平面直角坐标系(1)

合集下载

第09章 平面直角坐标系与函数初步-2021年中考数学一轮复习(通用版)(含答案)

第09章 平面直角坐标系与函数初步-2021年中考数学一轮复习(通用版)(含答案)

2021年中考数学一轮复习(通用版)第09章平面直角坐标系与函数初步考点梳理考点一平面直角坐标系及点的坐标1.平面直角坐标系(1)在平面内画两条互相垂直并且原点重合的数轴,就建立了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取为正方向;垂直的数轴叫做y轴或纵轴,取为正方向;两轴的交点为原点.(2)坐标平面内点与有序实数对建立的关系,即坐标平面内的任何一点可以用一对有序实数来表示;反过来,每一对有序实数都表示坐标平面内的一点.2.点的坐标(1)各象限内点的坐标的符号特征. 如图所示.①点P(x,y)在第一象限①x>0,y>0;①点P(x,y)在第二象限①;①点P(x,y)在第三象限①;①点P(x,y)在第四象限①;①坐标轴不属于任何象限.(2)坐标轴上点的坐标特征①点P(x,y)在x轴上①y=0;①点P(x,y)在y轴上①=0;①原点的坐标为.(3)各象限角平分线上点的坐标特征①点P(x,y)在第一、三象限角平分线上①x=y;①点P(x,y)在第二、四象限角平分线上①.(4)对称点的坐标特征①点P(x,y)关于x轴对称的点的坐标为(x,-y);①点P(x,y)关于y轴对称的点的坐标为;①点P(x,y)关于原点对称的点的坐标为.(5)平行于坐标轴的点的坐标特征①平行于x轴,纵坐标都,直线上两点A(x1,y),B(x2,y)的距离为|x1-x2|;①平行于y轴,横坐标都,直线上两点A(x,y1),B(x,y2)的距离为|y1-y2|.(6)点平移的坐标特征(7)①点P(a,b)到x轴的距离为|b|;①点P(a,b)到y轴的距离为;①点P(a,b)到原点的距离为①.考点二函数的概念及其表示方法1.函数及相关概念(1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不变的量,是常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x,y,且对于x在它允许取值范围内的每一个值,y 都有的值与它对应,那么就说x是自变量,y是x的函数.(3)函数值:对于一个函数,取自变量x在允许范围内的一个确定值,代入函数表达式求得的函数y的值,就叫做函数值.2.函数的表示方法(1)列表法:通过列出自变量的值与对应函数值的表格来表示函数的方法叫做列表法.(2)解析法:用数学式子表示函数关系的方法叫做解析法.其中的等式叫做函数表达式(或函数解析式或函数关系式).(3)图象法:用图象来表示两个变量间的函数关系的方法,叫做图象法.①函数的图象:对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形就是这个函数的图象.①画函数图象的步骤:列表、描点、连线.3.函数自变量取值范围重难点讲解考点一点的坐标与图形的变化规律方法指导:点的坐标在变换中的规律:(1)平移:左右平移时横坐标左减右加,纵坐标不变;上下平移时纵坐标上加下减,横坐标不变;(2)关于坐标轴对称,与其同名的坐标不变,另一个坐标变为相反数;(3)关于原点对称,其坐标互为相反数;(4)点(x,y)关于原点顺时针旋转90°后的点坐标为(y,-x),点(x,y)关于原点逆时针旋转90°后的点坐标为(-y,x).经典例题1 (2020•安徽宿州模拟)已知点M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M 的坐标为()A.(2,3) B.(2,-3) C.(3,2) D.不能确定【解析】M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3).【答案】B考点二函数图象的分析与判断方法指导:根据函数的图象分析实际意义:要读懂图象的意义,就要会析图、用图.在解答过程中,要弄清楚图象的横、纵坐标表示的意义,函数图象上的点的意义,图象的变化趋势、变化快慢等,特别地,若是问题在整体过程中分为几个阶段,则其对应的图象也应分段分析,注意特殊点,如起点、终点、交点、转折点等的实际意义.经典例题2 (2020•湖南衡阳模拟)如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B 出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x 的函数图象如图2所示,则矩形ABCD的面积是()图1 图2A.20B.24C.48D.60【解析】如图2所示,当OP⊥BC时,BP=CP=4,OP=3,所以AB=2OP=6,BC=2BP=8,所以矩形ABCD的面积=6×8=48.【解析】C过关演练1. (2020•湖南长沙模拟)点P在第二象限内,若P到x轴的距离是3,到y轴的距离是4,那么点P的坐标为()A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)2. (2020·安徽阜阳模拟)如果m是任意实数,则点P(m-4,m-1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3. (2020•湖南邵阳中考)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)4.(2020•山东滨州中考)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4)5.(2020•四川甘孜州中考)函数y=13x中,自变量x的取值范围是()A.x>﹣3 B.x<3 C.x≠﹣3 D.x≠36.(2020•江苏无锡中考)函数y=2+31x-中自变量x的取值范围是()A.x≥2 B.x≥13C.x≤13D.x≠137.(2020•四川遂宁中考)函数y中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠18.(2020·河北模拟)如图所示,两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;①甲的速度比乙快1.5米/秒;①乙的起跑点在甲的前方12米处;①8秒钟后,甲超过了乙其中正确的说法是()A.①① B.①①① C.①① D.①①①9.(2020·安徽模拟)小明、小刚兄弟俩的家离学校的距离是5km.一天,兄弟俩同时从家里出发到学校上学,小刚以匀速跑步到学校;小明骑自行车出发,骑行一段路程后,因自行车故障,修车耽误了一些时间,然后以比出发时更快的速度赶往学校,结果比小刚早一点到了学校.下列能正确反映两人离家的距离y(米)与时间x(小时)之间的函数关系的图象是()A BC D10.(2020·江苏徐州一模)已知A,B两地相距1000米,甲从A地步行到B地,乙从B地步行到A地,若甲行走的速度为100米/分钟,乙行走的速度为150米/分钟,且两人同时出发,相向而行,则两人之间的距离y(米)与时间t(分钟)之间的函数图象是()A BC D11.(2020•安徽淮南模拟)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B,C不重合)EF ∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A B C D 12.(2020•四川州模拟)小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;①他步行的速度是100m/min;①他在校车站台等了6min;①校车运行的速度是200m/min;其中正确的个数是()A.1 B.2 C.3 D.413. (2020•湖北黄冈中考)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A B C D14. (2020•青海中考)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A B C D 15.(2020•贵州遵义中考)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1,S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A B C D 16.(2020·贵州贵阳模拟)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(2020·安徽铜陵模拟)若点P(a,b)在第四象限,则点M(b-a,a-b)在第象限.18.(2020·安徽合肥二模)函数y的自变量取值范围是.19.(2020•上海一模)在平面直角坐标系xOy中,点A(4,3)为O上一点,B为O内一点,请写出一个符合条件要求的点B的坐标.20.(2020·河南模拟)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.当它们行驶7h时,两车相遇,则乙车速度的速度为.21.(2020•浙江金华中考)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).22.(2020•黑龙江齐齐哈尔中考)在函数y中,自变量x的取值范围是.23.(2020•上海中考)已知f(x)=21x-,那么f(3)的值是.参考答案考点梳理考点一 1. (1)向右向上(2)一一对应 2. (1)①x<0,y>0 ①x<0,y<0 ①x>0,y<0 (2)①x ①(0,0) (3)①x=-y (4)①(-x,y) ①(-x,-y) (5)①相等①相等(6)(x,y+b) (x,y-b) (7)①|a|考点二 1. (2)唯一确定 3.不等于0 非负数不为0过关演练1. A解析:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0,又∵P到x轴的距离是3,到y轴的距离是4可知,∴点P的横坐标是-4,纵坐标是3,即点P的坐标为(-4,3).2. D 解析:①(m-1)-(m-4)=m-1-m+4=3,①点P的纵坐标大于横坐标,①点P一定不在第四象限.3. B 解析:①a+b>0,ab>0,①a>0,b>0.(a,b)在第一象限,因为小手盖住的点在第二象限,故选项A不符合题意;(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故选项B符合题意;(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故选项C不符合题意;(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故选项D不符合题意.4. D 解析:①在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,①点M 的纵坐标为﹣4,横坐标为5,即点M的坐标为(5,﹣4).5. C 解析:由题意得x+3≠0,解得x≠﹣3.6. B 解析:由题意得,3x﹣1≥0,解得x≥13.7. D 解析:根据题意,得21xx≥-⎨≠+⎧⎩,,解得x≥﹣2且x≠1.8. B9. A 解析:由题意可知,小刚匀速从家去学校,故小刚对应的函数图象是一条线段,故选项D错误;小明骑自行车先行一段路程,中途出现故障需要维修,然后以更快的速度赶往学校,比小刚早到一点到达学校,故选项B、C错误,选项A正确.10. C 解析:两人相遇时所用时间为1000÷(100+150)=4(分钟),乙从B 地步行到A 地所用时间为1000÷150=203(分钟),则203分钟后,甲、乙两人之间距离的变化变缓,甲从A 地步行到B 地所用时间为1000÷100=10(分钟),由此可知选项C 能反映两人之间的距离y (米)与时间t (分钟)之间的关系.11. C 解析:∵菱形ABCD 中,∠B =60°,∴△ABC 是等边三角形,∵EF ∥AC ,∴△BFE 是等边三角形,∴BE =BF =x ,∵BE =x ,∴S △BFE =12x ﹒=x 2,∵AB =1,∴EC =AF =1-x ,∴S △AFD =S △CED =12(1-x )﹒=-x ,∵S 菱形ABCD =12×1×=,∴S △DFE =-x 2-2(-x )=-4(x -1)2(其中0<x <1).符合此图象表达式为选项C .12. C 解析:根据题意得:小明用了10分钟步行了1km 到校站台,即小明步行了1km 到校车站台,①正确,1000÷10=100m/min ,即他步行的速度是100m/min ,①正确,小明在校车站台从第10min 等到第16min ,即他在校车站台等了6min ,①正确,小明用了14min 的时间坐校车,走了7km 的路程,7000÷14=500m/min ,即校车运行的速度是500m/min ,①不正确,即正确的是①①①.13. D 解析:根据题意:时间t 与库存量y 之间函数关系的图象为先平,再逐渐减小,最后为0.14. B 解析:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.15. C 解析:此函数图象中,S 2先达到最大值,即兔子先到终点,故选项A 不符合题意;此函数图象中,S 2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,故选项B 不符合题意;此函数图象中,S 1,S 2同时到达终点,故选项C 符合题意;此函数图象中,S 1先达到最大值,即乌龟先到终点,故选项D 不符合题意.16. (-2,3)或(-2,-3)17. 二 解析:①点P (a ,b )在第四象限,①a >0,b <0,①b -a <0,a -b >0,①点M (b -a ,a -b )在第二象限.18. x≤2且x≠0 解析:根据题意得,2-x≥0,且x≠0,解得x≤2且x≠0.19. (2,2) 解析:连结OA,OA5,∵B为O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.20. 75千米/小时解析:甲返程的速度为600÷(14-6)=75(千米/时),设乙车的速度为x(千米/时),由题意得600=7x+75,解得x=75.21. ﹣1(答案不唯一) 解析:①点P(m,2)在第二象限内,①m<0,则m的值可以是﹣1.(答案不唯一)22. x≥﹣3且x≠2 解析:由题可得,3020xx+≥⎧⎨-≠⎩,,解得32xx≥-⎧⎨≠⎩,,①自变量x的取值范围是x≥﹣3且x≠2.23. 1 解析:①f(x)=21x-,①f(3)=231-=1.。

