导学生用不同的方法去解决问题并加以变式练习,使教师能根据学生的掌握情况及时解决学生在练习的过程中发现问题,并通过投影指出错误,规范说理过程,极大提高课堂效率.第2课时 平行四边形的性质定理2教学目标1.掌握平行四边形对角线互相平分的性质;(重点)2.利用平行四边形对角线互相平分解决有关问题.(难点)教学过程一、情境导入如图,在平行四边形ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,你能算出图中阴影部分的面积吗?二、合作探究探究点一:平行四边形的对角线互相平分 【类型一】 利用平行四边形对角线互相平分求线段已知▱ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA 的周长长5cm ,求这个平行四边形各边的长.解析:平行四边形周长为60cm ,即相邻两边之和为30cm.△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,因而由题可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA的周长长5cm ,∴AB -AD =5cm ,又∵▱ABCD 的周长为60cm ,∴AB +AD =30cm ,则AB =CD =352cm ,AD =BC =252cm. 方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】 利用平行四边形对角线互相平分证明线段或角相等如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO 中,⎩⎪⎨⎪⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.【类型三】 判断直线的位置关系如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF 的关系并证明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用△FOD ≌△EOB 可得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E 、F 分别是OA 、OC 的中点,∴OE =OF ,又∵∠FOD =∠EOB ,∴△FOD ≌△EOB (SAS),∴BE =DF ,∠ODF =∠OBE ,∴BE ∥DF .方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.探究点二:平行四边形的面积在▱ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:(1)根据“平行四边形的对角线互相平分”可得AO =CO ,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等解答.(1)证明:在▱ABCD 中,AO =CO .设点B 到AC 的距离为h ,则S △ABO =12AO ·h ,S △CBO =12CO ·h ,∴S △ABO =S △CBO ;(2)解:S △ABP =S △CBP .理由如下:在▱ABCD 中,点A 、C 到BD 的距离相等,设为h ,则S △ABP =12BP ·h ,S △CBP =12BP ·h ,∴S △ABP =S △CBP . 方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.三、板书设计1.平行四边形对角线互相平分2.平行四边形的面积教学反思通过分组讨论学习和自主探究,加强了学生在教学过程中的实践活动,也使学生之间的合作意识增强,与同学交流学习的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,教学相长.22.2 平行四边形的判定第1课时平行四边形的判定定理1教学目标1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)2.平行四边形性质定理与判定定理的综合应用.(难点)教学过程一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?二、合作探究探究点一:一组对边平行且相等的四边形是平行四边形已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.解:四边形ABCD 是平行四边形,证明:∵DF ∥BE ,∴∠AFD =∠CEB ,又∵AF =CE 、DF =BE ,∴△AFD ≌△CEB (SAS),∴AD =CB ,∠DAF =∠BCE ,∴AD ∥CB ,∴四边形ABCD 是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.探究点二:平行四边形的判定定理与性质的综合应用 【类型一】 利用性质与判定证明如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明. 解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF ,再利用已知得出△ADE ≌△BCF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠BAC =∠DCA .∵BE ⊥AC于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形,理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF ,∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB .∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF ,∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.【类型二】 利用性质与判定计算如图,已知六边形ABCDEF 的六个内角均为120°,且CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm.试求此六边形的周长.解析:由∠A=∠B=∠C=∠D=∠E=∠F=120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,则必为等边三角形.事实上,设BC、ED的延长线交于点N,则△DCN为等边三角形.由∠E=120°,∠N=60°,可知EF∥BN.同理可知ED∥AB,于是从平行四边形入手,找出解题思路.解:延长ED、BC交于点N,延长EF、BA交于点M.∵∠EDC=∠BCD=120°,∴∠NDC =∠NCD=60°.∴∠N=60°.同理,∠M=60°.∴△DCN、△FMA均为等边三角形.∴∠E+∠N=180°.同理∠E+∠M=180°.∴EM∥BN,EN∥MB.∴四边形EMBN是平行四边形.∴BN =EM,MB=EN.∵CD=2cm,BC=8cm,AB=8cm,AF=5cm,∴CN=DN=2cm,AM=FM=5cm.∴BN=EM=8+2=10(cm),MB=EN=8+5=13(cm).∴EF+FA+AB+BC+CD+DE=EF+FM +AB+BC+DN+DE=EM+AB+BC+EN=10+8+8+13=39(cm),∴此六边形的周长为39cm.方法总结:解此题的关键是作辅助线,将“不规则”的六边形变成“规则”的平行四边形,从而利用平行四边形的知识来解决.三、板书设计一组对边平行且相等的四边形是平行四边形教学反思本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.第2课时平行四边形的判定定理2、3教学目标1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定解决问题.(难点)教学过程一、情境导入我们已经学习了哪些平行四边形的判定方法?平行四边形的对角线互相平分的逆命题是什么?是否是真命题.是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边△BCF .试说明四边形DAEF 是平行四边形.解析:根据题意,利用全等可证明AD =FE ,DF =AE ,从而可判断四边形DAEF 为平行四边形.解:∵△ABD 和△FBC 都是等边三角形,∴∠DBF +∠FBA =∠ABC +∠ABF =60°,∴∠DBF =∠ABC .又∵BD =BA ,BF =BC ,∴△ABC ≌△DBF (SAS),∴AC =DF =AE .同理可证△ABC ≌△EFC ,∴AB =EF =AD ,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.探究点二:对角线相互平分的四边形是平行四边形如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.探究点三:平行四边形的判定定理的应用 【类型一】 利用平行四边形的判定定理证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理的综合运用如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明. 解析:(1)根据“AAS”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形. 方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理两组对边分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理的应用教学反思在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.22.3 三角形的中位线教学目标1.了解三角形中位线的定义;2.掌握三角形的中位线定理;(重点)3.综合运用平行四边形的判定及三角形的中位线定理解决问题.(难点)教学过程一、情境导入如图所示,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】利用三角形中位线定理求线段的长如图,在△ABC 中,D 、E 分别为AC 、BC 的中点,AF 平分∠CAB ,交DE 于点F .若DF =3,则AC 的长为( ) A.32B .3C .6D .9解析:如图,∵D 、E 分别为AC 、BC 的中点,∴DE ∥AB ,∴∠2=∠3,又∵AF 平分∠CAB ,∠1=∠3,∴∠1=∠2,∴AD =DF =3,∴AC =2AD =2DF =6.故选C.