高中数学竞赛讲义

合集下载

高中数学竞赛标准讲义第一章集合与简易逻辑

高中数学竞赛标准讲义第一章集合与简易逻辑

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

高中数学校本课程《培优与竞赛讲义》

高中数学校本课程《培优与竞赛讲义》
3 ( x 1) 1997( x 1) 1 例 5 设 x, y∈R,且满足 ,求 x+y. 3 ( y 1) 1997( y 1) 1
【讲解】
设 f(t)=t3+1997t,先证 f(t)在(-∞,+∞)上递增。事实上,若 a<b,则
f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)>0,所以 f(t)递增。 由题设 f(x-1)=-1=f(1-y),所以 x-1=1-y,所以 x+y=2. 且对任意 x1 , x2 ∈R 都有 f ( x1 x2 ) f ( x1 ) f ( x2 ) , 当x0 例 6.已知函数 y f ( x) 的定义域为 R, 时, f ( x) 0 , f (1) a ,试判断在区间[-3,3]上 f ( x) 是否有最大值或最小值,若有,求出其最大值 或最小值,若没有,说明理由. 【讲解】 : 设 x1 , x2 ∈R 且 x1 x2 ,则 x2 x1 0 ,所以 f ( x2 x1 ) 0 . ∴ f ( x2 ) f ( x1 ) f [( x2 x1 ) x1 ] f ( x1 ) = f ( x2 x1 ) f ( x1 ) f ( x1 ) = f ( x2 x1 ) 0 . ∴ f ( x2 ) f ( x1 ) 所以 f ( x) 在 R 上为减函数,在[-3,3]上, ymax f ( 3), ymin f (3) .
例2 已知函数 f ( x) 【讲解】用定义判断。②,且当 x 1 时,
x 1 x ,判断该函数在区间 0 , ) 上的单调性,并说明理由.

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛教案讲义

高中数学竞赛教案讲义

高中数学竞赛教案讲义主题:高中数学竞赛备考一、课程目标:1. 提高学生数学逻辑思维能力和解题能力;2. 增强学生对数学知识的理解和应用能力;3. 培养学生团队合作意识和竞赛意识;4. 培养学生学习数学的兴趣和信心。

二、教学内容:1. 数论知识与解题方法;2. 代数知识与解题方法;3. 几何知识与解题方法;4. 概率与统计知识与解题方法。

三、教学重点:1. 突出数学问题解题的逻辑思维;2. 突出数学知识运用的方法;3. 突出解题过程中的技巧与技法。

四、课堂教学安排:第一节课:数论知识与解题方法1. 介绍数论基础知识;2. 讲解数论解题方法;3. 练习数论题目。

第二节课:代数知识与解题方法1. 复习代数基础知识;2. 讲解代数解题方法;3. 练习代数题目。

第三节课:几何知识与解题方法1. 复习几何基础知识;2. 讲解几何解题方法;3. 练习几何题目。

第四节课:概率与统计知识与解题方法1. 介绍概率与统计基础知识;2. 讲解概率与统计解题方法;3. 练习概率与统计题目。

五、课后作业:1. 每节课的课后习题;2. 复习本节课的知识点;3. 复习前几节课的知识点;4. 组织小组讨论解题方法。

六、教学评估:1. 每节课的课堂练习成绩;2. 期中考试成绩;3. 期末考试成绩;4. 学生综合表现与进步情况。

七、教学心得与总结:数学竞赛备考是一个长期的过程,需要坚持不懈和不断努力。

教师要引导学生找到解题的方法,培养学生的数学思维和解题能力。

同时,学生也要积极主动,多加练习,不断提高自己的数学水平。

希望通过我们的共同努力,可以在数学竞赛中获得好的成绩。

高中数学竞赛讲义+完美数学高考指导(一)

高中数学竞赛讲义+完美数学高考指导(一)

高中数学竞赛讲义+完美数学高考指导(一) 高中数学竞赛讲义(一)──集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。

例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},分别表示有理数集和正实数集。

定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。

规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。

如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。

定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。

定义6 差集,。

定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。

(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。

定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。

二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。

例1 设,求证:(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。

高中数学竞赛讲义(常考知识点归纳汇总)

高中数学竞赛讲义(常考知识点归纳汇总)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛讲义_免费_

高中数学竞赛讲义_免费_
仅证 1
4
C1 A I C1 B = C1 ( A U B).
证明
3 , 余 读者自 完成
则 x ∈ A, 且 x ∈ B 或 x ∈C , 所 1 若 x ∈ A I (B U C ) ,
x ∈ ( A I B) 或 x ∈ ( A I C ) ,
x ∈ ( A I B) U ( A I C )
之,x ∈ ( A I B ) U ( A I C ) , 则 x ∈ ( A I B) 或 x ∈ ( A I C ) ,
k 个子集中
,否则,若 在 k 个子
A,并设 A I A1 = ∅ ,则 A1 ⊆ C1 A , 而可
集中再添加 C1 A ,
知矛盾,所
k ≥ 2 n −1
综 , k = 2 n −1
6.竞赛常用方法 例 题 定理 4 容斥原理 用 A 表示集合 A 的元素个数,则 A U B = A + B − A I B ,
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次 等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组 4 函数 次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数 5 几何 角形中的边角之间的 等关系 面 等 换 角形中的边角之间的 等关系 面 等 换 角形的心 内心 外心 垂心 心 性质 相似形的概念和性质 圆,四点共圆,圆幂定理 四种命题 关系 6 逻 推理 题 抽屉原理 简单 用 简单的组合 题简单的逻 推理 题, 证法 极端原理的简 单 用 枚举法 简单 用
A U B = A, A I C = C ,求 a, m.
解 依题设, A = {1,2} ,再 因 因
x 2 − ax + a − 1 = 0 解得 x = a − 1 或 x = 1 ,

