试验二 一元线性回归模型Eviews操作

合集下载

试验二 一元线性回归模型Eviews操作

试验二  一元线性回归模型Eviews操作

试验二一元线性回归模型Eviews操作案例:建立我国最终消费支出与国内生产总值(单位:亿元)之间的回归模型,并进行变量和方程整体的显著性检验。

当显著性水平为0.05, 2004年国内生产总值为38000亿元时,对2004年我国最终消费支出和平均最终消费支出进行点预测和区间预测。

一、创建工作文件建立工作文件的方法有以下几种。

1.菜单方式在主菜单上依次单击File→New→Workfile(见图2-1),选择数据类型和起止日期。

时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。

本例中在Start Data里输入1978,在End data 里输入2003,见图2-3。

单击OK后屏幕出现Workfile工作框,如图2-4所示。

2.命令方式在命令窗口直接输入建立工作文件的命令CREATE,命令格式:CREATE 数据频率起始期终止期其中,数据频率类型分别为A(年)、Q(季)、M(月)、U(非时间序列数据)。

输入Eviews 命令时,命令字与命令参数之间只能用空格分隔。

如本例可输入命令:CREATE A 1978 2003工作文件创立后,需将工作文件保存到磁盘,单击工具条中Save→输入文件名、路径→保存,或单击菜单兰中File→Save或Save as→输入文件名、路径→保存。

图2-1这时屏幕上出现Workfile Range对话框,如图2-2所示。

图2-2图2-3图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。

输入数据有两种基本方法:命令方式和菜单方式。

1.命令方式命令格式:data 〈序列名1〉〈序列名2〉…〈序列名n〉功能:输入新变量的数据,或编辑工作文件中现有变量的数据。

在本例中,在命令窗口直接输入:Data Y X2.菜单方式在主菜单上单击Objects→New object,在New object对话框里,选Group并在Name for Object上定义变量名(如变量X、Y),单击OK,屏幕出现数据编辑框。

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

计量经济学上机实验

计量经济学上机实验

计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。

计量经济学eviews一元线性回归模型实验指导

计量经济学eviews一元线性回归模型实验指导

第二章 一元线性回归模型一、 实验目的掌握EViews 软件的基本功能,理解一元线性回归模型及最小二乘估计的基本原理。

二、 基本知识点:样本回归方程与总体回归方程的联系与区别;满足古典假设的前提,一元线性回归模型的最小二乘法参数估计,一元线性回归模型的检验以及均值与个值预测。

三、 实验内容及要求:依据经济学理论,以实际数据为基础,建立经济数学模型,分析经济变量之间的数量关系。

以本章所学内容,研究2012年中国各地区农村家庭人均生活消费支出与人均纯收入之间关系,数据来源于《2013年中国统计年鉴》。

要求:在认真理解本章内容的基础上,通过实验掌握一元线性回归模型的实际应用方法,并熟悉EViews 软件的基本使用方法。

四、 实验指导:由经济学理论知,收入是影响消费的主要因素,二者之间有密切关系。

二者之间关系的散点图如图2.4.1所示。

图2.4.1说明,各地区农村居民家庭人均生活消费支出与家庭人均纯收入大致呈现出线性相关关系。

(CD 表示农村居民家庭人均生活消费支出,RD 农村居民家庭人均纯收入)图2.4.1 RD —CD 散点图故假设二者之间关系设定为一元线性回归模型:i i i rd cd μββ++=10,其中cd i 各地区农村居民家庭人均生活消费支出,rd i 为各地区农村居民家庭人均纯收入,μi 为随机误差项,即除人均收入外,影响农村居民家庭人均生活消费支出的其他因素。

假设该模型满足古典假设,可运用OLS 方法估计模型的参数。

利用计量经济学软件EViews5.0。

建立工作文件STEP1:进入EViews 目录,然后双击EViews 程序图标,进入EViews 主页见图2.4.2。

图2.4.2 EViews工作界面STEP2:点击Eviews主页面菜单\Workfile见图2.4.3,弹出work对话框(图2.4.4)。

在work type中选择Unsteuctured/Undated【由于本例是截面数据】,并在observation中输入观察值得个数,本例为31(图2.4.4),点击OK出现数据编辑窗口(图2.4.5)。