数学六年级下册第七章-平面直角坐标系(1)——点的坐标-课件与答案

数学六年级下册第七章-平面直角坐标系(1)——点的坐标-课件与答案

-3
3.点(x,y)到x轴的距离是|y|,到y轴的距离是
,纵坐标
|x|
.
7.1
数学
七年级 下册
配RJ版
第七章
7.1
基础过关
1.点C的横坐标是-4,纵坐标是1,则点C的坐标记作 (-4,1)
2.如图是标准围棋盘的一部分,棋盘上有三枚黑子A,B,C.若
棋子A所处位置的坐标为(0,8),棋子B所处位置的坐标为(3,3),则棋子C所处位置的坐标为 (3,1) .
.
数学
七年级 下册
配RJ版
第七章
7.1
4.原点O的坐标是( 0 , 0 ),横轴上的点的坐标为(x, 0 ),
纵轴上的点的坐标为( 0 ,y).
5.已知点P(3,a),并且点P到x轴的距离是2个单位长度,则点P
(3,2)或(3,-2)
的坐标为
.
6.点A在x轴上,距离原点4个单位长度,则A点的坐标是
7.1
数学
七年级 下册
配RJ版
第七章
7.1
A组
1.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少
数突出的齿.将其放在平面直角坐标系中,表示叶片“顶
部”A,B两点的坐标分别为(-2,2),(-3,0),则叶杆“底部”点C的
坐标为 ( B )
A.(2,-2)
B.(2,-3)
C.(3,-2)
D.(3,-3)
分别写出点A,B,C的坐标.
解:点A的坐标为(3,3);点B的坐
标为(-3,4);点C的坐标为(5,-2).
数学
七年级 下册
配RJ版
第七章
7.1
【变式1】点A,B,C,D在平面直角坐标系中的位置如图所示.

第七章平面直角坐标系(1)

第七章平面直角坐标系(1)

-4
•如何确定点P坐标呢?
横坐标
y
b
P(a,b) •

1
o
纵坐标
1
a x
-1 -1
横坐标在前, 纵坐标在后, 中间隔开用逗号 勿忘加括号!
1、写出图中A、B、C、D、E各点的坐标。
纵轴 y 5
4
3 2 1 0 -1 -2 -3 1
A ( 2,3 )
·
C ( -2,1 )
·
·
3
B ( 3,2 )
-4
-3
-2
-1
2
4
5
x
横轴
D ( -4,- 3 )
·
· E
( 1,- 2 )
-4
思考
雁塔 (0,3) 北 (-2,1) 钟楼 (-2,-2) 大成殿 (0,0)
碑林(3,1)
中心广场
(0,-5) (-4,-6) 科枝大学
影月湖
与你共探究
在平面直角坐标系中 如何由坐标描点?
A
( 4,5 )
-6 -5 -4 -3 -2 -1
第二、四象限夹角平分线上的点,纵横坐标互为相反数。
⑶与x轴平行(或与y轴垂直)的直线上的点纵坐标都相同。 与y轴平行(或与x轴垂直)的直线上的点横坐标都相同。 ⑷关于x轴对称的点横坐标相同、纵坐标互为相反数。 关于y轴对称的点纵坐标相同、横坐标互为相反数。
关于原点对称的点纵横坐标都互为相反数。
⑸平面直角坐标系中有一点P(a , b),点P到x轴的距离是这个点的


③若a=-3 ,则P在第 3
④若a=3,则点P在第
象限内;
4 象限内.
二、若点P(x,y)在第四象限,|x|=2, |y|=3,则P点的坐标为 . (2,-3)

1平面直角坐标系

1平面直角坐标系

证法二(向量法)
在 ▱ABCD 中 ,������������ = ������������ + ������������ , 两边平方得������������ 2 =|������������ |2=|������������ |2+|������������ |2+2������������ ·������������ , 同理得������������ 2 =|������������ |2=| ������������|2+|������������ |2+2������������ ·������������ , 以上两式相加,得 |������������ |2+|������������ |2=2(| ������������ |2+| ������������ |2)+2������������ · (������������ + ������������)=2(|������������|2+| ������������ |2), 即 |AC|2+|BD|2=2(|AB|2+|AD|2).
思考辨析 判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打 “×”. (1)若曲线C上的点都是方程f(x,y)=0的解,则曲线C是方程f(x,y)=0的 曲线. ( × ) (2)以方程x2+y2=4的解为坐标的点都是曲线“在y轴右侧到原点的 距离等于2的点的集合”上的点. ( × ) (3)已知等腰三角形ABC的底边为AB,且A(-1,1),B(3,7),则顶点C的轨 迹方程为2x+y-5=0. ( × ) (4)方程(x-a)2+(y-b)2=r2的曲线经过点(1,2)的充要条件是(1-a)2+(2b)2=r2. ( ) √