最新高中数学竞赛全套精品讲义

最新高中数学竞赛全套精品讲义

竞赛讲座01-奇数和偶数整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇数偶;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.1.代数式中的奇偶问题例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□□÷□=□.解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组是整数,那么(A)p、q都是偶数. (B)p、q都是奇数.(C)p是偶数,q是奇数(D)p是奇数,q是偶数分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.2.与整除有关的问题例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?解设70个数依次为a1,a2,a3据题意有a1=0, 偶a2=1 奇a3=3a2-a1, 奇a4=3a3-a2, 偶a5=3a4-a3, 奇a6=3a5-a4, 奇………………由此可知:当n被3除余1时,a n是偶数;当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则a70=3k+1=3(2n+1)+1=6n+4.解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.故所求的十位数是9876524130.例6(1990年日本高考数学试题)设a、b是自然数,且有关系式123456789=(11111+a)(11111-b),①证明a-b是4的倍数.证明由①式可知11111(a-b)=ab+4×617②∵a>0,b>0,∴a-b>0首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b 都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.3.图表中奇与偶例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.解按题设程序,这是不可能做到的,考察下面填法:在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.证明不论分点如何选取,标准线段的条路总是奇数.分析 n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必为奇数.4.有趣的应用题例 10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点在岸上还是在水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋垢次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于 A点在水中,氢不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有10a+15b+25c+40d=100k,(k为正整数)即 2a+3b+5c+8d=20k显然b、c有相同的奇偶性.若同为偶数,b-c=10 和a=b=5,不是整数;若同为奇数,b=c=5和a=d=10,k=7.例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A 是有理数.证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.而无穷小数A的各位数字有如下的奇偶性规律:A=0.奇偶奇奇偶奇奇偶奇……又a是奇数可取1,3,5,7,9;b是偶数可取0,2,4,6,8.所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.练习1.填空题(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?练习参考答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。

高中数学联赛讲义

高中数学联赛讲义

高中数学联赛培训讲义全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高。

第一讲 集合、函数、方程例1.集合{x|-1≤log x110<-21,1<x ∈N}的真子集个数为 。

(96年全国高中联赛) 【分析】先求出所给集合的元素个数,那么真子集的个数为2n -1 【解】【小结】运用对数运算法则和解不等式,掌握集合、真子集、换底、同底法、分数性质。

练习①.已知集合A ={y|2<y<3},x =31log 121+31log 151,则x 与A 的关系是 。

(83年)②(93年)若M ={(x,y)||tg πy|+sin 2πx =0},N ={(x,y)|x 2+y 2≤2},则|M ∩N|= 。

A. 4 B. 5 C. 8 D. 9 附:|A|表示A 的元素个数 (93年)③若非空集合A ={x|2a +1≤x ≤3a -5},B ={x|3≤x ≤22},则能使A A ∩B 成立的所有a 的集合是 。

(98年)例2.f(x) (x ∈R )是以2为周期的偶函数,当x ∈[0,1]时,f(x)=x 19981,则:f(1998)、 f(17101)、f(15104)由小到大的排列是 。

(98年全国高中联赛) 【分析】利用周期函数、偶函数的性质,将函数自变量转化到区间[0,1],再比大小。

【解】【小结】周期函数的性质、偶函数性质、幂函数单调性;转化思想。

练习①设f(x)是定义在实数集上的周期为2的周期函数,且是偶函数,已知当x ∈[2,3]时,f(x)=x ,则当x ∈[-2,0]时,f(x)的解析式是 。

(90年)A. f(x)=x +4B. f(x)=2-xC. f(x)=3-|x +1|D. f(x)=2+|x +1|②若a>1,b>1,且lg(a +b)=lga +lgb ,则lg(a -1)+lg(b -1)的值 。

高中数学竞赛讲座[共十五讲]

高中数学竞赛讲座[共十五讲]

高中数学竞赛讲座【共十五份】目录不等式 (1)整数的整除性 (4)抽屉原则 (12)竞赛专题讲座-类比、归纳、猜想 (19)竞赛讲座-覆盖 (21)平面几何四个重要定理 (37)平面几何证明 (47)平面三角 (53)奇数和偶数 (60)染色问题与染色方法 (68)三角运算及三角不等关系 (75)三角不等关系 (78)同余式与不定方程 (80)本站资源汇总[优秀资源,值得收藏] (90)不等式不等式是数学竞赛的热点之一。

由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。

而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。

证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。

但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。

一、不等式证明的基本方法1.比较法比较法可分为差值比较法和商值比较法。

(1)差值比较法原理 A- B>0A>B.【例1】(l)m、n是奇偶性相同的自然数,求证:(a m+b m)(a n+b n)<2(a m+n+b m+n)。

(2)证明:··≤。

【例2】设a1≤a2≤…≤a n,b1≤b2≤…≤b n,j1,j2,…,j n是1,2,…,n的任意一个排列,令S=a1+ a2+…+ a n,S0=a1b n+a2b n-1+…+a n b1,S1=a1b1+a2b2+…+a n b n。