eviews实验报告一元线形回归模型

eviews实验报告一元线形回归模型

【实验编号】 1【实验名称】一元线形回归模型【实验目的】掌握一元线性回归分析的步骤【实验内容】一、实验数据表1 1978年-2009年中国税收与国内生产总值统计表单位:亿元年份税收GDP 年份税收GDP1978 519.28 3645.2 1994 5126.88 48197.91979 537.82 4062.6 1995 6038.04 60793.71980 571.7 4545.6 1996 6909.82 71176.61981 629.89 4891.6 1997 8234.04 78973.01982 700.02 5323.4 1998 9262.80 84402.31983 775.59 5962.7 1999 10682.58 89677.11984 947.35 7208.1 2000 12581.51 99214.61985 2040.79 9016.0 2001 15301.38 109655.21986 2090.73 10275.2 2002 17636.45 120332.71987 2140.36 12058.6 2003 20017.31 135822.81988 2390.47 15042.8 2004 24165.68 159878.31989 2727.4 16992.3 2005 28778.54 184937.41990 2821.86 18667.8 2006 34804.35 216314.41991 2990.17 21781.5 2007 45621.97 265810.31992 3296.91 26923.5 2008 54223.79 314045.41993 4255.30 35333.9 2009 59521.59 340506.9 资料来源:《中国统计年鉴2010》二、实验过程1、建立工作文件(1)点击桌面Eviews5.0图标,运行Eviews软件。

回归分析实验1 Eviews基本操作及一元线性回归

回归分析实验1 Eviews基本操作及一元线性回归

第一部分EViews基本操作第一章预备知识一、什么是EViewsEViews (Econometric Views)软件是QMS(Quantitative Micro Software)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。

EViews具有现代Windows软件可视化操作的优良性。

可以使用鼠标对标准的Windows菜单和对话框进行操作。

操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。

EViews还拥有强大的命令功能和批处理语言功能。

在EViews的命令行中输入、编辑和执行命令。

在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。

EViews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包,是专门从事数据分析、回归分析和预测的工具,在科学数据分析与评价、金融分析、经济预测、销售预测和成本分析等领域应用非常广泛。

应用领域■ 应用经济计量学■ 总体经济的研究和预测■ 销售预测■ 财务分析■ 成本分析和预测■ 蒙特卡罗模拟■ 经济模型的估计和仿真■ 利率与外汇预测EViews引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分析和统计分析,数据管理简单方便。

其主要功能有:(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列;(3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图;(4)进行T 检验、方差分析、协整检验、Granger 因果检验;(5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、ARCH 模型估计法等;(6)对选择模型进行Probit、Logit 和Gompit 估计;(7)对联立方程进行线性和非线性的估计;(8)估计和分析向量自回归系统;(9)多项式分布滞后模型的估计;(10)回归方程的预测;(11)模型的求解和模拟;(12)数据库管理;(13)与外部软件进行数据交换EViews可用于回归分析与预测(regression and forecasting)、时间序列(Time Series)以及横截面数据(cross-sectional data )分析。

计量经济学实验报告一元线性回归模型实验

计量经济学实验报告一元线性回归模型实验

2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。

目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。

利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。

2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

实验内容以下面1、2题为例进行操作。

1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。

测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。

航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。

《计量经济学》eviews实验报告一元线性回归模型

《计量经济学》eviews实验报告一元线性回归模型

《计量经济学》实验报告一元线性回归模型
三、实验步骤(简要写明实验步骤)
1、数据的输入、编辑
2、图形分析与描述统计分析
3、数据文件的存贮、调用
4、一元线性回归的过程
点击view中的Graph-scatter-中的第三个获得
在上方输入ls y c x回车得到下图
在上图中view处点击view-中的actual,Fitted,Residual中的第一个得到回归残差
打开Resid中的view-descriptive statistics得到残差直方图
打开工作文件第二个中的structure将workfiels选中第一个,将右边改为16个
之后打开工作文件xy右键双击,open-as grope
在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图
在上方空白处输入ls y c s---之后点击proc 中的forcase 根据
公式)|(0^
0X Y Y E 得到2015估计量
四、实验结果及分析(将本问题的回归模型写出,并作出经济意义检。