第1章 1 平面直角坐标系

第1章  1  平面直角坐标系

§1平面直角坐标系1.坐标系(1)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系.(2)坐标法解决几何问题的“三步曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化成代数问题;第二步,通过代数运算,解决代数问题;第三步,把代数运算结果“翻译”成几何结论. 2.平面直角坐标系的作用平面直角坐标系的作用:使平面上的点与坐标(有序实数对),曲线与方程建立联系,从而实现数与形的结合. 3.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归结为坐标伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 【思维导图】【知能要点】1.回顾坐标系有关概念,体会坐标系的作用.2.了解建立坐标系的方法和原则.3.坐标伸缩变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0.题型一平面直角坐标系坐标系是现代数学中的重要内容,它在数学发展的历史上起过划时代的作用.坐标系的创建,在代数和几何之间架起了一座桥梁.利用坐标系,我们可以方便地用代数的方法确定平面内一个点的位置,也可以方便地确定空间内一个点的位置.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将抽象的代数方程用形象的几何图形表示出来,又可将先进的代数方法应用于几何学的研究.建立直角坐标系,数形结合,我们可以解决许多数学问题,如函数问题就常常需要借助直角坐标系来解决.【例1】如图所示,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得|PM|=2|PN|,试建立适当的坐标系,求动点P的轨迹方程.分析本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:|PM|=2|PN|,即|PM|2=2|PN|2,结合图形由勾股定理转化为|PO1|2-12=2(|PO2|2-12).设P(x,y),由距离公式写出代数关系式,化简整理可得. 解以O1O2的中点O为原点,O1O2所在的直线为x轴,建立如图所示的平面直角坐标系,则O1(-2,0),O2(2,0).由已知|PM|=2|PN|,得|PM|2=2|PN|2.因为两圆的半径均为1,所以|PO1|2-1=2(|PO2|2-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33,所以所求轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).【反思感悟】本题求点的轨迹,考查建坐标系和数形结合思想,利用勾股定理、两点间距离公式等知识,巧妙探求动点P满足的条件.1.一种作图工具如图①所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图②所示的平面直角坐标系. 试求曲线C 的方程.解 设点D (t ,0)(|t |≤2),N (x 0,y 0),M (x ,y ),依题意,MD →=2DN →,且|DN →|=|ON →|=1,所以(t -x ,-y )=2(x 0-t ,y 0),且⎩⎨⎧(x 0-t )2+y 20=1,x 20+y 20=1.即⎩⎨⎧t -x =2x 0-2t ,y =-2y 0,且t (t -2x 0)=0. 由于当点D 不动时,点N 也不动,所以t 不恒等于0, 于是t =2x 0,故x 0=x 4,y 0=-y 2.代入x 20+y 20=1, 可得x 216+y 24=1,即所求的曲线C 的方程为x 216+y 24=1.【例2】 如图所示,四边形ABCD 的四个顶点坐标分别为 A (-1,3),B (-3,-2),C (4,-2),D (3,4),求四边形ABCD 的面积.分析 本例是帮助同学们进一步了解点的坐标.点的坐标还可以表示点到坐标轴的距离(点A (a ,b )到x 轴的距离为|b |,到y 轴的距离为|a |),从而得出某些我们需要的线段的长度.将四边形ABCD 分割成两个三角形和一个梯形,其中BE 的长度等于B 到y 轴的距离减去A 到y 轴的距离,AE 的长度为A 到x 轴的距离加上B 到x 轴的距离,依此类推可以求出DF ,CF ,EF 的长度,从而求出四边形ABCD 的面积.解 作AE ⊥BC ,DF ⊥BC .垂足分别为E 、F .S △ABE =12·BE ·AE =2×52=5;S △CDF =CF ·DF 2=1×62=3; S 梯形AEFD =(AE +DF )·EF 2=(5+6)×42=22, 所以四边形ABCD 的面积为5+22+3=30.【反思感悟】 本例是坐标系在几何图形中的应用,在求面积时要尽量利用图形中的垂直关系,将原图形分割求得面积.2.一直角梯形的上、下底边分别为12和15,两腰分别为33和6,选择适当的坐标系,表示各顶点坐标及较短对角线的长.解 如图所示,以D 为原点,CD 边所在直线为x 轴,建立平面直角坐标系,则A (0,33),B (12,33),C (15,0),D (0,0), |BD |=319.题型二 坐标伸缩变换平面几何图形的伸缩变换可以归结为坐标的伸缩变换,学习中可结合坐标间的对应关系理解.在伸缩变换下,平面直角坐标系保持不变,在同一坐标系下对坐标进行伸缩变换,展示了坐标法思想.在伸缩变换下,直线仍然变为直线,抛物线变为抛物线,双曲线变为双曲线,而椭圆可以变为圆,圆可以变为椭圆.【例3】 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1.分析 根据变换公式,分清新旧坐标即可.解 (1)由伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y ,得⎩⎨⎧x =2x ′,y =3y ′.将其代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0. 经过伸缩变换后,直线仍然是直线. (2)将⎩⎨⎧x =2x ′,y =3y ′代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x ′214+y ′219=1.经过伸缩变换后,圆变成了椭圆.【反思感悟】 伸缩变换要分清新旧坐标,直接利用公式即可,变换后的新坐标用x ′,y ′表示.3.伸缩变换的坐标表达式为⎩⎨⎧x ′=x ,y ′=4y .曲线C 在此变换下变为椭圆x ′2+y ′216=1.求曲线C 的方程.解 设P (x ,y )为曲线C 上任意一点.把⎩⎨⎧x ′=x ,y ′=4y 代入x ′2+y ′216=1,得x 2+y 2=1.故曲线C 的方程为x 2+y 2=1. 【例4】 求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1.分析 求满足图形变换的伸缩变换,实际上是求出其变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数就可得了,椭圆伸缩变换之后可得圆或椭圆.解 设变换为⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0,可将其代入第二个方程,得λ2x 2+μ2y 2=1.与4x 2+9y 2=36比较,将其变为436x 2+936y 2=1,即19x 2+14y 2=1,比较系数得⎩⎪⎨⎪⎧λ=13,μ=12.∴⎩⎪⎨⎪⎧x ′=13x ,y ′=12y ,即将椭圆4x 2+9y 2=36上的所有点横坐标变为原来的13,纵坐标变为原来的12,可得到圆x ′2+y ′2=1.【反思感悟】 对于图形的伸缩变换问题,只要搞清新旧坐标,区别x ,y 和x ′,y ′,比较公式中的系数即可.4.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足图像变化的伸缩变换. 解 x 2-36y 2-8x +12=0可化为 ⎝ ⎛⎭⎪⎫x -422-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②两式得x ′-2=x -42,y ′=3y .故所求伸缩变换为:⎩⎪⎨⎪⎧x ′=12x ,y ′=3y .1.已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且AM ∶MB =1∶2,求动点M 的轨迹方程. 解 (代入法)设A (a ,0),B (0,b ),M (x ,y ), ∵|AB |=6,∴a 2+b 2=36.①M 分AB -的比为12.∴⎩⎪⎨⎪⎧x =a +12×01+12=23a ,y =0+12b1+12=13b .⇒⎩⎪⎨⎪⎧a =32x ,b =3y .②将②式代入①式,化简为x 216+y 24=1.2.已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东60°的方向埋设一条地下管线m .但在A 村的西北方向400米处,发现一古代文物遗址W .根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?解 解决这一问题的关键,在于确定遗址W 与地下管线m 的相对位置,如图所示,以A 为原点,正东方向和正北方向分别为x 轴和y 轴的正方向,建立平面直角坐标系,则A (0,0),B (-1 000,0).由W 位于A 的西北方向及|AW |=400,得W (-2002,2002),由直线m 过B 点且倾斜角为90°-60°=30°,得直线m 的方程是x -3y +1 000=0.于是,点W 到直线m 的距离为|-2002-3·2002+1 000|2=100(5-2-6)≈113.6>100,所以,埋设地下管线m 的计划可以不修改.3.阐述由曲线y =tan x 得到曲线y =3tan 2x 的变化过程,并求出坐标伸缩变换. 解 y =tan x 的图像上点的纵坐标不变,横坐标缩短为原来的12,得到y =tan 2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan 2x . 设y ′=3tan 2x ′,变换公式为⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0.将其代入y ′=3tan 2x ′得⎩⎪⎨⎪⎧λ=12,μ=3,∴⎩⎪⎨⎪⎧x ′=12x ,y ′=3y .[P 2思考交流]1.在平面直角坐标系中,圆心坐标为(2,3),5为半径的圆的方程是什么? 答 (x -2)2+(y -3)2=25.2.在平面直角坐标系中,以(a ,b )为圆心,r 为半径的圆的方程是什么? 答 (x -a )2+(y -b )2=r 2. [P 5思考交流]我国1990年至2000年的国内生产总值如表1-2(单位:亿元)表1—2特点. 答 统计图从表中统计数据可看到,我国的生产总值年年增长,1994~1997年增长较快,1997~2001年放慢了增长速度,2001年之后又以较快的速度增长. [P 6思考交流]1.观察例3(2)中y =sin x 的图像与(1)中y =2sin 3x 的图像,讨论它们的关系?答 y =sin x 的图像和y =2sin 3x 的图像可以通过伸缩变换相互得到: y =sin x 的图像――————————————→纵坐标不变横坐标缩短为原来的13得y =sin 3x 的图像―——————————―→横坐标不变纵坐标伸长为原来的2倍得y =2sin 3x 的图像. y =2sin 3x 的图像横坐标不变纵坐标缩短为原来的12得y =sin 3x 的图像.纵坐标不变横坐标伸长为原来的3倍得y =sin x 的图像 2.试将上述讨论引申为坐标轴单位长度任意伸缩的情况.答 设函数y =f (x )与函数y =μf (ωx )(其中ω>0,μ>0)图像之间的关系为:y =μf (ωx )的图像.它们的图像可以通过伸缩变换相互得到. 【规律方法总结】1.建立平面直角坐标系,可以利用未知点满足条件的坐标形式,求点的轨迹方程.2.利用平面直角坐标系,可以将平面图形坐标化,进行证明或计算.3.