求证:S0≤S≤S1。

(2)商值比较法原理若>1,且B>0,则A>B。

【例3】已知a,b,c>0,求证:a2a b2b c2c≥a b+c b c+a c a+b。

2.分析法【例4】若x,y>0,求证:>。

【例5】若a,b,c是△ABC的三边长,求证:a4+b4+c4<2(a2b2+b2c2+c2a2)。

高中数学竞赛标准教材(共18讲)

高中数学竞赛标准教材(共18讲)

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

2023年高中数学竞赛教案讲义立体几何

2023年高中数学竞赛教案讲义立体几何

第十二章立体几何一、基础知识公理1 一条直线。

上假如有两个不一样旳点在平面。

内.则这条直线在这个平面内,记作:a a.公理2 两个平面假如有一种公共点,则有且只有一条通过这个点旳公共直线,即若P∈α∩β,则存在唯一旳直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上旳三个点有且只有一种平面。

即不共线旳三点确定一种平面.推论l 直线与直线外一点确定一种平面.推论2 两条相交直线确定一种平面.推论3 两条平行直线确定一种平面.公理4 在空间内,平行于同一直线旳两条直线平行.定义1 异面直线及成角:不一样在任何一种平面内旳两条直线叫做异面直线.过空间任意一点分别作两条异面直线旳平行线,这两条直线所成旳角中,不超过900旳角叫做两条异面直线成角.与两条异面直线都垂直相交旳直线叫做异面直线旳公垂线,公垂线夹在两条异面直线之间旳线段长度叫做两条异面直线之间旳距离.定义2 直线与平面旳位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:假如直线与平面内旳每一条直线都垂直,则直线与这个平面垂直.定理1 假如一条直线与平面内旳两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一种平面,则这两条直线平行.定理3 若两条平行线中旳一条与一种平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面旳垂线段旳长度叫做点到平面旳距离,若一条直线与平面平行,则直线上每一点到平面旳距离都相等,这个距离叫做直线与平面旳距离.定义 5 一条直线与平面相交但不垂直旳直线叫做平面旳斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上旳射影.所有这样旳射影在一条直线上,这条直线叫做斜线在平面内旳射影.斜线与它旳射影所成旳锐角叫做斜线与平面所成旳角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小旳角.定理4 (三垂线定理)若d为平面。

高中复习数学竞赛讲义(常考知识点归纳汇总)