计量经济学一元线性回归模型实验

计量经济学一元线性回归模型实验

实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。

目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。

利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。

2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

实验内容以课后练习:以62页计算题为例进行操作。

【实验步骤】3.6.1 建立工作文件首先,双击Eviews程序,进入Eviews主程序。

在菜单项一次点击File\New\Workfile,出现“Workfile create”,在“Data frequency”中悬着数据频率:Annual(年度数据)Semi- Annual(半年数据)Quarterly(季度数据)Monthly(月度数据)Weekly(周数据)Daily(5-day week)(每周5天日数据)Daily(7-day week)(每周7天日数据)Integer data(整数数据)在本例中我们选择Annual,并且在起始年份和终止年份输入“1990”和“2001”,如图3-6图3-6 工作文件的建立点击“OK”出现“Workfile UNTITLED”工作框。

在工作框中已有的两个变量中“C”代表截距项;“resid”代表残差项。

实验课eviews基本操作与一元线性回归.ppt

实验课eviews基本操作与一元线性回归.ppt
变量转换 随机变量的正态检验
1. 变量的转换
做一个对数模型
ln(chukou) ln(gdp)
需要对chukou和gdp的数据进行对数化处理 Quick/Generate Series… 在弹出的对话框中输入命令: chukoul = log(chukou) gdpl = log(gdp)
Upper-left data cell指明数据的范围
手动输入数据
Quick/Empty Group
将数据绘图
View/Graph/Line Quick/Graph 利用数组绘图
在数据组窗口中,
View/Multiple Graphs
描述性统计
打开数据组 View/Descriptive Stats
当工作文件中包含大量对象时,很难查找到指定的对 象。可以使用工作文件中的显示限制来解决这一问题。在 工作文件窗口中选择View/Display Filter,或者双击工作文 件窗口中的Filter。将显示一个对话框,这个对话框有两部 分组成。在编辑区域内,可以放置一个或几个名字的描述, 可以包括通配符“*”(与任何字符相匹配)和“?”(与 任何单个字符相匹配)。在编辑区域的下面是一系列复选 框,对应于不同类型的EViews对象。EViews将仅仅显示与 编辑区域中名字相匹配的指定类型的对象。
在标题栏的正下方是菜单和工具条,利用菜单和工具条 可以方便地实现很多操作。工具条中的按扭仅仅是一种快捷 方式,可以方便地处理EViews的主菜单中的一些操作。如 菜单“View/Name Display”可以实现大小写转换。默认是小 写。
工作文件的范围、样本和显示限制
在工具条的下面是两行信息栏,在这里EViews显示工作文 件的范围(结构)、工作文件的当前样本(被用于计算和统计 操作的观测值的范围)和显示限制(在工作文件窗口中显示对 象子集的规则)。双击这些标签并在对话框中输入相关的信息, 可以改变工作文件的范围、样本和显示限制。

实验课课件eviews基本操作与一元线性回归

实验课课件eviews基本操作与一元线性回归
实验课课件eviews基 本操作与一元线性回归
目录
• EViews软件介绍 • EViews基本操作 • 一元线性回归模型 • EViews中进行一元线性回归分析 • 实验结果分析 • 实验总结与展望
EViews软件介绍
01
软件特点
强大的数据处理能力
EViews提供了丰富的数据处理 功能,包括数据导入、清洗、
数据转换
根据需要,可以对数据进 行转换,如对数转换、标 准化等,以适应回归分析 的要求。
建立一元线性回归模型
设定模型
选择一元线性回归模型,并确定 自变量和因变量。
模型诊断
在建立模型之前,需要进行必要的 诊断,如残差图、散点图等,以确 定是否满足线性回归的前提假设。
模型参数估计
使用最小二乘法或其他估计方法, 对模型参数进行估计。
02
输入数据时,需要确保数据的格 式和单位与实际相符,并注意数 据的完整性和准确性。
生成序列
在EViews中,可以通过多种方式生 成序列,如通过数学公式、通过已有 的序列运算、通过其他软件的数据转 换等。
生成序列时,需要确保生成的序列与 实际需求相符,并注意序列的命名和 格式。
数据的图形化表示
在EViews中,可以通过多种方式将数据图形化表示,如绘制散点图、折线图、柱 状图等。
转换和统计分析等。
多种回归分析方法
EViews支持多种回归分析方法 ,如最小二乘法、广义最小二 乘法、最大似然估计法等。
图形化界面
EViews采用图形化界面,操作 简单直观,方便用户进行数据 分析。
灵活的自定义功能
EViews支持用户自定义函数和 程序,扩展性良好。
软件界面
01
02