在伸缩变换中,要分清新旧坐标,然后代入公式比较系数即可.4.在伸缩变换⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,抛物线变为抛物线,双曲线变为双曲线,圆可以变为椭圆,椭圆可以变成圆,我们可以把圆作为椭圆的特例.一、选择题1.▱ABCD 中三个顶点A 、B 、C 的坐标分别是(-1,2)、(3,0)、(5,1),则点D 的坐标是( ) A.(9,-1) B.(-3,1) C.(1,3)D.(2,2)解析 由平行四边形对边互相平行,即斜率相等,可求出D 点坐标.设D (x ,y ),则⎩⎪⎨⎪⎧k AB =k DC ,k AD =k BC ,即⎩⎪⎨⎪⎧2-0-1-3=y -1x -5,2-y -1-x =0-13-5. ∴⎩⎪⎨⎪⎧x =1,y =3.,故D (1,3). 答案 C2.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图像,只需将函数y =sin 4x 的图像( )A.向左平移π12个单位 B.向右平移π12个单位 C.向左平移π3个单位D.向右平移π3个单位解析 由y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin 4⎝ ⎛⎭⎪⎫x -π12得,只需将y =sin 4x 的图像向右平移π12个单位即可,故选B. 答案 B3.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+4y ′2=1,则曲线C 的方程为( ) A.25x 2+36y 2=1 B.9x 2+100y 2=1 C.10x +24y =1D.225x 2+89y 2=1解析 将⎩⎪⎨⎪⎧x ′=5x ,y ′=3y代入x ′2+4y ′2=1, 得25x 2+36y 2=1,为所求曲线C 的方程.答案 A4.将一个圆作伸缩变换后所得到的图形不可能是( )A.椭圆B.比原来大的圆C.比原来小的圆D.双曲线 解析 设圆的方程为(x -a )2+(y -b )2=r 2,变换为⎩⎪⎨⎪⎧x ′=λx ,y ′=μy ,化为⎩⎪⎨⎪⎧x =1λx ′,y =1μy ′,(λ,μ不为零). ⎝ ⎛⎭⎪⎫1λx ′-a 2+⎝ ⎛⎭⎪⎫1μy ′-b 2=r 2, 1λ2(x ′-λa )2+1μ2(y ′-μb )2=r 2, ∴(x ′-λa )2(λr )2+(y ′-μb )2(μr )2=1.此方程不可能是双曲线.答案 D二、填空题5.△ABC 中,B (-2,0),C (2,0),△ABC 的周长为10,则A 点的轨迹方程为__________.解析 ∵△ABC 的周长为10,∴|AB |+|AC |+|BC |=10.其中|BC |=4,即有|AB |+|AC |=6>4.∴A 点轨迹为椭圆除去长轴两端点,且2a =6,2c =4.∴a =3,c =2,b 2=5.∴A 点的轨迹方程为x 29+y 25=1 (y ≠0).答案 x 29+y 25=1 (y ≠0)6.在平面直角坐标系中,方程x 2+y 2=1所对应的图形经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后的图形所对应的方程是____________.解析 代入公式,比较可得x ′24+y ′29=1.答案 x ′24+y ′29=17.y =cos x 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y后曲线方程变为________. 解析由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,化为⎩⎪⎨⎪⎧x =12x ′,y =13y ′, 代入y =cos x 中得:13y ′=cos 12x ′,即:y ′=3cos 12x ′.答案 y ′=3cos 12x ′8.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区内的时间为________h.解析 以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则B (40,0),以点B 为圆心,30为半径的圆的方程为(x-40)2+y 2=302,台风中心移动到圆B 内时,城市B 处于危险区,台风中心移动的轨迹为直线y =x ,与圆B 相交于点M ,N ,点B 到直线y =x 的距离d =402=20 2. 求得|MN |=2302-d 2=20(km), 故|MN |20=1,所以城市B 处于危险区的时间为1 h. 答案 1三、解答题9.已知▱ABCD ,求证:|AC |2+|BD |2=2(|AB |2+|AD |2).证明 法一 坐标法 以A 为坐标原点O ,AB 所在的直线为x 轴,建立平面直角坐标系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则AC 的中点E ⎝ ⎛⎭⎪⎫b 2,c 2,由对称性知D (b -a ,c ),所以|AB |2=a 2,|AD |2=(b -a )2+c 2,|AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2,|AC |2+|BD |2=4a 2+2b 2+2c 2-4ab=2(2a 2+b 2+c 2-2ab ),|AB |2+|AD |2=2a 2+b 2+c 2-2ab ,∴|AC |2+|BD |2=2(|AB |2+|AD |2).法二 向量法 在▱ABCD 中,AC→=AB →+AD →, 两边平方得AC →2=|AC →|2=AB →2+AD →2+2AB →·AD→, 同理得BD →2=|BD →|2=BA →2+BC →2+2BA →·BC→, 以上两式相加,得|AC →|2+|BD →|2=2(|AB →|2+|AD →|2)+2BC →·(AB→+BA →) =2(|AB→|2+|AD →|2), 即|AC |2+|BD |2=2(|AB |2+|AD |2).10.通过平面直角坐标系中的平移变换与伸缩变换,可以把椭圆(x -1)29+(y +2)24=1变为中心在原点的单位圆,求上述平移变换与伸缩变换,以及这两种变换的合成变换.解 先通过平移变换⎩⎨⎧x ′=x -1,y ′=x +2把椭圆(x -1)29+(y +2)24=1变为椭圆x ′29+y ′24=1.再通过伸缩变换⎩⎪⎨⎪⎧x ″=x ′3,y ″=y ′2把椭圆x ′29+y ′24=1变为单位圆x ″2+y ″2=1.由上述两种变换合成的变换是⎩⎪⎨⎪⎧x ″=13(x -1),y ″=12(y +2).习题1-1 (第7页)A 组1.由两点式写直线的方程为35x +36y -41=0.2.直线x 6+y 4=-2与x 轴、y 轴的交点坐标以及直线的斜率分别为(-12,0)、(0,-8)、-23.3.解 △ABC 是以∠A 为直角的直角三角形,且AB 平行于x 轴,AC 平行于y 轴. ∴∠A 的平分线的斜率为1,所在直线方程为x -y +1=0.BC 所在直线的方程为4x +3y -29=0,解⎩⎨⎧x -y +1=0,4x +3y -29=0,得⎩⎪⎨⎪⎧x =267,y =337.∠A 的平分线的长为1227.4.解 法一 由两点式写出直线AB 的方程为3x +y -6=0.将点C (4,-6)代入方程3×4+(-6)-6=0,点C 在直线AB 上,∴A 、B 、C 在同一条直线上.法二 ∵k AB =-3,k BC =-3∴A 、B 、C 三点在同一条直线上.5.解 与x 轴交点 令y =0,2x -10=0,x =5,与y 轴交 点令x =0,-5y -10=0,y =-2,S △=12×5×2=5.6.证明 如图:矩形OABC .设OA =a ,OC =b ,以O 为原点建立如图所示的直角坐标系.则O 、A 、B 、C 的坐标分别为(0,0),(a ,0),(a ,b ),(0,b )|OB |=a 2+b 2, |AC |=b 2+(-a )2=a 2+b 2,∴|OB |=|AC |.结论得证.7.解 (1)设圆的方程为(x -a )2+y 2=r 2代入C 、D 两点得⎩⎨⎧(-1-a )2+1=r 2,(1-a )2+9=r 2,解得a =2,r =10,∴方程为(x -2)2+y 2=10(2)设圆心为(0,b )m则5=|b -6|,b =1或11,∴方程为x 2+(y -1)2=25或x 2+(y -11)2=25.(3)设方程为(x -a )2+(y -b )2=r 2,∵过A 、B 两点,圆心在2x -y =3上,∴⎩⎨⎧(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,2a -b =3,解得a =2,b =1,r =10.∴方程为(x -2)2+(y -1)2=10.(4)设圆方程为(x -a )2+(y -b )2=r 2, 由题意可得⎩⎨⎧(3-a )2+(2-b )2=r 2,b =2a ,r =|2a -b +5|1+4,解得:⎩⎨⎧a =2,b =4或⎩⎪⎨⎪⎧a =45,b =85,r =5, ∴圆的方程为(x -2)2+(y -4)2=5或⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=5, 图略.8.解 以底边中点为原点,底边所在直线为x 轴建立平面直角坐标系.设△ABC ,底边BC =8,高为AD =5,则B (-4,0),C (4,0),D (0,0),A (0,5),设圆的方程为(x -a )2+(y -b )2=r 2则⎩⎨⎧(-4-a )2+b 2=r 2,(4-a )2+b 2=r 2,a 2+(5-b )2=r 2,得a =0,b =910,r 2=412100,∴圆方程为x 2+⎝ ⎛⎭⎪⎫y -9102=1 681100. 9.解 |A 1F 1|+|A 2F 1|=2+14=16=2a ,a =8,F 1(-6,0),F 2(6,0),c =6,∴b 2=28.∴椭圆标准方程为x 264+y 228=1.10.解 (1)由题意知a 2=8,b 2=5,椭圆方程为x 28+y 25=1.(2)由题意知a =3b当焦点在x 轴上时a =3,b =1,椭圆方程:x 29+y 21=1;当焦点在y 轴上时b =3,a =9,椭圆方程:x 29+y 281=1.(3)由题意知c =23,设椭圆方程为x 2a 2+y 2b 2=1,P (5,-6)在椭圆上.∴⎩⎪⎨⎪⎧5a 2+6b 2=1,a 2-b 2=12,解得a 2=20,b 2=8, ∴椭圆方程为x 220+y 28=1.11.略B 组1.证明 ∵圆直径的端点是A (x 1,y 1),B (x 2,y 2)∴圆心坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 半径为(x 1-x 2)2+(y 1-y 2)22∴圆的方程为⎝ ⎛⎭⎪⎫x -x 1+x 222+⎝⎛⎭⎪⎫y -y 1+y 222 =(x 1-x 2)2+(y 1-y 2)24, x 2-x (x 1+x 2)+(x 1+x 2)24+y 2-y (y 1+y 2)+(y 1+y 2)42=(x 1-x 2)2+(y 1-y 2)24, x 2-x (x 1+x 2)+(x 1+x 2)24-(x 1-x 2)24+y 2-y (y 1+y 2)+(y 1+y 2)24-(y 1-y 2)24=0, x 2-x (x 1+x 2)+x 1x 2+y 2-y (y 1+y 2)+y 1y 2=0,(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,∴圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.2.解 由⎩⎨⎧(x -3)2+(y -5)2=4,⎝ ⎛⎭⎪⎫x -322+(y -5)2=1得x -54=0,∴直线方程为x -54=0.3.解 以地球球心与距地最近点所在直线为x 轴,以最近点与最远点的中点为原点建立平面直角坐标系.则2a =6 636+8 196=14 832,a =7 416,a 2=54 997 056,c =8 196-7 416=780,∴b 2=54 388 656.∴椭圆方程为x 254 997 056+y 254 388 656=1.。