高中复习数学竞赛讲义(常考知识点归纳汇总)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛讲义

高中数学竞赛讲义

目录第一章集合 (2)第二章函数 (15)§2.1函数及其性质 (15)§2.2二次函数 (21)§2.3函数迭代 (28)§2.4 抽象函数 (32)第三章数列 (37)§3.1 等差数列与等比数列 (37)§3.2 递归数列通项公式的求法 (44)§3.3 递推法解题 (48)第四章三角平面向量复数 (51)第五章直线、圆、圆锥曲线 (60)第六章空间向量简单几何体 (68)第七章二项式定理与多项式 (75)第八章联赛二试选讲 (82)§8.1 平几名定理、名题与竞赛题 (82)§8.2 数学归纳法 (99)§8.3 排序不等式 (103)第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.§1.1 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a 的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22y x y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21,*)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n 2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-.当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间. 即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 MN ≠∅, 则 a 的取值范围是.【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围: 令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅. ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅. ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤,即[13a ∈ 时, M N ≠∅.故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a 又1041=+a a ,可得94=a ,并且422a a =或.423a a = 若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍) 此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”. 〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1;{1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ②所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ=,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立.【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P a b →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1±3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++B .43272767575+++C .43274707171+++D .43273707171+++ 5. 集合A,B 的并集A∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S ,S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k (1) 证明:三个集合中至少有两个相等.(2) 三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1) 当a 取何值时,C B A )(为含有两个元素的集合?(2) 当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个.【参考答案】A 组1.解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得.为此,只要考虑在第一象限的面积就可以了.由题意可得,N M 的图形在第一象限的面积为A =613121=-.因此N M 的图形面积为32.2.解:由M=P ,从而1,0==a a b ,即0,1==b a ,故.1=+b a 从而选C. 3. 解:M N ≠∅相当于点(0,b )在椭圆2223x y +=上或它的内部221,3b b ∴≤≤≤.故选A. 4.解: 用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得 32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M ' 中的最大数为107]2400[]6666[=.在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396.而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C. 5.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.从而选A.6.解:被7除余2的数可写为7k +2. 由100≤7k +2≤600.知14≤k ≤85.又若某个k 使7k +2能被57整除,则可设7k +2=57n . 即57256227778n n n nk n -+--===+. 即n -2应为7的倍数. 设n =7m +2代入,得k =57m +16. ∴14≤57m +16≤85. ∴m =0,1.于是所求的个数为85-(14-1)-2=70. 7.解:依题意可得{13}A x x =<<,设1()2x f x a -=+,2()2(7)5g x x a x =-++ 要使A B ⊆,只需()f x ,()g x 在(1,3)上的图象均在x 轴的下方,则(1)0f ≤,(3)0f ≤, (1)0g ≤,(3)0g ≤,由此可解得结果.8.解:由于1995=15⨯133,所以,只要n >133,就有15n >1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15⨯9=135, … 15⨯133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870.另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870.9.解:考虑M 的n +2元子集P={n -l ,n ,n +1,…,2n }.P 中任何4个不同元素之和不小于(n -1)+n +( n +1)+( n +2)=4 n +2,所以k ≥n +3.将M 的元配为n 对,B i =(i ,2 n +1-i ),1≤i ≤n . 对M 的任一n +3元子集A ,必有三对123,,i i i B B B 同属于A(i 1、I 2、I 3两两不同).又将M 的元配为n -1对,C I (i ,2n -i ),1≤i ≤n -1.对M 的任一n +3元子集A ,必有一对4i C 同属于A ,这一对4i C 必与123,,i i i B B B 中至少一个无公共元素,这4个元素互不相同,且和为2 n +1+2 n =4 n +1,最小的正整数k = n +310.10.解: ⑴∵k ,1k -∈Z 且21k -=22(1)k k --,∴21k -∈A ;⑵假设42 ()k A k Z -∈∈,则存在,x y Z ∈,使42k -=22x y -即()()2(21)x y x y k -+=- (*)由于x y -与x y +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立.由此,42()k A k Z -∉∈.11.解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由AB ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅得1a >-;当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所述,()()1,00,3a ∈-. 12.解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈(1) 由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N )故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P .(2)2∉P .若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾.于是,由②知P 中必有正奇数.设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2.前后矛盾B 组1.证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立.再由①,若r∈S ,则S r ∈2;若-r ∈S ,则S r r r ∈-⋅-=)()(2.总之,S r ∈2. 取r =1,则1∈S .再由①,2=1+1∈S ,3=1+2∈S ,…,可知全体正整数都属于S . 设S q p ∈,,由①S pq ∈,又由前证知S q ∈21,所以21qpq q p ⋅=∈S .因此,S 含有全体正有理数.再由①知,0及全体负有理数不属于S .即S 是由全体正有理数组成的集合.2.证明:(1)若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,,所以每个集合中均有非负元素.当三个集合中的元素都为零时,命题显然成立.否则,设321,,S S S 中的最小正元素为a ,不妨设1S a ∈,设b 为32,S S 中最小的非负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则0≤b -a <b ,与b 的取法矛盾.所以b =0.任取,1S x ∈因0∈2S ,故x -0=x ∈3S .所以⊆1S 3S ,同理3S 1S ⊆.所以1S =3S .(2)可能.例如1S =2S ={奇数},3S ={偶数}显然满足条件,1S 和2S 与3S 都无公共元素.3.解:C B A )(=)()(C B C A .C A 与C B 分别为方程组(Ⅰ)⎩⎨⎧=+=+1122y x y ax (Ⅱ)⎩⎨⎧=+=+1122y x ay x 的解集.由(Ⅰ)解得(y x ,)=(0,1)=(212a a +,2211a a +-);由(Ⅱ)解得(y x ,)=(1,0),(2211aa +-,212a a +) (1) 使C B A )(恰有两个元素的情况只有两种可能: ①⎪⎪⎩⎪⎪⎨⎧=+-=+111012222a a a a ②⎪⎪⎩⎪⎪⎨⎧=+-=+011112222aa a a 由①解得a =0;由②解得a =1.故a =0或1时,C B A )(恰有两个元素.(2) 使C B A )(恰有三个元素的情况是:212a a +=2211a a +- 解得21±-=a ,故当21±-=a 时,C B A )(恰有三个元素.4.解: (1)设1212,min P A P B d P P ∈∈=(即集合A 中的点与集合B 中的点的距离的最小值), 则称d 为A 与B 的距离.⑵解法一:∵A 中点的集合为圆22(2)(2)1,x y +++=圆心为(2,2)M --,令(,)P x y 是双曲线上的任一点,则2MP =22(2)(2)x y +++=224()8x y x y ++++=2()24()x y xy x y +-+++8=2()4()28x y x y ++++令t x y =+,则2MP =22428(2)24t t t ++=++当2t =-时,即102xy x y =-⎧⎨+=-⎩有解,∴min MP =∴1d = 解法二:如图,P 是双曲线上的任一点, Q 为圆22(2)(2)1x y +++=上任一点,圆心为M .显然,P M MP +Q Q ≥(当P M 、Q 、三点共线时取等号)∴min 1d MP =-.5.解:记!18=n 时,由于1,2,……18都是n 的约数,故此时.19)(=n f 从而.19M ∈ 若存在P n ∈,使99)(=n f ,则对于小于99的正整数k ,均有n k |,从而n n |11,|9,但是1)11,9(=,由整数理论中的性质9×11=99是n 的一个约数,这是一个矛盾!从而.99M ∉6.证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21 。