实验二 一元回归模型

实验二 一元回归模型

实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

Eviews-一元线性回归分析

Eviews-一元线性回归分析

1.一元线性回归分析(Eviews)研究一个解释变量对一个被解释变量的函数关系Eviews操作主要是Quick。

例子:分析31个省城镇居民平均每人全年家庭总收入X(元)与2011年底城镇居民家庭平1.打开Eviews,依次点击File\New\Workfile。

2.点击”Q uick-Empty Group”,输入数据,点击”obs”,按“”第一列和第二列分别命名为Y和X,将数据粘贴。

二、作Y与X的相关图(散点图)在“Workfile”窗口中,选择X和Y的数据表,双击选择“Open Group”。

选择“View\Graph”,在Graph type中选择“Scatter”,在Fit lines选择“Regression Line”。

从散点图中可以看出,X与Y近似于线性关系,可考虑建立简单线性回归模型。

Y i=β1+β2X i+u i三、估计参数(求出β1和β2的值)假定所建立的模型及其中的随机扰动项u i满足各项古典假定,可以用OLS法估计其参数。

1.方法一:点击“Quick\Estimate Equation”,在Specification中输入“Y C X”。

方法二:在Eviews主命令框中输入“LS Y C X”,按回车。

结果第一行依次表示:变量,参数,标准误差,t统计量,概率值样本回归函数为:Ŷi=11.95802+0.002873X iR2=0.831966,即判定系数表示回归解释平方和与总平方和之比,拟合优度度量值。

2.显示回归结果的图形,在“Equation”框中,点击“Resids”。

四、模型检验1.经济意义检验所估计的参数β̂1=11.95802,β̂2=0.002873,分别表示城镇居民平均每人全年家庭总收入每增加1元,2011年底城镇居民家庭平均每百户计算机拥有量增加0.002873台,与预期的经济意义相符。

2.拟合优度和统计检验R2=0.831966,即判定系数表示回归解释平方和与总平方和之比,拟合优度度量值,说明所建立的模型拟合效果较好。

用Eviews软件建立一元线性回归模型并进行有关检验的实验报告

用Eviews软件建立一元线性回归模型并进行有关检验的实验报告

用Eviews软件建立一元线性回归模型并进行相关检验的实验报告1.数据表1列出了某年中国部分省市城镇居民每个家庭平均全年可支配收入X与消费性支出Y 的统计数据。

2.建立模型应用EViews软件,以表1的数据可绘出可支配收入X与消费性支出Y的散点图(图2-1)。

从该三点图可以看出,随着可支配收入的增加,消费性支出也在增加,大致程线性关系。

据此,我们可以建立一元线性回归模型:Y=β0+β1·X+μ图2-1对模型作普通最小二乘法估计,在Eviews软件下,OLS的估计结果如图(2-2)所示。

Dependent Variable: YMethod: Least SquaresDate: 12/07/11 Time: 21:00Sample: 1 20Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.X 0.755368 0.023274 32.45486 0.0000C 271.1197 159.3800 1.701090 0.1061R-squared 0.983198 Mean dependent var 5199.515Adjusted R-squared 0.982265 S.D. dependent var 1625.275S.E. of regression 216.4435 Akaike info criterion 13.68718Sum squared resid 843260.4 Schwarz criterion 13.78675Log likelihood -134.8718 Hannan-Quinn criter. 13.70661F-statistic 1053.318 Durbin-Watson stat 1.302512Prob(F-statistic) 0.000000图2-2OLS估计结果为^Y=271.12+0.76X(1.70) (32.45)R2=0.9832 D.W. =1.3025 F=1053.3183.模型检验从回归估计的结果看,模型拟合较好。

金融计量学实验指导书Eviews操作指导书

金融计量学实验指导书Eviews操作指导书

金融计量学实验指导书金融工程教研室编广东商学院金融学院二00六年十一月目录实验项目一:一元线性回归模型分析 (1)实验项目二:多元线性回归模型(一) (11)实验项目三:多元线性回归模型(二) (15)实验项目四:放宽基本假定的线性回归模型(一) (20)实验项目五:放宽基本假定的线性回归模型(二) (26)实验项目六:虚拟变量模型与Granger因果检验 (30)实验项目七:平稳性检验与ARMA模型估计 (34)实验项目八:协整关系检验与误差修正模型(ECM) (40)实验项目九:GARCH模型的估计 (48)参考文献 (54)实验项目一:一元线性回归模型分析一、实验目的通过上机实验,使学生充分理解Eviews软件系统管理和基本原理,掌握基本运用的技能。

