4、测量误差基本知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、测量误差基本知识
1测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么?
2、产生测量误差的原因有哪些?偶然误差有哪些特性?
3、何谓标准差、中误差和极限误差?
4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)o计算其算术平均值X、一测回的中误差m及算术平均值的中误差m x°
次序观测值
改正值v
(〃)
W备注
1 55 °047''
2 55 °040''x=
3 55 °042''m=
4 5
5 °046''m x=
x=
5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差'■+ -180,其
结果如下:.-:1=+3 , .■■2=-5 ■,-3=+6 ,"-:4=+1 , -5=-3 ,"-:6=-4 ■,--:7=+3 ,-:8=+7 9=-8 ;求此三角形闭合差的中误差m.•以及三角形内角的测角中误差m B o
6、在一个平面三角形中,观测其中两个水平角(内角)20,a和B ,其测角中误差均为m= ±
图4-1
根据角a和角B可以计算第三个水平角丫,试计算丫角的中误差m Y o
7、量得某一圆形地物直径为 64.780m ,求其圆周的长S 。设量测直径的中误差为土 5mm,求
其周长的中误差m s 及其相对中误差m s /S 。
8、对某正方形测量了一条边长 a =100m , m a = z25mm ;按S=4a 计算周长和P= a 计算面积,
计算周长的中误差 m s 和面积的中误差m p 。
a i =a 2=a 2=a 4=100m , m m m =m* ==25mm ; 按
P= (a i a 2+ a 3 a 4) /2计算面积,求周长的中误差 m s 和面积
10. 误差传播定律应用
(1) (1)已知 m a =m c = m , h=a-b ,求 m h 。
(2)已知 m a = m =二6 ,上a- c ,求 m :。
(3)已知 m a = m b = m , s=i00(a- b),求 m s 。
2 2 ,J
(4)已知 D= S -h
, m s = z5mm , m h = _5mm ,求 m D 。
9、某正方形测量了四条边长 s=a<+ a 2+ a 3+ a 4计算周长
和 的中误差m p 。
(5)如图4-2,已知m xa=二40 mm, m ya =二30 mm;S=30.00m, :=30 15 10 ;ms = =5.0mm, m :=-6。求P点坐标的中误差m xp、m yp、M (M= m^• m狀)。
(6)如图 4-3,已知 m xa =_40 mm , m ya =_30 mm ; S=130.00m, 1=130 1510 , m s = _5.0mm , m 『=_6。求P 点坐标的中误差 m xp 、m yp 、M 。
图 4-4
(8)如图 4- 5,已知 m xa =「:40 mm , m ya =「:30 mm ; AP 距离
S=30.00m, P 点位于AB 的直线上。求P 点坐标的中误差 m xp 、m yp 、M 。
A
P
图 4-5
(9)已知 h=Ssin :+i - L, S=100m ,、£=15 30 ; m s = =5.0mm, m :=二5 , m = m =
z1mm , 计算中误差m h 。
(10)已知边长 C=100m , : =23 15,:
=35 25 ; m : = m = -5 , m c ==5 mm ,边长 a
11、限差讨论
(1)已知 m L 二 m R =_8.5 , ■= ( L+R ) /2 , f=L-R 。求容许误差 淬、L (厶取 3 倍 中误差)。
(7)如图 4-4,已知 m xa =二40 mm ,
于AB 的延长线上。求 P 点坐标的中误差 m y a =二30 mm ;
S=30.00m, m xp 、 m yp 、M 。
m s = z5.0mm ,P 点位
m s *5.0mm ,
B
和b 可由下式求出:
csin x csina
,计算中误差
m a 和 m b 。
P
(2)已知f=「I亠]亠…7-( n-2) 180;m:=_8.5 ,求■ C"-:取2 倍中误差)。
(3)已知用J6经纬仪一测回测量角的中误差m = _8.5,采用多次测量取平均值的方
法可以提高观测角精度,如需使所测角的中误差达到_6,问需要观测几测回?
(4)已知三角形三个内角:•、:、的中误差m:・=mi=m =二8.5,定义三角形角度闭合差为:f= o(+弭¥180。,求m F和$ (街• =3 m ?■)。
(5)已知三角形三个内角「、\ 的中误差m:・=m=m =_8.5,定义三角形角度闭
合差为:f= : + ■+ -180,:=、卜f/3 ;求m :。
12、何谓不等精度观测?何谓权?权有何实用意义?
13、某点P离开水准点A为1.44畑(路线1),离开水准点B为0.81畑(路线2)。今用水准测量从A点到P点测得其高程为16.848m,又从B点至P点测得其高程为16.834m。设水准测量高差观测值的权为路线长度(单位为畑)的倒数,试用加权平均的方法计算P点的
高程H P 及其高程中误差m H (表4-3)。
表4-3
14、由实验和推算得
在三、四等水准测量中,每观测一次的中误差(包括气泡居中误差、
瞄准误差、读数误差、仪器误差和外界影响等)分别为土 0.78mm 和土 1.04mm.根据这两个 数据,并取两倍中误差作为容许误差 ,推算验证现行规范中对黑红面读数差、黑红面高差之 差的限差。
15、DJ 6光学经纬仪出厂检验的精度为方向一测回中误差土 (1 )半测回中照准单方向的中误差 m 方=± 8.5〃; (2 )斗测回的测角中误差;
(3) 一测回的测角中误差等于照准单方向的中误差; (4) 测回差的限差为土 24 〃。
16、若三角形的三内角为 a 、B 、Y ,已知a 及B 角之权分别为4、2, a 角的中误差为± 9”, 则
(1) 根据a 、B 计算丫角,求丫角之权P Y ; (2) 计算单位权中误差;
(3) 求B 、丫角的中误差 m ^和m T o
(3)设单位权中误差 u= ± T,求L i 、L 2、L 3的权;
6〃,请推证: 17、已知观测值L 1、L 2、
p i =卩2/mf 完成以下作用;
(1 )设L 1为单位权观测,求 (2 )设L 2为单位权观测,求
L 3的中误差分别为土 2 L 1、L 2、L 3 的权;
L 2、L 3 的权; ± 4 ”,应用公式