方法总结:本题考查了三角形中位线定理,等腰三角形的判定等知识.解题的关键是熟记性质并熟练应用.【类型二】 利用三角形中位线定理求角如图,C 、D 分别为EA 、EB 的中点,∠E =30°,∠1=110°,则∠2的度数为( )A .80°B .90°C .100°D .110°解析:∵C 、D 分别为EA 、EB 的中点,∴CD 是三角形EAB 的中位线,∴CD ∥AB ,∴∠2=∠ECD ,∵∠1=110°,∠E =30°,∴∠ECD =∠2=80°,故选A.方法总结:根据三角形中位线定理可得出平行关系,所以利用三角形中位线定理中的平行关系可以解决一些角度的计算问题.【类型三】 运用三角形的中位线定理进行证明如图所示,在四边形ABCD 中,AC =BD ,E 、F 分别为AB 、CD 的中点,AC 与BD 交于点O ,EF 分别交AC 、BD 于M 、N .求证:∠ONM =∠OMN .解析:图中有两个中点,但不在同一个三角形中,取AD 的中点P ,连接EP 、FP ,利用三角形的中位线定理即可证明.证明:取AD 的中点P ,连接EP 、FP ,则EP 为△ABD 的中位线.∴EP ∥BD ,EP =12BD ,∴∠PEF =∠ONM ,同理可知PF 为△ADC 的中位线,∴FP ∥AC ,FP =12AC ,∴∠PFE =∠OMN ,∵AC =BD ,∴PE =PF ,∴∠PEF =∠PFE ,∴∠ONM =∠OMN .方法总结:在三角形中,若已知一边的中点,常取其余两边的中点,以便利用三角形的中位线定理来解题.【类型四】构造三角形中位线解题如图所示,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE.解析:直接找CD与CE之间的数量关系较困难,可取AC的中点F,间接找CD与CE之间的数量关系.证明:取AC的中点F,连接BF.∵BD=AB,∴BF为△ADC的中位线,∴DC=2BF.∵E为AB的中点,AB=AC,∴BE=CF,∠ABC=∠ACB.∵BC=CB,∴△EBC≌△FCB.∴CE=BF,∴CD=2CE.方法总结:恰当地构造三角形中位线是解决线段倍分关系的关键.三、板书设计1.三角形的中位线的概念2.三角形的中位线定理教学反思本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.22.4 矩形第1课时矩形的性质教学目标1.理解并掌握矩形的性质定理及推论;(重点)2.会用矩形的性质定理及推论进行推导证明;(重点)3.会综合运用矩形的性质定理进行证明与计算.(难点)教学过程一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.二、合作探究探究点:矩形的性质【类型一】运用矩形的性质求线段或角在矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB 长为( )A.1cm B.2cm C.2.5cm D.4cm解析:在矩形ABCD中,O是BC的中点,∠AOD=90°.根据矩形的性质得到△ABO≌△OCD,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB.由矩形ABCD的周长为24cm,得2AB+4AB=24cm,解得AB=4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.【类型二】运用矩形的性质解决有关面积问题如图,矩形ABCD 的对角线的交点为O ,EF 过点O 且分别交AB ,CD 于点E ,F ,则图中阴影部分的面积是矩形ABCD 的面积的( ) A.15 B.14 C.13 D.310解析:∵在矩形ABCD 中,AB ∥CD ,OB =OD ,∴∠ABO =∠CDO .在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴S △BOE =S △DOF ,∴S 阴影=S △AOB =14S 矩形ABCD .故选B. 方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.【类型三】 运用矩形的性质证明线段相等如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF ⊥BE 于F .求证:BF =AE .解析:利用矩形的性质得出AD ∥BC ,∠A =90°,再利用全等三角形的判定得出△BFC ≌△EAB ,进而得出答案.证明:在矩形ABCD 中,AD ∥BC ,∠A =90°,∴∠AEB =∠FBC .∵CF ⊥BE ,∴∠BFC =∠A=90°.由作图可知,BC =BE .在△BFC 和△EAB 中,⎩⎪⎨⎪⎧∠A =∠CFB ,∠AEB =∠FBC ,EB =BC ,∴△BFC ≌△EAB (AAS),∴BF =AE .方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.【类型四】 运用矩形的性质证明角相等如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,EF ⊥ED .求证:AE 平分∠BAD .解析:要证AE 平分∠BAD ,可转化为△ABE 为等腰直角三角形,得AB =BE .