高中数学竞赛_组合【讲义】

高中数学竞赛_组合【讲义】

第十八章 组合一、方法与例题1.抽屉原理。

例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。

[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。

由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。

ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。

ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。

2.极端原理。

例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。

高中数学竞赛讲义1

高中数学竞赛讲义1
2
(第 25 届 IMO 试题)
【证明】首先易证: 2 2 . 从而 k m(因为d a b c, 于是(a d ) 2 (a d ) 2 4ad
k m
(b c) 2 4bc (b c) 2 .再由 ad bc, d 2 k a, c 2 m b可得b 2 m a 2 k b 2 a 2 ,
(2)若 g (t ) 2 m 1 , 则f ( n) 2 m 1 , f ( f (n)) f (2 m 1 ) 3, f ( f ( f ( n))) f (3) 2, 所以 l n 3.
1, 当n为奇数时; m m 1 故 ln 3, 当n 2 t , m 0, t为奇数, 且g (t ) 2 ( g (t )如上); 2, 其他情形.
a 1 且又不能被 pi (i 1,2, , n) 除尽,于是由算术基本定理知,a 必能写成一些质数的乘
积,而这些质数必异于 pi (i 1,2, , n) ,这与假定矛盾.故质数有无穷多个.
赛题精讲
例 1.设正整数 d 不等于 2,5,13.证明在集合{2,5,13,d}中可以找到两个元素 a,b,使 得 ab-1 不是完全平方数. (第 27 届 IMO 试题) 2 2 2 【解】由于 2×5-1=3 ,2×13-1=5 ,5×13-1=8 ,因此,只需证明 2d-1,5d-1, 13d-1 中至少有一个不是完全平方数. 用反证法,假设它们都是完全平方数,令 2d-1=x2 ① 2 5d-1=y ② 2 13d-1=z ③ * x,y,z∈N 由①知,x 是奇数,设 x=2k-1,于是 2d-1=(2k-1)2,即 d=2k2-2k+1,这说 明 d 也是奇数.因此,再由②,③知,y,z 均是偶数. 设 y=2m,z=2n,代入③、④,相减,除以 4 得,2d=n2-m2=(n+m)(n-m),从而 n2-m2 为 偶数,n,m 必同是偶数,于是 m+n 与 m-n 都是偶数,这样 2d 就是 4 的倍数,即 d 为偶数, 这与上述 d 为奇数矛盾.故命题得证. 例 2.设 a、b、c、d 为奇数,0 a b c d , 并且ad bc ,证明:如果 a+d=2k,b+c=2m, k,m 为整数,那么 a=1.