二、预备知识(1)Windows操作系统的常用操作;(2)数据库的基础知识;(3)Excel软件的基本操作;(4)一元线性回归模型的理论知识。

三、实验内容EViews软件启动,新建文件,数据录入,一元线性回归模型分析。

四、实验步骤(一)、启动软件包1、EViews 的启动步骤:进入Windows /双击Eviews 快捷方式,进入EViews 窗口;或点击开始/程序/Eviews3/ Eviews3.1,进入E Views 窗口。

2、EViews 窗口介绍(图1-1)标题栏:窗口的顶部是标题栏,标题栏的右端有三个按钮:最小化、最大化(或复原)和关闭,点击这三个按钮可以控制窗口的大小或关闭窗口。

菜单栏:标题栏下是主菜单栏。

主菜单栏上共有 7 个选项: File ,Edit ,Objects , View ,Procs ,Quick ,Options ,Window ,Help 。

用鼠标点击可打开下拉式菜单(或再下一 级菜单,如果有的话),点击某个选项电脑就执行对应的操作响应(File ,Edit 的编辑功能与 W ord, Excel 中的相应功能相似)。

实验报告模板3

实验报告模板3

湖南商学院模拟实验报告
实验结果与分析: 样本回归方程为=0.98
=0.69是样本回归方程的斜率, 它表示某市城镇居民的边际消费倾向, 说明年人均可支配收入每增加1元, 将0.69元用于消费性支出;=135.31是样本回归方程的截距, 它表示不受可支配收入影响的自发消费行为。

和的符号大小, 均符合经济理论及目前某市的实际情况。

=0.98, 说明总离差平方和的98%被样本回归直线解释, 仅有2%未被解释, 因此样本回归直线对样本点的拟合优度是很高的。

给出显著水平=0.05, 查自由度=19-2=17的t分布表, 得临界值, , , 故回归系数均显著不为零, 回归模型中应包含常熟项, X对Y有显著影响
综合可得此模型比较好。

讨论与心得:
成绩评定评阅教师评阅时间。

计量经济学Eviews软件应用2---【线性回归模型】--1次课

计量经济学Eviews软件应用2---【线性回归模型】--1次课
3、方程窗口工具条中的View/Actual, Fitted, Residual/ Residual Graph →只显示残差图;
Eviews软件操作实例
例2:经研究发现,学生用于购买书籍及课外读物的支
出与本人受教育年限和其家庭收入水平有关,对18名 学生进行调查的统计资料见表2-2,其中,Y——购买 书籍及课外读物支出(元/年); X1 ——受教育年限 (年);X2 —— 家庭月可支配收入(元/月)。要求 通过使用Eviews软件: (1)试建立学生购买书籍及课外读物的支出 Y 与受 教育年限 X1 和家庭收入水平X2 的二元线性回归模 型; (2)假设有一学生的受教育年限X1= 10 年,家庭月 可支配收入 X2 =480元/月,试预测该学生全年购买书 籍及课外读物的支出,并给出相应的预测区间。
Eviews软件操作实例
(三) 做散点图
菜单方式:组窗口工具条View/Graph/Scatter/Simple Scatter →X 和Y 的散点图(以X 列的观测值为横坐标,以Y 列的观测值为纵坐标,在 X-Y 坐标系中描点得到 X 和 Y 两个变量的散点图) ,点击Freeze冻结为一个图→Name命 名graph01→此图的图标出现在工作文件目录中; 或者Eviews主菜单中的Quick/Graph/Scatter →弹出的文 本框中输入 X Y →OK →打开未命名的图窗口→Name命 名; 命令方式:scat X Y 然后回车 (打开未命名的图窗口,可name命名)
Eviews软件操作实例
(一) 工作文件基本操作 2、保存工作文件
直接点击工作文件窗口工具条中的“Save” 或者选择
Eviews主菜单中的 File/Save→如果工作文件已命名 (example1 ), 弹出“Workfile Save”对话框(默认状态) → 点击Ok后系统自动将工作文件保存在默认目录下,扩 展名为wf1;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试验二一元线性回归模型Eviews操作案例:建立我国最终消费支出与国内生产总值(单位:亿元)之间的回归模型,并进行变量和方程整体的显著性检验。