又AB =CD ,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠BAD =90°,AB =CD ,∴∠BEF +∠BFE =90°.∵EF ⊥ED ,∴∠BEF +∠CED =90°.∴∠BFE =∠CED ,∴∠BEF =∠EDC .在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE =∠CED ,EF =ED ,∠BEF =∠EDC ,∴△EBF ≌△DCE (ASA).∴BE =CD .∴BE =AB ,∴∠BAE =∠BEA=45°,∴∠EAD =45°,∴∠BAE =∠EAD ,∴AE 平分∠BAD .方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.三、板书设计矩形的性质矩形的四个角都是直角;矩形的对角线相等.教学反思通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上.第2课时 矩形的判定教学目标1.掌握矩形的判定方法;(重点)2.能够运用矩形的性质和判定解决实际问题.(难点)教学过程一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB 交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠FAE=∠EAC.∵∠B +∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM =OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形。
新课标JJ冀教版 初二八年级数学 下册第二学期(导学案)第二十二章 四边形(第22单元 全章 导学案)
第二十二章四边形22.1 平行四边形的性质第1课时平行四边形的性质定理1学习目标:1、复习四边形的概念、结构、分类;2、掌握平行四边形的概念、结构、表示、读法;3、理解平行四边形的性质.重难点:平行四边形性质的应用学习过程一、回顾思考1、三角形的概念:。
2、四边形的概念:。
3、叫做四边形的对角;相对的两条边叫做四边形的。
叫做四边形的对角线。
4、你能说出右图中四边形的所有结构。
四个内角分别是,,,。
对角线是和边AB的对边是;边AD的对边是。
5、四边形可以分为两类:和。
(注:我们初中阶段只需掌握凸四边形)。
6、下列四边形哪些是凸四边形?哪些是凹四边形?二、新知探究1、概念:看课本回答:(1) 叫做平行四边形。
(2)如图,在四边形ABCD 中 ⎩⎨⎧DC AB //则四边形ABCD 是平行四边形,记作 ,读作 。
2、探究平行四边形的性质:画一个平行四边形,量一量并猜测出平行四边形的对边 ,平行四边形的对角 。
证明你的猜测:证明 :连接对角线AC 。
四边形ABCD 是平行四边形 ∴ AB// ,即=∠1(两直线平行, )。
又 BC// ,即=∠3(两直线平行, )∴ 31∠+=+∠ ( )即 =∠BAD你还可以通过证明ABC ∆与CDA ∆全等后说明DA BC CD AB D B ==∠=∠,, 请根据图形同学之间相互口述说明ABC ∆与CDA ∆全等的证明过程。
归纳:平行四边形的性质有: , ; 。
结合图形用几何语言可以表述为:在 EFGH 中,EF// ,FG// ; EH= , =HG ; .,=∠=∠H E3、自主学习:看课本,回答问题。
(1)两平行线之间的平行线段的长度 。
=∠=∠G ,H 1l 2l (2) 叫做两平行线之间的距离。
(3)两平行线之间的距离处处 。
三、课堂练习1、 一块平行四边形的木板,其中木板的一边长为45cm ,相邻的另一边长为55cm ,试求这块木板的周长。
八年级数学下册第二十二章四边形复习教案(新版)冀教版
八年级数学下册第二十二章四边形复习教案(新版)冀教版【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为 5 厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是 50 平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是( C )A.对角线相等(距、正) B. 对角线平分一组对角(菱、正)C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是( A )A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A.正方形B.菱形C.矩形 D.平行四边形都是中心对称图形,A 、B 、C 都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
2024八年级数学下册第22章四边形22.5菱形2菱形的判定教案(新版)冀教版
1. 课堂评价:
- 通过提问:教师可以通过提问的方式了解学生对菱形概念、性质和判定方法的理解程度。例如,教师可以提问学生:“什么是菱形?”,“菱形的性质有哪些?”等。
- 观察:教师可以观察学生在实践活动中的表现,了解他们是否能够正确运用菱形的性质和判定方法。例如,教师可以观察学生在实验操作中是否能够正确作图。
- 测试:教师可以设计一些测试题,如选择题、填空题和解答题,来评估学生对菱形知识的掌握程度。
2. 作业评价:
- 教师需要对学生的作业进行认真批改和点评。对于正确的部分,教师可以给予肯定和鼓励;对于错误的部分,教师需要指出错误的原因,并提出改进的建议。
- 教师可以通过作业评价来了解学生对课堂所学知识的掌握情况,以及他们在家庭学习中是否存在问题。
- 教师可以鼓励学生在作业中表达自己的思考和理解,以培养他们的自主学习和创新能力。
3. 学生互评:
- 学生可以相互评价对方在小组讨论和实践活动中的表现。这种评价可以帮助学生了解自己的优点和不足,并从他人的经验中学习。
- 学生互评可以促进学生之间的交流和合作,培养他们的团队合作精神。
4. 学生自我评价:
同学们,今天我们将要学习的是《菱形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个四边形是否为菱形的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索菱形的奥秘。
二、新课讲授(用时10分钟)
4. 问题解决能力:学生将学会如何运用菱形的性质和判定方法来解决实际问题。他们能够将所学的知识应用到具体的题目中,灵活运用菱形的性质来判断和解决问题。
5. 合作交流能力:通过小组讨论和成果分享,学生的合作交流能力将得到培养。他们将学会与他人合作、分享自己的想法和观点,并倾听他人的意见和想法。
八年级数学下册22四边形教案新版冀教版
第二十二章四边形1.了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形的内角和与外角和公式.2.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.3.探索并证明平行四边形的性质定理和判定定理.4.探索并证明矩形、菱形、正方形的性质定理和判定定理.5.探索并掌握三角形的中位线定理.1.在本章知识的探究与深化的过程中,提高学生的合情推理与演绎推理的能力.2.在探索图形的性质与判定定理的活动过程中,进一步建立空间观念.1.通过经历运用图形变换探索图形性质的过程,体验数学研究和发现的过程,并能得出正确的结论.2.通过逆命题猜想、操作验证、逻辑推理证明的过程,体验数学研究和发现的过程,学会数学思考的方法.3.进一步培养学生的数学说理能力与习惯,并要求学生能熟练书写规范的推理格式.1.本章的内容、地位和作用本章内容包括三个方面:基础知识——四边形、特殊四边形以及多边形的有关概念,平行四边形、矩形、菱形和正方形的性质定理和判定定理,三角形的中位线定理;基本方法——探索图形性质的基本方法(观察、试验、作图、变换、推理等);推理——合情推理与演绎推理,凭借经验和直觉,通过归纳和类比等方法,发现问题,提出问题及从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则进行证明和计算.在知识方面,四边形是最基本的平面图形之一,是三角形有关内容的进一步发展,也是学生继续学习空间与图形等其他内容的基础.在几何知识研究方法与过程方面,把图形变换作为有效的工具,充分体现了图形变换在研究图形性质和判定中的作用.在推理能力训练方面,理解两种推理功能不同.二者相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论,在解决问题的过程中,逐步掌握两种推理的运用.2.本章内容呈现方式及特点.(1)以学生已经掌握的三角形有关知识以及图形变换(轴对称、平移、旋转,特别是中心对称)等有关几何事实为基础,通过观察、操作、思考和交流等数学活动,获得几何概念、性质定理、判定定理,培养学生推理的意识和能力.(2)根据本章内容的特点,采用“先特殊的多边形(四边形),再一般的多边形”的编排思路,在呈现方式上,摒弃“结论——例题——练习”的陈述模式,改用“问题——探究——发现——证明”的探究模式,并采用多种探究方法.(3)将合情推理与演绎推理紧密结合起来,把推理能力的培养建立在可操作的环节上.(4)本章特别强调图形性质和判定的探索过程,而不是简单地得到四边形、特殊四边形的有关性质和判定的结论.(5)在呈现具体内容时,教材力图为学生提供生动有趣的现实情境,通过各种活动,充分挖掘特殊四边形的中心对称性和轴对称性.这种设计,旨在进一步深化学生对四边形性质定理和判定定理的理解,以及对识图、简单画图等操作技能的掌握,进一步丰富学生的数学活动经验,有意识地培养学生积极的情感态度,并促进其形成良好的数学观,【重点】1.理解和掌握平行四边形的性质定理和判定定理以及特殊平行四边形的性质和判定方法.2.多边形的内角和与外角和.【难点】平行四边形的性质定理与判定定理的综合应用.1.教学活动的组织要根据本章的具体内容和呈现方式的特点,以学生的生活经验和已有的数学活动经验(包括操作经验)为基础,注意题材选取的灵活性(既可以充分利用教材中已有的题材,也可以根据实际创设更现实、更有趣的问题情境),充分展开学生的活动,通过图形性质的探究过程,培养学生的抽象概括能力和推理能力.2.应特别关注学生的探索精神的培养.要有意识地引导学生自觉地表达对有关概念、结论的理解,自觉地用自己的语言说明操作的过程,并利用说理和简单的推理印证结论的真实性.3.应注意图形变换的工具性作用.充分利用图形的平移、旋转(特别是中心对称)和轴对称来探究图形的性质和判定方法.4.注意合情推理与演绎推理地有机结合.要有意识地培养学生有条理的思考、表达和交流,使学生体会证明的过程要步步有据,使学生逐步掌握几何推理的基本步骤和综合法证明的格式.5.关注学生的合作与交流.