平面直角坐标系1

平面直角坐标系1

2
或(–3,0)
1
C.(0,3)
D.(0,3) -3 -2 -1 O 1 2 3 x
或(0,–3)
-1
-2
-3
7.(1)点A在x轴上,位于原点的右侧, 距离坐标原点5个单位长度,则此点 的坐标为 ;
(2)点B在y轴上,位于原点的下方, 距离坐标原点5个单位长度,则此 点的坐标为 ;
(3)点C在y轴左侧,在x轴下方,距 离每个坐标轴都是5个单位长度,则 此பைடு நூலகம்的坐标为 。
平面直角坐标系(一)
1.剧院里5排2号可以用(5,2)表示,
则(7,4)表示

有序数对 (5,2)
2.课间操时,小华、小军、小刚的位置 如图,小华对小网说,如果我的位置用( 0)表示,小军的位置用(2,1) 表示,那么你的位置可以表示成( ) A.(5,4) B.(4,5) C.(3,4) D.(4,3)
作业
1.已知点A(2,1),过点A作x轴的垂线,
垂足为C,则点C的坐标为

2.第四象限的一点A,到x轴的距离为4, 到y轴的距离为3,则点A的坐标为
_____________.
3.已知AB在x轴上,A点的坐标为
(3,0),并且AB=5,则B的坐
标为

4.在坐标系中,已知A(2,0),B(-3, -4),C(0,-1),求△ABC的面积。
确定数对的顺序
3.如果点P(5,y)在第四象限,则y的
取值范围是( )
A.y<0 B.y>0
C.y≤0 D.y≥0
y
平面直角坐标系 (-,-)
(+,+)
(0,0)
象限及轴 (a,0)
O
x

平面直角坐标系(1)