高二数学竞赛培训讲义6-10套

高二数学竞赛培训讲义6-10套

映射与函数的最值一、基础知识 1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作:f A B →. 2.单射若:f A B →是一个映射且对任意,x y A ∈,x y ≠,都有()()f x f y ≠,则称之为单射.3.满射若:f A B →是一个映射且对任意y B ∈,都有一个x A ∈,使得()f x y =,则称:f A B →是A 到B 上的满射.4.一一映射一般地,设A ,B 是两个集合,:f A B →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射.(即:f A B →既是单射又是满射)只有一一映射存在逆映射,即从B 到A 由相反的对应法则1f-构成的映射,记作:1:f B A -→.5.函数设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射:f A B →就叫做从A 到B 的函数,记做()y f x =,其中x A ∈,y B ∈,原象集合A 叫做函数()f x 的定义域,象的集合C 叫做函数的值域,显然C B ⊆. 6.反函数若函数:f A B →是一一映射,则它的逆映射1:f B A -→叫原函数的反函数,通常记作1()y f x -=.二、基础训练1、在19×93的方格纸上画出主对角线,则它穿过_________个单位方格的内部.【解】主对角线穿过一个方格时,就会在方格内部留下一小段线段,因此每个方格对应于其内的这条小线段.这个网格共有20条竖线和94条横线,主对角线和所有竖线与横线共有112个交点,这112个交点可组成111条小线段.2、函数y =的最大值是_________,最小值是_________【解】导数法.y '==故y 在51[4,]12上单调增,在51[,5]12上单调减,从而max 2y =,min 1y =. 3、设定义在整数集上的函数()f x 满足52000()[(8)]2000n n f n f f n n -≥⎧=⎨+<⎩,则(1993)f =_____【解】(1993)[(19938)](1996)[(19968)](1999)f f f f f f f =+==+=[(19998)](2002)1997f f f =+==.4、求函数y =.AB【解】y =x 轴上点(,0)x到点(1,1)-和(1,1)的距离之和,故值域为)+∞.三、典型例题1、设集合{|011,}M x x x =≤≤∈Z ,集合{(,,,)|,,,F a b c d a b cd M =∈,映射:f F Z →使得(,,,)fa b c d a bc d→-,已知(,,,)39,(,,,)66f fu v x y u y x v →→,求,,,x y u v 的值. 【解】由f 的定义和已知数据,得3966(,,,)uv xy uy xv u v x y M -=⎧⎨-=∈⎩,将两式相加,相减并分别分解因式得()()105y v u x +-=,()()27y v u x -+=,显然,0,0u x y v -≥-≥,在,,,{|011,}x y u v x x x ∈≤≤∈Z 的条件下,011u x ≤-≤,105[]12211y v +≤+≤,即1022y v ≤+≤,但()|105y v +,可见1()15y v +=, 2()21y v +=,对应可知1()7u x -=,2()5u x -=.同理,由011y v ≤-≤,27[12211u x +≤+≤知322u x ≤+≤, 又有1()3u x +=,2()9u x +=.对应地1()9y v -=,2()3y v -=,于是有以下两种可能:(Ⅰ)15,7,9,3;y x u x u x y v +=⎧⎪-=⎪⎨+=⎪⎪-=⎩ (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围,因此(Ⅱ)无解. 2、设,x y R +∈,求u =.【解】将已知式变形为:u =222cos30x y xy ++-⋅.构造等腰直角三角形AOD ,如图,||||OA OD ==,OB OC 是AOD ∠的三等分线,||OB x =,||OC y =,则||||||||u AB BC CD AD =++≥= 由等面积法可解得,当3x y ==.3、求函数3422(21)x x y x x -=++的值域.【解法一】由于函数为奇函数,故只需考虑0x ≥的情形.(1)当01x ≤<时,由均值不等式有22222111()8118x x x y x x-+=≤+=++; (2)当1x =时,0y =;(3)当1x >时,222222211111||()2118118x x x x x x y x x x x +--+=⋅⋅≤+=++++,当1x =所以原函数的值域为11[,]88-.【解法二】222121411x x y x x-=⋅⋅++,令tan ,[0,)2x παα=∈,则111sin 4[,]888y α=∈-. 4、若,,x y z R +∈,且1x y z ++=,求u =.【解法一】易证222222222333(),(),()444x y xy x y y z yz z y z x zx x z ++≥+++≥+++≥+,所以[()()()]u x y y z z x ≥=+++++=13x y z ===时取等号)【解法二】设11()2z x y yi =+,21()2z y z zi =++,31()2z z x xi =+,所以123123||||||||u z z z z z z =++≥++【解法三】设1()2A x y y +,31())22B x y z y z +++,3(())2C x y z x y z ++++,则u OA AB BC OC =++≥5、在圆周上给定21(3)n n -≥个点,从中任选n 个点染成黑色,试证一定存在两个黑点,使得以它们为端点的两条弧之一的内部,恰好含有n 个给定的点. 【证明】若不然,从圆周上任何一个黑点出发,沿任何方向的第1n -个点都是白点,因而对于每一个黑点,都可得到两个相应的白点.这就定义了一个由所有黑点到白点的对应,因为每个黑点对应于两个白点,故共有2n 个白点(包括重复计数).又因为每个白点至多是两个黑点的对应点,故至少有n 个不同的白点,这与共有21n -个点矛盾,故命题成立.6、把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平行四边形的个数.【解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形. 把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接B ′C ′. 将A ′B ′的n 条平行线分别延长,与B ′C ′相交, 连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},{(,,,)|12}B i j k l i j k l n =≤<<<≤+.把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射::f A B →,下面我们证明f 是A 与B 的一一对应.事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同. 所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组(,,,)i j k l ,12i j k l n ≤<<<≤+,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有42()()n card A card B C +==.加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C四、课后作业金版奥数教程高一分册P109-116同余(一)知识、技能、方法 一、同余的概念及性质定义:设m 是一个给定的正整数,如果两个整数a ,b 用m 除所得的余数相同,则称a ,b 对模m 同余,记为a ≡b (mod m );若所得的余数不相同,称a ,b 对模m 不同余,记为a ≡b (mod m ).例如,15≡7(mod 4),-23≡12(mod 7).当0b m ≤<时,a ≡b (mod m ),则称b 是a 对模m 的最小非负剩余.同余有如下两种等价定义法:①若m|a -b ,则称a 、b 对模m 同余;②若a =b+mt (t ∈Z ),则称a 、b 对模m 同余.性质:(1)0(mod )|a m m a ≡⇔; (2)(mod )a a m ≡(反身性)(mod )(mod )a b m b a m ≡⇔≡(对称性) (mod )(mod )(mod )a b m a c m b c m ≡⎫⇒≡⎬≡⎭(传递性)(3)若(mod )a b m ≡,(mod )c d m ≡,则① (mod )a c b d m ±≡±; ② (mod )ac bd m ≡.