在课堂上给学生自主、合作的活动机会,逐步培养学生的团体合作和竞争意识,发展交往与审美的能力,强调合作动机和个人责任.6.加强对关键问题与困难环节的引导与指导,增强学生的兴趣和信心.22.1平行四边形的性质2课时22.2平行四边形的判定2课时22.3三角形的中位线1课时22.4矩形2课时22.5菱形2课时22.6正方形1课时22.7多边形的内角和与外角和1课时回顾与反思1课时22.1平行四边形的性质1.经历平行四边形概念的形成过程和性质的探究过程,体会平移、中心对称等图形变化在研究平行四边形及其性质中的作用.2.通过旋转等操作活动体会平行四边形的中心对称性.3.探索并掌握平行四边形的性质.通过证明平行四边形的性质定理的过程,进一步理解几何证明的意义.在操作、探究等数学活动中,提高学生的探究能力,增强交流与合作的意识.【重点】平行四边形的性质的探索.【难点】平行四边形的性质的探究和应用.第课时通过运用图形的变化探索并掌握平行四边形的有关概念和特征.1.体验数学研究和发现的过程,并得出正确的结论.。
初中数学8年级下册《特殊的平行四边形》导学案
课题 19.2 特殊的平行四边形课时:五课时第一课时 19.2.1 矩形的性质【学习目标】1.掌握矩形的性质定理及推论。
2.能熟练应用矩形的性质进行有关证明和计算。
【重点难点】重点:掌握矩形的性质定理。
难点:利用矩形的性质进行证明和计算。
【导学指导】阅读教材P94-P96相关内容,思考、讨论、合作交流后完成下列问题:1.什么是矩形?2.矩形是特殊的平行四边形,平行四边形具有的性质它有没有?平行四边形的边有什么性质?角呢?对角线呢?那么它特殊在什么地方?所以它有什么性质?如何记住它呢?3.矩形的一条对角线把它分成了两个什么三角形?由矩形的性质,你可以得到这个三角形的什么性质?【课堂练习】1.教材P95练习第1,2,3题。
2.Rt△ABC中,两条直角边分别为6和8,则斜边上的中线长为。
【要点归纳】今天你有什么收获?与同伴交流一下。
【拓展训练】1. 将矩形纸片ABCD 沿对角线BD 对折,再折叠使AD 与对角线BD 重合,得折痕DG ,若AB=8,BC=6,求AG 的长。
2. 在四边形ABCD 中,∠ABC=∠ADC=90°,E 是AC 的中点,EF 平分∠BED 交BD 于点F 。
(1) 猜想:EF 与BD 具有怎样的关系?(2) 试证明你的猜想。
ABD第二课时矩形的判定【学习目标】1.理解并掌握矩形的判定方法。
2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养分析能力。
【重点难点】重点:矩形的判定定理及推论。
难点:定理的证明方法及运用。
【导学指导】复习旧知:1.什么是平行四边形?什么是矩形?2.矩形有哪些性质?你能猜想如何判定矩形吗?学习新知:阅读教材P95-P96相关内容,思考、讨论、合作交流后完成下列问题:1.利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么?2.还有哪些方法可以证明一个四边形是矩形?如何证明?试一试。
【课堂练习】1.教材P96练习第1,2题。
八年级下册数学章末复习(2)——几种特殊四边形的定义、性质与判定的应用(导学案)
章末复习(2)——几种特殊四边形的定义、性质与判定的应用一、复习导入 1.导入课题上节课我们一起复习梳理了本章的知识要点,这节课我们一起进一步,研讨学习巩固提高本章的知识运用. 2.复习目标(1)复习与回顾平行四边形的性质和判定、特殊平行四边形的性质和判定、三角形的中位线及其性质、直角三角形斜边上的中线的性质的应用.(2)总结本章的重要思想方法. 3.复习重、难点重点:平行四边形的性质和判定,特殊平行四边形的性质和判定的应用. 难点:性质和判定的综合运用. 4.复习指导(1)复习内容:典例剖析,难点跟踪. (2)复习时间:25分钟.(3)复习方法:尝试完成所给例题,也可查阅资料或与其他同学研讨. (4)复习参考提纲:【例1】如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,给出下列三个条件:①BE=DF;②∠AEB=∠DFC ;③AF ∥EC.请你从中选择一个适当的条件①,使四边形AECF 是平行四边形,并证明你的结论.证明:如图,连接AC 交BD 于O.∴AO=CO,OB=OD.又∵BE=DF,∴OB-BE=OD-DF,∴OE=OF.又∵AO=CO ,∴四边形AECF 为平行四边形.【例2】如图,点E 、F 、G 、H 分别为四边形ABCD 的边AB 、BC 、CD 、DA 的中点,试判断四边形EFGH 的形状,并证明你的结论.解:四边形EFGH 为平行四边形.如图,连接AC ,在△ACD 中,H 、G 分别为AD 、CD 的中点, ∴HG ∥AC,HG=12AC.同理:EF ∥AC,EF=12AC. ∴HG ∥EF,HG=EF.∴四边形EFGH 为平行四边形.【例3】如图,四边形ABCD 是菱形,对角线AC=8cm,BD=6cm ,DH ⊥AB 于H ,求高DH 的长.解:∵四边形ABCD 为菱形,∴AO=12AC=4cm,AC ⊥BD ,∴在Rt △AOB 中,AB=AO2+BO2=32+42=5(cm).又∵ABD S=12DH ·AB=12AO ·BD. ∴·462455AO BD DH AB ⨯===(cm ). 