平面直角坐标系(1)
4 3 2 1 0 -1 -2 -4
2叫做点A的纵坐标
A点在平面内的坐标为(3, 2) 记作:A(3,2)
B(2,3)
C(-4,1)
C
·
·
(3,2) A · 方法:先横后纵
3 4 5
-4 -3 -2 -1
1
2
x 横轴 E
平面直角坐标系上的点和有序实数对一一对应 -3 D
(-3,-3)
(5,-4)
什么叫点的坐标? 对于坐标平面内的任意一点M,都可以找 到一个有序实数对(x,y)和它对应。 这个有序实数对(x,y)就是这个点的坐标。
-5 -4 -3 -2 -1
5 4 3 2
1
-1 -2 -3
o
1
2
3
4
5
6
x
两条数轴要互相垂直,且有公共原点 表示数轴正方向的箭头一定要画,
-4 -5
一般情况下,两条数轴一条水平,一条垂直 横轴箭头旁标上x,
纵轴箭头旁标上y 一般情况下,两条数轴的单位长度是统一的
选择:下面四个图形中,是平面直角坐标系的是( D )
Y Y -3 -2 -1 1 O 2 3 X
2 1
3
2 1 O -1 -2 -3 -1 -2
B 3 Y 2 1
X
A 3 2 1
Y
-3 -2 -1 O 2 3 -1 1 -2 -3 C
X
-3 -2 -1 O 2 3 1 -1 -2 -3
D
X
纵轴 y 一个点的坐标是 一个有序实数对
3叫做点A的横坐标
5
(4,5) A
(0,0) O 0 1 2 3
4 5
6
x
(3.5,-4)

七年级下数学第七章-平面直角坐标系知识点总结(1)

七年级下数学第七章-平面直角坐标系知识点总结(1)

七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

3、各种特殊点的坐标特点。

象限:坐标轴上的点不属于任何象限 第一象限:x 〉0,y>0第二象限:x 〈0,y 〉0第三象限:x 〈0,y 〈0 第四象限:x 〉0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y)(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。

a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;Xb) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

c) 若点P(n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m-=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -,即横坐标不变,纵坐标互为相反数; f) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。

7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册

7.1.2平面直角坐标系(1) (教学课件)-  人教版数学七年级下册
解:如图,各点的横纵坐标相等,类似的点有(-5,-5),(-1,-1),(1,1),(2,2),(4,4)等.
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?




(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.

2
-2

-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限










纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>

平面直角坐标系 (1)

平面直角坐标系 (1)

物体位置的确定要点一、平面上确定物体位置的方法1.在平面内,确定一个物体的位置一般需要两个数据.2.在平面上,确定物体位置的方法大致有以下几种:(1)行、列定位法:用行数、列数表示位置.(2)方位角和距离定位法(3)经纬度定位法(4)区域定位法(5)方格纸定位法命题点一:确定物体的位置例1.(1)利用电影票可以找到其相应的位置,如果将“6排8号”简记作(6,8),那么“8排6号”简记作______,那么(8,9)表示这张电影票是______排______号.(2)某市区有3个加油站,位置如图,若加油站1的位置表示为(B,1),则加油站2的位置可表示为_______,加油站3的位置可表示为________.例2.气象台为预报台风,首先要确定台风中心的位置,下列说法能确定台风中心位置的是( ).A.西太平洋B.北纬26°,东经133°C.距台湾300海里D.台湾与冲绳之间例3.如图,是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C 为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场、公园、停车场分别在小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?命题点二:利用不同的定位方式确定同一位置例5.一个正方形等分成4行4列.(1) 若点A 用(1,1)表示,点B 用(2,2)表示,点C 用(0,0)表示,请在图中标出点C 的位置; (2)若点A用(-3,1)表示,点B 用(-2,2)表示,点D 用(0,0)表示,请标出点D 的位置,并说明第1问中点C 应如何表示.分别向x 轴、y 轴作垂线 一一对应平面直角坐标系要点一、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称为直角坐标系x 轴或横轴:水平方向的数轴,向右为正方向 平面直角坐标系y 轴或纵轴:铅直方向的数轴,向上为正方向原点:两轴的交点O要点二、点的坐标点 一对有序实数对 点的坐标 坐标平面内的点重点剖析:(1)表示一个点的坐标时,一定要横坐标在前,纵坐标在后,中间用逗号隔开,并用小括号括起来.(2)点的坐标是有序的实数对,因此(2,3)和(3,2)尽管数字相同,但是由于顺序不同,所以这两个坐标表示两个不同的点.(3)点(a,b )到x 轴与y 轴的距离分别是|b|与|a|,到原点的距离为22ba要点三:象限及特殊位置上的点的坐标特点1.象限:如图所示,在平面直角坐标系中,两条坐标轴将平面分成四个区域.右上方的区域叫做第一象限,其他三个区域按逆时针方向依次叫做第二象限,第三象限和第四象限. 注意:坐标轴不属于任何象限.2.特殊位置的点的坐标特点:注意:1.坐标原点既在x轴上,又在y轴上,它是两条坐标轴唯一的公共点.2.x轴上的点的纵坐标为0,可以表示为(x,0),y轴上的点的横坐标为0,可以表示为(0,y).要点四:图形变换与点的坐标变化对于图形上的任意一点A(a,b):要点五:建立适当的平面直角坐标系常用的方法:1.使图形中尽量多的点在坐标轴上;2.以某些特殊线段所在的直线为x轴或y轴(如高、中线等);3.以轴对称图形的对称轴作为x轴或y轴;4.以某已知点为原点,使它的坐标为(0,0)命题点一:关于平面直角坐标系内的点的坐标例1.已知点P到x轴的距离是2,到y轴的距离是5,求P点坐标.变式1:如果B(m+1,3m-5)到x轴的距离与它到y轴的距离相等,求:(1)m的值;(2)求它关于原点的对称点坐标变式2:①已知点A(-3,2a-1)与点B(b,-3)关于原点对称,那么点P(a,b)关于y 轴的对称点P′的坐标为_________.②当m为何整数值时,点A(4-m,3m+2)到x轴的距离等于它到y轴的距离的一半.例2.在平面直角坐标系中,下面的点在第一象限的是( )A.(1,2)B.(-2,3)C.(0,0)D.(-3-2)变式1:已知点M(3|a|-9,4-2a)在y轴的负半轴上.(1)求M点的坐标;(2)求(2-a)2015+1的值.变式2:(2017秋•遂川县期末)如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为_______.变式3:若点(a,-b)在第二象限,则点(-a,b²)在第_______象限,点(2a-5,3-4b)在第______象限。

平面直角坐标系 (1)

平面直角坐标系 (1)

2014——2015第二学期初一数学期末复习第七章平面直角坐标系出卷人:施磊倩一、知识梳理有序数对(a,b)和(b,a)的意义______(相同或不同).2、平面直角坐标系:在平面内画两条互相_______、原点______的数轴,组成平面直角坐标系。

其中,水平的数轴为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______方向为正方向;两坐标轴的交点叫做平面直角坐标系的________,建立了平面直角坐标系的平面叫做坐标平面.3、特殊点的坐标:(1)坐标轴上的点:x轴上点的纵坐标为___,y轴上点的横坐标为___,原点的坐标是____.象限内点的坐标的符号特征是:第一象限(+,+),第二象限______,第三象限______,第四象限______.(2)平行于坐标轴的点:(1)平行于x轴的同一直线的点的坐标特征:_________________;(2)平行于y轴的同一直线的点的坐标特征:_________________. (3)对称点:(1)关于x轴对称的两个点的横坐标___________,纵坐标__________;(2)关于y轴对称的两个点的横坐标___________,纵坐标___________;(3)关于原点对称的两个点的横坐标___________,纵坐标.(4)平面直角坐标系各象限角平分线上的点的坐标:(1)第一、三象限角平分线上的点的坐标:横坐标和纵坐标__________;(2)第二、四象限角平分线上的点的坐标:横坐标和纵坐标__________。