(4)若(mod ),0,1,2,,i i a b m i n ≡=,则1010(mod )nn n n a x a x a b x b x b m +++≡+++.特别地,设10()()n n i f x a x a x a a Z =+++∈,若(mod )a b m ≡,则()()(mod )f a f b m ≡.(5)若(mod )ac bc m ≡,则(mod)(,)ma b m c ≡.特别地,又若(,)1m c =,则(mod )a b m ≡. 这个性质说明同余式两边的同一非零因数,不能像等式那样“约去”,只有当这非零因数与模互质时,才可“约去”.(6)(mod )a b m ≡,而|(0)d m d >,则(mod )a b d ≡. (7)设(mod )a b m ≡,①若0c >,则(mod )ac bc mc ≡;②d 为a 、b 、m 的任一公约数,则(mod )a b m d d d≡. (8)若1(mod )a b m ≡,2(mod )a b m ≡且12(,)1m m =,则12(mod )a b m m ≡. (9)若(mod )a b m ≡,则(,)(,)a m b m =.(10)每一个整数a 恰与0,1,…,m -1这m 个数中的某一个对模m 同余. 二、剩余类和完全剩余系(1)剩余类:设m ∈N*,把全体整数按其对模m 的余数r (0≤r ≤m -1)归于一类,记为r k ,每一类r k (r=0,1,…,m -1)均称模m 的剩余类(也称为同余类).根据定义,剩余类具有如下性质:①0121m Z k k k k -=⋃⋃⋃,其中()i j k k i j φ⋂=≠;②对任一数n ∈Z ,有惟一的0r 使0r n k ∈; ③对任意的,a b ∈Z ,,(mod )r a b k a b m ∈⇔≡. (2)完全剩余类:设011,,,m k k k -是模m 的(全部)剩余类,从每个r k 中任取一个数r a ,这m 个数110,,,-m a a a 组成的一个组称为模m 的一个完全剩余系,简称完系.显然,模m 的完全剩余系有无穷多个,但最常用的是下面两种:① 非负数最小完全剩余系:0,1,2,…,m -1; ② 绝对值最小完全剩余系:它随m 的奇偶性不同而略有区别.当21m k =+时为,(1),,1,0,1,,(1),k k k k -----(对称式)当2m k =时为(1),(2),,1,0,1,(1),k k k k ------或,(1),,1,0,1,,(1)k k k ----- 由定义不难得到如下判别完全剩余系的方法:定理一:m 个整数m a a a ,,,21 是模m 的一个完系⇔当i j ≠时,i a ≡)(mod m a j . 定理二:设(b ,m )=1,c 为任意整数,若12,,,n a a a 为一个完系,则12,,,m ba c ba c ba c +++也是模m的一个完全剩余系.特别地,任意m 个连续整数构成模m 的一个完全剩余系.(3)欧拉函数:设m 为一正整数,用记号()m ϕ表示0,1,…,m -1中与m 互质的数的个数,把()m ϕ称为欧拉函数.(4)简化剩余系:如果一个模m 的剩余类r k 中任一数与m 互质,则称r k 是与模m 互质的剩余类;在与模m 互质的每个剩余类中任取一个数(共)(m ϕ个)所组成的数组,称为模m 的一个简化剩余系. 定理三: 12(),,,m a a a ϕ是模m 的简化剩余系(,)1i a m ⇔=且(mod )(,,1,2,())i j a a m i j i j m ϕ≡≠=.(判别方法)定理四:在模m 的一个完全剩余系中,取出所有与m 互质的数组成的数组,就是一个模m 的简化剩余系. (构造方法) 定理五:设12(),,,m a a a ϕ是模m 的简化剩余系,若(k ,m )=1,则)(21,,,m ka ka ka ϕ 也是模m 的简化剩余系.三、一次同余方程(1)设1110()n n n n f x a x a x a x a --=++++为x 的整系数多项式,同余式()0(mod )f x m ≡,0(mod )n a m ≡叫做一元n 次同余方程;若c 使得()0(mod )f c m ≡成立,则(mod )x c m ≡叫做同余方程)(mod 0)(m x f ≡的一个解.(2))(mod m b ax ≡(其中m | a )称为一次同余方程. 定理一:若(,)1a m =,则)(mod m b ax ≡有一个解.定理二:若(,)1a m d =>,d|b ,则)(mod m b ax ≡无解,其中)(mod 0m a ≡.定理三:若(,)1a m d =>,则)(m o d m b ax ≡有d 个解.并且,若)(m o d 1m x βα=的一个解为1(mod )x r m ≡,则d 个解为:1,,1,0),(mod 1-=+≡d k m km r x ,其中.,,1dm m db da ===βα定理四:对同余方程组⎩⎨⎧≡≡).(mod ),(mod 2211m c x m c x 记.],[,),(2121M m m d m m ==①若d | 21c c -,则此同余方程组无解;②若21|c c d -,则此同余方程组有对模M 的一类剩余解.四、模m 的阶定义:设m>1是一个固定的整数,a 是与m 互素的整数,则存在整数k ,1≤k <m ,使得)(mod 1m a k ≡,我们将具有这一性质的最小正整数(仍记为k )称为a 模m 的阶.性质:①设(,)1a m =,k 是a m 模的阶,ν,u 是任意整数,则(mod )u va a m ≡的充要条件是(mod )u k ν≡.特别地,)(mod 1m a u≡的充分必要条件是k | u .②设a m a ,2),(=模m 的阶为k ,则数列,,,,32 a a a 模m 是周期的,且最小正周期是k ,而k 个数k a a a ,,,2 模m 互不同余.③设(,)1a m =,则a 模m 的阶整除欧拉函数()m ϕ.特别地,若m 是素数p ,则a 模p 的阶整除p -1.(二)例题分析例1、求使21n+能被3整除的一切自然数n .例2、求2999最后两位数字.例3、求证31980+41981能被5整除.例4、证明:正整数a 是9的倍数的充要条件是a 的各位数码之和是9的倍数.例5、设101010a =,计算某星期一后的第a 天是星期几?例6、求所有的素数p ,使241p +与261p +也是素数.例7、求满足|125|7m n -=的全部正整数,m n .例8、连续写出19到80的两位数,问:所得到的数192020……780能被1980整除吗?例9、试判断282726197319721971++能否被3整除?例10、求出所有满足8x +15y =17z 的正整数三元组(x ,y ,z ).例11、证明:对于任意的非负整数n ,19×8n +17是合数.例12、设p 是一个素数,11k p ≤≤-,试证:1(1)(mod )k kp C p -≡-.例13、设a 和m 都是正整数,a >1,证明:).1(|-m a m ϕ例14、设m,a ,b 都是正整数,m>1,则.1)1,1),(-=--b a b a m m m例15、设1n >,证明:21n-不能被n 整除.数列的求和一、知识回顾本节主要内容有S n 与a n 的关系;两个常用方法:倒写与错项;各种求和:平方和、立方和、倒数和等;∑符号的运用. 掌握数列前n 项和常用求法,数列求和的方法主要有:倒序相加法、错位相减法、转化法、裂项法、并项法等. 1.重要公式①1+2+…+n =21n (n +1) ②12+22+…+n 2=61n (n +1)(2n +1) ③13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)22.数列{a n }前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3. 在等差数列中S m +n =S m +S n +mnd,在等比数列中S m +n =S n +q n S m =S m +q m S n .4.裂项求和:将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项.应掌握以下常见的裂项:等)!1(1!1)!1(1④,ctg2ctg 2sin 1③,!)!1(!②,111)1(1①+-=+-=α-+=⋅+-=+n n n ααn n n n n n n n 5.错项相消法6.并项求和法二、基本训练1、数列{}n a 的各项为正数,其前n 项和n S 满足)1(21nn n a a S +=,则n a =______.2、(200 6天津)已知d c b a ,,,都是偶数,且d c b a <<<<0,90=-a d ,若c b a ,,成等差数列,dc b ,,成等比数列,则d c b a +++的值等于 .3、(2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 _______4、(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。