【例4】如图,正方形ABCD 的对角线相交于点O ,点O 是正方形A ′B ′C ′O 的一个顶点,如果两个正方形的边长相等,那么正方形A ′B ′C ′O 绕点O 无论怎样转动,两个正方形重叠部分的面积总等于一个正方形面积的四分之一,你能说明理由吗?(提示:寻找全等三角形)解:∵∠BOF+∠A ′OB=90°,∠A ′OB+∠AOE=90°.∴∠BOF=∠AOE. 又∵OA=OB,∠OAE=∠OBF.∴△AOE ≌△BOF.∴AOEBOFS S=.∴14BOFOEBAOEOEBABOABCD EBFO S SSSSSS =+=+==正方形四边形. 【例5】如图,△ABC 中,BD,CE 为高,F 是边BC 的中点,判断△DEF 的形状,并说明理由. 解:△DEF 为等腰三角形.在Rt △BEC 中,∵F 为BC 的中点,∴EF=12、, 同理:FD=12BC,∴FD=EF. ∴△DEF 为等腰三角形.【例6】如图,在△ABC 中,点O 是AC 上的一动点,过点O 作直线MN ∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F.(1)求证:OC=12EF; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论. (1)证明:∵CE 为∠BCA 的平分线,∴∠BCE=∠ECO.又∵MN ∥BC,∠BCE=∠CEO. ∴∠CEO=∠ECO,∴EO=OC.同理:OC=OF,∴OC=12 EF.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.∵由(1)可知,O为EF的中点,又∵O为AC的中点.∴四边形AECF为平行四边形.又∵CE为∠BCA的平分线,CF为∠ACD的平分线,∠ECF=90°.∴四边形AECF是矩形.二、自主复习学生完成复习参考提纲中的例题进行自学.三、互助复习1.师助生:(1)明了学情:关注学生在完成上述例题中的解答时存在的疑难之处.(2)差异指导:对个别在解题思路和方法不清方面的学生进行解题思路指导,帮助查明知识运用误区及障碍.2.生助生:相互交流帮助,矫正错误.四、强化1.点6位同学板演例题.2.点评其中的易错点和优劣之处.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在本节学习中的态度、方法、成果及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课是对本章知识要点的进一步总结,教学设计典型例题,学生独立完成,并交流思路,教师以讲解的形式强化知识点,加深学生对特殊平行四边形性质和判定的理解;教学过程以学生为主,教师引导学生总结复习本章知识点.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列图形:矩形、菱形、等腰梯形、正方形中对称轴最多的是(D)A.矩形B.菱形C.等腰梯形D.正方形2.(10分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长是(B)A.1B.2C.1.5D.3第2题图第4题图3.(10分)将一张长与宽的比为2∶1的长方形纸片按如图①、②所示的方式对折,然后沿着图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是(A)4.(10分)如图所示,直线l过正方形ABCD的顶点B.A,C两点到直线l的距离分别为5和12,则正方形的边长是13.5.(15分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1 = S2.(填“>”“<”或“=”)第5题图第6题图6.(15分)如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF=12 5.二、综合应用(15分)7.已知:如图,BC是等腰三角形BED底边ED的高,四边形ABEC是平行四边形. 求证:四边形ABCD是矩形.证明:∵BC是等腰三角形BED底边ED的高,∴BC⊥ED,EC=CD.又∵四边形ABEC是平行四边形,∴AB∥EC,即AB∥CD,AB=EC=CD.∴四边形ABCD是平行四边形.又∵BC⊥ED,∴四边形ABCD是矩形.三、拓展延伸(15分)8.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.(提示:找全等三角形)(1)证明:∵∠ADC=∠GDE=90°,∴∠ADC+∠ADG=∠GDE+∠ADG,即∠GDC=∠ADE.又∵CD=AD DG=DE,∴△GCD≌△EAD,∴AE=CG.(2)解:AE⊥CG.∵由(1)知△GCD≌△EAD,∴∠GCD=∠EAD.又∵∠ANM=∠CND,∴∠AMN=∠CDN=90°,∴AE⊥CG.。
数学冀教版八年级下册第22章四边形 教案
22.1平行四边形的性质第一课时教学设计思想“平行四边形的性质”是全章重点内容之一,它在日常生产和生活中经常用到,具有重要的实用性。
本节教学时要引导学生主动积极的探索,认识平行四边形,亲自发现平行四边形的性质,然后通过例题和练习加深对知识的理解,灵活运用性质解决实际问题。
教学目标知识与技能:熟记平行四边形的对边相等、对角线互相平分的性质,并能用它们解决简单的问题。
通过旋转等操作活动体会平行四边形的中心对称性。
通过推导平行四边形的性质定理的过程,提高推导、论证能力和逻辑思维能力.过程与方法:经历四边形有关概念的形成过程和性质的探究过程;体会平移、旋转等图形变换在研究平行四边形及其性质中的应用。