4、坐标平面内点的距离(1)点P(x,y)到x轴的距离是_______;到y轴的距离是_______。

(2)已知点A(x1,y1) 、点B(x2,y2),若AB∥x轴,则AB=____________;若AB∥y轴,则AB=____________。

5、坐标平面内线段的中点:在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为___________.6、用坐标表示地理位置的步骤:(1)建立____________,选择一个适当的参照点为___________,确定__________的正方向. (2)根据具体问题确定_________.(3)在坐标平面内画出这些点,写出各点的_______和各个地点的______.7、用坐标表示平移(1)在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,能够得到对应点(,)(或(,));将点(x,y)向上(或下)平移b个单位长度,能够得到对应点(,)(或(,)).(2)在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相对应的新图形就是把原图形向_____(或向_____)平移_____个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相对应的新图形就是把原图形向_____(或向_____)平移_____个单位长度.二、基础训练1、初一(1)班64名同学站成8×8实行跑操训练,小敏是第2纵队的排头,记作(1,2),小娟是第5纵队的队尾,则小娟的位置应记作_______。

冀教版初中数学八年级下册教学课件 第十九章 平面直角坐标系 平面直角坐标系(第1课时)

冀教版初中数学八年级下册教学课件 第十九章 平面直角坐标系 平面直角坐标系(第1课时)

走10米到达点M,如果点M的位置用(15,10)表示,那
么(-10,5)表示的位置是 ( D )
A.点A
B.点B
C.点C
D.点D
解析:根据题意可得:茗茗从点O出发,先向东走15米,再向北走10米到达 点M,如果点M的位置用(15,10)表示,即向西走为x轴负方向,向南走为y轴 负方向,则(-10,5)表示的位置是从原点出发,向西走10米,向北走5米,即点 D所在位置.故选D.
徂徕山
,林放故居
,汶
河发源地
,望驾山
.
【解析】 根据青云山的位置向上 两个单位,再向左3个单位,可得坐 标原点,根据景点所处的位置,可得
答案.以金斗山市政府所ຫໍສະໝຸດ 的网格线的横线为x轴,竖线为y轴,金斗山 市政府为坐标原点建立直角坐标系,
如图所示.
答案:(-6,-3) (-3,-5) (-2,5) (4,4)
(3)写出音乐台的坐标.
解析:建立平面直角坐标系,然后根据点的位置的确定方法找出三
人的位置即可.
解:(1)建立平面直角坐标系,如图所示.
(2)小明、小刚、小红在图中所在的位置,
如图所示.
(3)音乐台的坐标为(0,500).
8.小强放学后,先向东走了300米,再向北走了200米,到书店A买了一本 书,然后向西走了500米,再向南走了100米,到快餐店B买了零食,又向南 走了400米,再向东走了800米,回到他家C,如图,以学校为原点建立坐标 系,图中的每个单位长度表示100米. (1)请在图中的坐标系中标出A,B,C的位置,并写出A,B,C三点的坐标; (2)如果超市D的坐标为(-1,-3),邮局E的坐标为(4,2),请在图中标出超市 和邮局的位置; (3)请求出小强家到超市的实际距离.

平面直角坐标系1

平面直角坐标系1

• •
答案:
1. 合作交流 2. B 3. B
4. 四, 三, 二, 一, x轴来自负半轴上, y轴的正半轴上5.当堂检测
• 1. 点A( -2 , 3)所在的象限是第( )象限。 A. 一 B. 二 C. 三 D. 四 • 2. 在坐标轴上的点是( ) A.( -1 , 3) B.( 0 , 4) C.( 1 , 1) D. ( 10 , -10) • 3. 若 ab < 0,则P( a , b)在第( )象限。 A. 一 B. 二 C. 三 D. 四 • 4. 同时在两坐标轴上的点的坐标是 • 5. 若点( a+5, a-3 )在x轴上,则a的值是 , 该点的坐标是( , )
3. 根据点的坐标描出点的位置
例: 在平面直角坐标系内,描出下列各点: A(4,5), B(-2,3), C(-4,-1), D(2.5,-2)。
3. 根据点的坐标描出点的位置
例: 在平面直角坐标系内,描出下列各点: A(4,5), B(-2,3), C(-4,-1), D(2.5,-2).
-5 B(-2,3)
平面直角坐标系
教学目标
• 1.掌握平面直角坐标系的相关概念和画法。
• 2.学会确定平面上的点的坐标的方法, 并能根据已知点的坐标描出点的位置。
• 3.探究特殊位置的点的坐标特征。
教学重点 和 教学难点
• 教学重点:
平面上点的坐标的确定方法,和已知坐标 描点的方法。 • 教学难点: 探究特殊位置的点的坐标特征。
1 2
3
4 5
6
1.数轴上的点的坐标
数轴上的点可以用一个数来表示,这个数就叫做 这个点的坐标。
如:数轴上点A的坐标是-4 ,
点B的坐标是 。
A

平面直角坐标系1

平面直角坐标系1

第课时课题:4.3 平面直角坐标系(1)【学习目标】1.理解并能画出平面直角坐标系,知道点的坐标及象限的含义2.能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置.3.经历画坐标系、由点找坐标等过程,发展数形结合意识.【学习重点、难点】重点:能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置.难点:确定点的坐标【教学方法】观察、比较、合作、交流、探索.【学习过程】一、课前预习与导学1.平面上有且互相的2条数轴构成平面直角坐标系。

水平方向的数轴称为,竖直方向的数轴称为,公共原点O称为。

2.若电影院座位中的8排10号用(8,10),那么10排8座可用表示,(5,4)指排座。

3.以下语句,其中准确的有()①点(3,2)与(2,3)是同一个点②点(0,-2)在x轴上③点(0,0)是坐标原点A、0个B、1个C、2个D、3个4.如图,方格中填有16个英文字母,若D所在的方格用(0,0)表示,G所在的方格用(1,1)表示,则B所在的方格可用表示,(3,2)表示方格中的字母是。

二、课堂学习研讨(一)创设情景,感悟新知请同学们思考下面的问题?(1) 小亮是怎样描绘音乐喷泉的位置的?(2) 小亮能够省去“西边”和“北边”这几个字吗?(3) 假如小亮说在“中山北路东边,中山东路北边”,小丽能找到音乐喷泉吗?(4) 假如小亮只说在“中山北路西边50m”, 小丽能找到音乐喷泉吗?只说在“北京西路北边30m”呢?(二)探索规律,揭示新知如图4-3,假如将北京(东、西)路和中山(南、北)路看成2条互相垂直的数轴,十字路口为它们的公共原点,那么中山北路西边50m可记为-50,北京西路北边30m可记为+30,音乐喷泉的位置就能够用一对实数(-50,30)来描绘。

平面上有公共原点且互相垂直的2条数轴构成平面直角坐标系,简称为直角坐标系。

如图4-3,水平的数轴称为x轴或横轴,取向右为正方向,竖直的数轴称为y轴或纵轴,取向上为正方向,它们统称为坐标轴.公共原点O称为坐标原点.x轴和y轴将平面分成的四4个区域称为象限,按逆时针顺序分别记为第一象限、第二象限、第三象限、第四象限.但必须注意,坐标轴上的点不属于任何象限.如图4-4,在直角坐标系中,由一对有序实数(a,b ),能够确定一个点P 的位置:过x 轴上表示实数的点画x 轴的垂线,过y 轴上表示实数的点画y 轴的垂线,这两条垂线的交点,即为点P 。

平面直角坐标系(1)

平面直角坐标系(1)