2023年高中数学竞赛教案讲义排列组合与概率

2023年高中数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率一、基础知识1. 加法原理: 做一件事有n 类措施, 在第1类措施中有m1种不一样旳措施, 在第2类措施中有m2种不一样旳措施, ……, 在第n 类措施中有mn 种不一样旳措施, 那么完毕这件事一共有N=m1+m2+…+mn 种不一样旳措施。

w.w.w.k.s.5.u.c.o.m2 乘法原理: 做一件事, 完毕它需要分n 个环节, 第1步有m1种不一样旳措施, 第2步有m2种不一样旳措施, ……, 第n 步有mn 种不一样旳措施, 那么完毕这件事共有N=m1×m2×…×mn 种不一样旳措施。

w.w.w.k.s.5.u.c.o.m3.排列与排列数: 从n 个不一样元素中, 任取m(m ≤n)个元素, 按照一定次序排成一列, 叫做从n 个不一样元素中取出m 个元素旳一种排列, 从n 个不一样元素中取出m 个(m ≤n)元素旳所有排列个数, 叫做从n 个不一样元素中取出m 个元素旳排列数, 用 表达, =n(n-1)…(n-m+1)= ,其中m,n ∈N,m ≤n,注:一般地 =1, 0!=1, =n!。

4. N 个不一样元素旳圆周排列数为 =(n-1)!。

5.组合与组合数:一般地, 从n 个不一样元素中, 任取m(m ≤n)个元素并成一组, 叫做从n 个不一样元素中取出m 个元素旳一种组合, 即从n 个不一样元素中不计次序地取出m 个构成原集合旳一种子集。

从n 个不一样元素中取出m(m ≤n)个元素旳所有组合旳个数, 叫做从n 个不一样元素中取出m 个元素旳组合数, 用 表达:.)!(!!!)1()1(m n m n m m n n n C m n -=+--= 6. 组合数旳基本性质: (1) ;(2) ;(3) ;(4) ;(5) ;(6) 。

7. 定理1:不定方程x1+x2+…+xn=r 旳正整数解旳个数为 。

[证明]将r 个相似旳小球装入n 个不一样旳盒子旳装法构成旳集合为A, 不定方程x1+x2+…+xn=r 旳正整数解构成旳集合为B, A 旳每个装法对应B 旳唯一一种解, 因而构成映射, 不一样旳装法对应旳解也不一样, 因此为单射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以zi?=1,即
由z1+z2+z3=0得①

所以
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+…+18cos18×200.
[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=,所以
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
5.复数乘法的几何意义。
例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。
[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,,由复数乘法的几何意义得:,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=,为定值,所以MN的中点P为定点。
5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。
7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).
例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|
≥|f(1)|+|f(-1)|+|f(i)|&上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,…,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。
[证明]令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,
高中数学竞赛讲义(十五)
──复数
一、基础知识
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。
2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
2.复数相等。
例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解]若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ<0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。
6.复数与轨迹。
例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得
3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。
12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1?z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。
8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).
10.代数基本定理:在复数围,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。
所以ΔABC的外心轨迹是轨物线。
7.复数与三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。
[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则
z1+z2+z3=0。所以又因为|zi|=1,i=1,2,3.
9.若a,b,c∈C,则a2+b2>c2是a2+b2-c2>0成立的__________条件。
10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。
11.二次方程ax2+x+1=0的两根的模都小于2,数a的取值围。
5.设复数z使得的一个辐角的绝对值为,则z辐角主值的取值围是__________。
6.设z,w,λ∈C,|λ|≠1,则关于z的方程-Λz=w的解为z=__________。
7.设0<x<1,则2arctan__________。
8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的两个虚根且,则__________。
3.三角形式的应用。
例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解]由题设得
,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。
4.二项式定理的应用。
例5计算:(1);(2)
[解] (1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100= =)+()i,比较实部和虚部,得=-250,=0。
10.复数与几何。
例13如图15-2所示,在四边形ABCD存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。
[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。
相关文档
最新文档