当显著性水平为0.05, 2004年国内生产总值为38000亿元时,对2004年我国最终消费支出和平均最终消费支出进行点预测和区间预测。

一、创建工作文件建立工作文件的方法有以下几种。

1.菜单方式在主菜单上依次单击File→New→Workfile(见图2-1),选择数据类型和起止日期。

时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。

本例中在Start Data里输入1978,在End data 里输入2003,见图2-3。

单击OK后屏幕出现Workfile工作框,如图2-4所示。

2.命令方式在命令窗口直接输入建立工作文件的命令CREATE,命令格式:CREATE 数据频率起始期终止期其中,数据频率类型分别为A(年)、Q(季)、M(月)、U(非时间序列数据)。

输入Eviews 命令时,命令字与命令参数之间只能用空格分隔。

如本例可输入命令:CREATE A 1978 2003工作文件创立后,需将工作文件保存到磁盘,单击工具条中Save→输入文件名、路径→保存,或单击菜单兰中File→Save或Save as→输入文件名、路径→保存。

图2-1这时屏幕上出现Workfile Range对话框,如图2-2所示。

图2-2图2-3图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。

输入数据有两种基本方法:命令方式和菜单方式。

1.命令方式命令格式:data 〈序列名1〉〈序列名2〉…〈序列名n〉功能:输入新变量的数据,或编辑工作文件中现有变量的数据。

在本例中,在命令窗口直接输入:Data Y X2.菜单方式在主菜单上单击Objects→New object,在New object对话框里,选Group并在Name for Object上定义变量名(如变量X、Y),单击OK,屏幕出现数据编辑框。

另一种菜单方式是在主菜单上依次单击Quick→Group(见图2-5),图2-5建立一个空组(见图2-6),再用方向键将光标移到每一列的顶部之后,输入各个变量名,回车后输入数据(见图2-7)。

另外数据还可以从Excel中直接复制到空组。

然后为每个时间序列取序列名。

单击数据表中的SER01(见图2-8),在数据组对话框中的命令窗口输入该序列名称,如本例中输入X(见图2-9),回车后Yes。

采用同样的步骤修改序列名Y(见图2-10)。

数据输入操作完成。

图2-6图2-7 修改序列名图2-8 修改序列名图2-9 修改序列名图2-10 数据输入数据输入完毕,单击工作文件窗口工具条的Save或单击菜单兰的File→Save将数据存入磁盘。

三、图形分析在估计计量经济模型之前,借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理的确定模型的数学形式。

图形分析中最常用的是趋势图和相关图。

1.菜单方式在数组窗口工具条上Views的下拉菜单中选择Graph。

(见图2-11)2.命令方式趋势图:Plot Y X功能:(1)分析经济变量的发展变化趋势;(2)观察经济变量是否存在异常值。

图给出了最终消费支出与国内生产总值的趋势图。

相关图:Scat Y X (见图2-13)功能:(1)观察经济变量之间的相关程度;(2)观察经济变量之间的相关类型,判断是线性相关,还是曲线相关;曲线相关时,大致是哪种类型的曲线。

图2-11 数组窗口趋势图1000020000300004000078808284868890929496980002图2-12 最终消费支出与国内生产总值的趋势图图2-13 数组窗口相关图0500010000150002000010000200003000040000XY图2-14 最终消费支出与国内生产总值的相关图四、OLS 估计参数1.命令方式在主菜单命令行键入LS Y C X (如图2-15)图2-152.菜单方式在主菜单上选Quick菜单,单击Estimate Equation项,屏幕出现Equation Specification估计对话框,在Estimation Settings中选OLS估计,即Least Squares,输入:Y C X(其中C为Eviews固定的截距项系数)。