“平面直角坐标系”(第一课时)教学案例一、教学背景本节课的教学内容是人教版义务教育课程标准实验教科书《数学》七年级下册第六章第一节第二课时内容,它是在研究了数量的变化、位置的变化的基础上提出来的,学生对实际生活中某个位置与有序实数对之间的对应关系有了一个初步的理解.因为教材浓缩了思维过程,给学生理解造成了一定的困难.为此,作者在认真研究学情的基础上,对教材实行了加工和创新.二、教学过程1.创设情景(电脑显示)小明不会求图1中皇冠的面积,就打电话给他的哥哥,可他怎么也说不清,心中非常着急.热心的同学们,帮帮小明,好吗?(学生欲言又止,想说又不知从何说起.)师:相信通过本节课的学习,同学们一定会帮上这个忙.2.构建模型(电脑显示)图2是某时刻拍摄的某地区的俯视图,此时汽车A、B、C、D、E、F离站台O的距离分别为200米、100米、100米、200米、150米、100米;音乐喷泉G距南北路100米,距东西路150米.师:若把汽车、音乐喷泉、站台看成点,这两条路能够看成什么?生:(齐答)直线.师:你能用实数表示点A、B、O、C、D吗?谈谈你的想法.生1:因为我们知道数轴上每一个点都可用实数表示,而这些点又都在同一水平线上,所以,只需把水平线转化为数轴就能够了.师:说得很好,请继续.生1:因为A、B、C、D都是以点O为参照,到点O的距离都是100的倍数,故以点O为原点,100米为一个单位,规定以向东为正方向,该水平线就变成了水平数轴,点A、B、O、C、D可分别用-200、-100、0、100、200表示.(使用几何画板演示音乐喷泉、汽车、站台演变为点,东西路、南北路演变为直线,水平直线演变为数轴等过程,如图3所示.)师:说得太好了.回忆一下,数轴上点与实数之间存有着怎样的对应关系?生:(齐答)一一对应.师:能用水平数轴来描述点E、F 吗?为什么?生2:不能,因为点E、F不在这个数轴上.师:很好!如何描述点E、F呢?谈谈你的想法.生3:点E、F不在水平线上,但在竖直线上,模仿上面的方法,把竖直线转化为以点O为原点,100米为1个单位长度,向北为正方向的数轴,点E、F可分别表示为+150,-100.(使用几何画板演示竖直线演变为数轴的过程,如图4所示.)师:活学活用,很不简单.3.引入概念(1)平面直角坐标系.师:如何给这两条数轴命名,方能凸显它们特殊的位置?生4:一个是水平的,一个是竖直的,可分别称为水平轴、竖直轴.生5:一个是横向的,一个是纵向的,可分别称为横轴、纵轴.师:有创意,我们通常称水平方向的数轴为横轴或x轴;竖直方向的数轴为纵轴或y轴.师:这两条数轴有何特殊的位置关系?生6:相交于点O,且互相垂直.师:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系.因为它是由伟大的科学家笛卡儿创立的,所以又称为笛卡儿坐标系.其中,公共原点O称为坐标原点,横轴和纵轴统称为坐标轴.(2)象限.师:坐标轴将平面分成的四个区域称为象限,按逆时针顺序分别记为第一象限、第二象限、第三象限、第四象限.如图5坐标轴上的点(如点A、B、O、C、D、E、F)不属于任何象限.(3)点的坐标.师:以y轴为参照,如何描述点G的位置?生7:点G在y轴的左边.师:能再具体一点吗?生8:点G在y轴的左边100米处.师:以x轴为参照,如何描述点G的位置?生9:点G在x轴的上面150米处.师:他们的描述能确定点G的位置吗?。

平面直角坐标系(一)

平面直角坐标系(一)

写出如图所示的六 边形ABCDEF各个顶点 的坐标 解:A(-2,0) B(0,-3) C(3,-3) D (4 ,0 ) E (3 ,3 ) F (0 ,3 )
问:A、D、B、F四个点的坐标有何特征?
挑战学习
1、x轴,y轴上点的坐标的特点:
2、与坐标轴平行的直线上的点的坐标特点:
归纳 概括
1.位于x轴上的点的坐标的特征是: 纵坐标等于 0 ;
位于y轴上的点的坐标的特征是: 横坐标等于 0 。 2.与x轴平行的直线上点的坐标的特征 是: 纵坐标相同 ; 与y轴平行的直线上点的坐标的特征 是:
横坐标相同

1、关于y轴对称的两个图形上点的坐标特征: (x , y) (-x , y)
2、关于x轴对称的两个图形上点的坐标特征:
3. 对称点的坐标特征 1,-2) 点P(1,2)关于x轴对称的点的坐标是( ______ , 点P(1,2)关 于原点对称的点的坐标是 _______ ; ( -1,-2)
4. 象限角的平分线上的点的坐标特征 已知点P(a+3,7+a)位于二、四象限的角平分线 -5 上,则a=_______.
反思学习
本节课我们学习了平面直角坐标系,要掌握以下五方面 的内容: 1、能够正确画出直角坐标系; 2、能在直角坐标系中,根据坐标找出点,由点求出坐标;
3、标特点: 5、与坐标轴平行的直线上的点的坐标特点:
(x , y)
(x , -y)
3、关于原点轴对称的两个图形上点的坐标特征: (x , y) (-x , -y)
练习:
1、在坐标平面内,有一点P(a,b),若ab=0,那么点P 的位置在( ) A. 原点 B. x轴上 B. C. y轴 D. 坐标轴上

平面直角坐标系(1)

平面直角坐标系(1)

2、感知:
(1)、平面直角坐标系的有关概念:平面直角坐标、x轴 (或横轴)、y轴(纵轴)、原点。
(2)、坐标平面的划分
y
4
(3)、点的坐标的意义
3
2
(4)、描坐标点
1
-4 -3 -2 -1 o -1
1
234
x
-2 -3 -4
学习新课:
一、平面直角坐标系的有关概念
在平面内画出两条相互垂直且有公共原点的数轴,
2、一课三练P32—33
小结:
1、理解平面直角坐标系的有关概念,能正确画出直角坐 标系;
2、理解平面内点的坐标的意义,能在平面直角坐标系中, 根据坐标确定点,由点求出坐标。
3、了解平面内的点与有序数对之间一一对应
作业: 课本P79 1、2
平面直角坐标系
学习目标:
1、理解平面直角坐标系的有关概念,能正确画出直角坐 标系;
2、理解平面内点的坐标的意义,能在平面直角坐标系中, 根据坐标确定点,由点求出坐标。
3、了解平面内的点与有序数对之间一一对应 学习重点和难点:
正确画出直角坐标系以及根据坐标确定点,由点求出坐标。
阅读感知:
1、阅读:课本P72—75
/ 优游
四、点坐标的特征
1、x轴上的点,纵坐标为零, 记为(x,0);y轴上的点, 横坐标为零,记为(0,y); 原点O的坐标是(0,0)
2、各象限内点的坐标特征: 如图
y
4 3
(-
,+)
2 1
(+ ,+)
-4
-3
-2
-1
o
-1
1
234
x
(-
,-
) -2 -3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题
平面直角坐标系(1)
学习目标
1.回顾在平面直角坐标系中刻画点的位置的方法
2.体会直角坐标系的作用
重点难点
能够建立适当的直角坐标系,解决数学问题
导学过程
备注
知识背景:
刻画一个几何图形的位置,需要设定一个参照系
1、数轴它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定
重难突破:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
变式训练2
1.一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2.在面积为1的 中, ,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
当堂检测
1、到两个定点A(-1,0)与B(0,1)的距离相等的点的轨迹是什么?
2、在⊿ABC中,已知|AB|=10,且 ,求顶点C的轨迹方程.
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
合作探究:
探究1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练1已知Q(a,b),分别按下列条件求出P的坐标
(1)P是点Q关于点M(m,n)的对称点
(2)P是点Q关于直线l:x-y+4=0的对称点(Q不在直线1上)
探究2某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比他们晚4s。已知各观测点到中心的距离都是1020m。试确定巨响发生的位置。(假定声音传播的速度为340m/s,各观测点均在同一平面上)
作业:
1、两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M得轨迹
2、求直线 Biblioteka 曲线 的交点坐标.3、已知A(-2,0),B(2,0),求以AB为斜边的直角三角形的顶点C的轨迹方程
4、已知A(-3,0),B(3,0),直线AM、BM相交于点M,且它们的斜率之积为 ,求
点M的轨迹方程
5、已知B村位于A村的正西方向1公里处,原计划经过B村沿着北偏东600的方向埋设一条地下管线m.但在A村的西北方向400米处,发现一古代文物遗址W.根据初步勘察的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?
相关文档
最新文档