情感态度价值观:在操作、探究等数学活动中,增强交流与合作意识教学重难点:重点:平行四边形性质定理的应用难点:平行四边形性质定理的探索对策:学生经历性质的探索过程,真正理解每个性质,而不是死记硬背教学方法:启发探索、讨论分析法课时安排:1课时教具准备:多媒体,常用画图工具教学过程一、创设问题情境1、欣赏身边的平行四边形(出示平行四边形的图片)2、学生总结平行四边形的相关概念:两组对边分别情形的四边形叫做平行四边形。
记作ABCD,读作平行四边形ABCD。
下面同学们观察平行四边形都有哪些要素?生:四个角,四条边,连接不相邻的两个顶点的线段可构造两条对角线。
师:好,下面我们就来从角、边、对角线的角度去研究平行四边形的性质,另外我们已经学习了轴对称与中心对称,我们就来探究一下平行四边形是怎样的图形。
二、一起探究师:请同学们在纸上画出一个平行四边形。
然后同桌交流,你是怎样画图的学生活动:画图,体会平移,然后讨论片刻叙述自己的画图过程。
师:通过做图过程你发现了什么?生:积极思考,发现性质:平行四边形的对边相等。
师:小组讨论一下,你们发现平行四边形的角有什么特点?并说明理由学生活动:小组讨论,利用平行线的性质总结出平行四边形对角相等的关系。
冀教版八年级数学下册第二十二章《四边形》(同步教学设计)
c.四边形的外角和为360°;
d.四边形的对角线互相平分。
2.特殊四边形的性质:
a.平行四边形:对边平行且相等,对角相等,对角线互相平分;
b.矩形:四个角为直角,对角线相等且互相平分;
c.菱形:四边相等,对角线互相垂直平分;
d.正方形:矩形的性质+菱形的性质。
(三)学生小组讨论
b.学生在完成作业过程中,如遇到问题,可向同学或老师请教,培养合作解决问题的能力。
c.教师在批改作业时,关注学生的解题思路和方法,给予针对性的评价和建议。
(2)运用直观演示法,借助几何画板等工具,让学生直观感受四边形性质,增强学生对几何图形的认知。
(3)采用任务驱动法,设置具有一定挑战性的任务,激发学生的探究欲望,培养学生的解决问题的能力。
2.教学过程:
(1)导入:通过生活中的实例,如窗户、桌面等,引出四边形的概念,激发学生的兴趣。
(2)新课:以平行四边形为例,引导学生探索其性质,并推广到一般四边形,使学生理解四边形性质的基本规律。
d.简答题:要求学生用文字或符号语言证明四边形的基本性质。
2.应用提高作业:结合实际问题,设计以下题目,提高学生运用四边形性质解决问题的能力。
a.计算题:给出四边形的边长、角度等已知条件,求解四边形的面积、周长等。
b.证明题:要求学生运用四边形的性质和判定方法,证明特殊四边形的性质。
c.应用题:设计生活中的实际问题,如房屋设计、园林规划等,让学生运用四边形性质进行解答。
4.能够运用四边形的性质解决几何问题,如求解四边形的面积、周长等。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现几何图形性质的能力。
2.运用类比、联想等方法,引导学生探索特殊四边形的性质,提高学生解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册《四种特殊四边形的命题与证
明》导学案冀教版
1、熟记平行四边形、菱形、矩形、正方形的判定,并能用其证明;
2、掌握平行四边形、菱形、矩形、正方形的性质,并能用其解题;
3、能结合全等、相似、锐角三角函数等解决有关四边形的问题。
重点难点灵活运用所学知识证明或求解有关4种特殊四边形的问题教学内容师生随笔
一、基础复习:
1、四边形的联系与判定
2、四边形的性质名称性质边角对角线平行四边形矩形菱形正方形等腰梯形
二、典型例题:
1、如图所示,在△ABC中,点
D、E、F分别是边B
C、A
B、AC的中点,连接DE,DF、(1)
四边形AEDF一定是什么特殊的四边形?为什么?(2)
在△ABC中添加什么条件时,所得四边形AEDF是菱形?(3)
在△ABC中添加什么条件时,所得四边形AEDF是矩形?(4) 在△ABC中添加什么条件时,所得四边形AEDF是正方形?ABEFCD
2、
三、当堂练习:
1、如图1,四边形ABCD是平行四边形,在平面直角坐标系内:点A坐标为(1,0),B(3,1),C(3,3)、则点D的坐标为:
、ABCDOxyABCDO图3CDMNAFEB图2图
12、如图2,在□ABCD中,∠A=70,将□ABCD折叠,使点D, C分别落在点F,E处(点F,E都在AB所在的直线上),折痕为MN则∠AMF等于
3、如图3,已知菱形ABCD,其顶点
A、B在数轴上对应的数分别为-4和1,则BC=_____、4、如图4,在□ABCD中,AC平分∠DAB,AB=3,则□ABCD的周长为BACD图6 A0图5BCDABCD图
45、如图5,矩形ABCD的顶点A,B在数轴上, CD=6,点A 对应的数为,则点B所对应的数为、6、如图6,在菱形ABCD 中,AB =5,∠BCD =120,则对角线AC等于
7、如图7,在梯形ABCD中,AD//BC,E是BC的中点,
AD=5,BC=12,CD=,∠C=45,点P是BC边上一动点,设PB的长为x、(1)当x的值为____________时,以点P、
A、
D、E为顶点的四边形为平行四边形;_P_E_A_B_C_D图12图7(2)点P在BC边上运动的过程中,以P、
A、
D、E为顶点的四边形能否构成菱形?试说明理由师生反思、总结:。