然后OK,出现方程窗口(见图2-16),输出结果如表2-1所示。

图2-16 方程窗口表2-1 回归结果Dependent Variable: YMethod: Least SquaresSample: 1978 2003Included observations: 26Variable CoefficientStd.Errort-Statistic Prob.C 245.3522153.9605 1.593605 0.1241X 0.5515140.009135 60.37623 0.0000R-squared 0.993459Mean dependent var 8042.748Adjusted R-squared 0.993187S.D. dependent var 5177.609S.E. of regression 427.3742 Akaike infocriterion15.02700Sum squared resid 4383569.Schwarz criterion 15.12378Log likelihood -193.3510F-statistic 3645.290Durbin-Watson stat 0.244011Prob(F-statistic) 0.000000方程窗口的上半部分为参数估计结果如表2-2所示,其中第1列分别为解释变量名(包括常数项),第2列为相应的参数估计值,第3列为参数的标准误差,第4列为t统计值,第5列为t检验的双侧概率值p,即P(| t |> ti)= p。

表2-2 参数估计结果常数和解释变量参数估计值参数标准误差t统计量双侧概率C245.3522 153.9605 1.5936050.1241X0.551514 0.009135 60.376230.0000方程窗口的下半部分主要是一些统计检验值,其中各统计量的含义如表2-3所示。

表2-3 统计检验值可决系数 0.993459 被解释变量均值 8042.748 调整的可决系数 0.993187 被解释变量标准差 5177.609 回归方程标准差σˆ 427.3742 赤池信息准则 15.02700 残差平方和2i e ∑ 4383569. 施瓦兹信息准则 15.12378 似然函数的对数 -193.3510 F 统计量 3645.290 DW 统计量0.244011F 统计量的概率0.000000单击Equation 窗口中的Resid 按钮,将显示模型的拟合图和残差图。

-1000-50005001000500010000150002000078808284868890929496980002图2-17 拟合图和残差图单击Equation 窗口中的View → Actual, Fitted, Resid → Table 按钮,可以得到拟合直线和残差的有关结果。

图2-18五、预测在Equation 框中选Forecast 项后,弹出Forecast 对话框,Eviews 自动计算出样本估计期内的被解释变量的拟合值,拟合变量记为YF ,其拟合值与实际值的对比图如图2-19所示。

50001000015000200002500078808284868890929496980002图2-19下面预测2004年我国最终消费支出。

1.首先将样本期范围从1978-2003年扩展为1978-2004年。

即单击工作文件框中Pros中的Change workfile range ,如图2-20所示,并将1978-2003改为1978-2004,如图2-21所示。

图2-20图2-212.然后编辑解释变量X。

在Group数据框中输入变量X的2004年数据38000.00。

(见图2-22)图2-223.点预测。

在前面Equation 对话框中选Forecast ,将时间Sample 定义在1978-2004,如图2-23所示,这时Eviews 自动计算出2004ˆY =21202.8727955,如图2-24所示。

图2-23图2-244.区间预测。

在Group数据框中单击View,选Descriptive Stats里的Common SampleEviews,计算出有关X和Y的描述统计结果,如图2-25所示。

图2-25图2-26 X 和Y 的描述统计结果根据图2-26可计算出如下结果:=⨯-=-=∑222)245.9357()126()1(Xn x σ2188950850=-=-222004)17.1413838000()(X X569386930.9给定显著性水平=α0.05,查表得056.2)24(025.0=t ,由 220025.000)(11ˆ)2(ˆxX X nn t Y Y ∑-++-±=σ可得2004Y 的预测区间为:21202.8727955±2.056⨯427.3742⨯=++21889508509.569386930261121202.8727955±1001.30364即2004Y 的95%预测区间为(20201.56915,22204.17643)。

六、非线性回归模型的估计1.倒数模型:μββ++=X Y 11在命令窗口直接依次键入GENR X1=1/X LS Y C X12.多项式模型:μβββ+++=2210X X Y在命令窗口直接依次键入GENR X1=XGENR X2=X^2LS Y C X1 X23.准对数模型:μββ+++=X Y ln 10 在命令窗口直接依次键入GENR lnX=LOG(X) LS Y C lnX4.双对数模型:μββ+++=X Y ln ln 10 在命令窗口直接依次键入GENR lnX=LOG(X) GENR lnY=LOG(Y)LS lnY C lnX七、异方差检验与解决办法1.X e -2相关图检验法LS Y C X 对模型进行参数估计 GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X 排序SCAT X E2 画出残差平方与解释变量X 的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。

SORT X 将样本数据关于X 排序 SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1 SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2 计算F 统计量并做出判断。

相关文档
最新文档