电力系统元件数学模型
电力系统各元件的数学模型
推导过程:从1-1’,2-2’之间等值,将导纳支路拿出去
ZT 1:k
I1 1 I2 k
U2
k
U1
I1
ZT
1 I1
U1
ZT
1:k I2
2 U2
I1
U1 ZT
U2
1’
ZT k
U1 (y10
y) 12
2’
U2
y 12
I2
U1 ZT k
U2 ZT k2
U1 y12
U2 (y20
y) 12
§2.5 电力系统的等值电路
一些常用概念
1. 实际变比 k
k=UI/UII UI、UII :分别为与变压器高、低压绕组实际 匝数相对应的电压。 2. 标准变比kN
• 有名制:归算参数时所取的变比 • 标幺制:归算参数时所取各基准电压之比
3. 非标准变比 k* k*= k /kN=UIIN UI /UII UIN
U
U UB
I S Z
I IB S SB Z ZB
P jQ SB
R jX ZB
P SB R ZB
j
Q SB
P
jQ
j
X ZB
R
jX
§2.5 电力系统的等值电路
2、基准值的选取 1) 基准值的单位与对应有名值的单位相同 2) 各种量的基准值之间应符合电路的基本关系
SB 3 UB IB UB 3 IB ZB
§2.5 电力系统的等值电路
四、电力系统的等值电路制订
1、决定是用有名值,还是用标幺值
容量不相同时 2、变压器的归算问题
电压等级归算
采用Γ型和T型 采用π型—不归算
3、适当简化处理
第三章 电力系统各元件的数学模型2
3.2.2 变压器零序参数与等值电路
零序励磁阻抗Z 与变压器的结构有很大关系: 零序励磁阻抗 m0与变压器的结构有很大关系: 由三个单相变压器组成的三相变压器, 由三个单相变压器组成的三相变压器,可以近 似认为励磁电抗为无穷大; 似认为励磁电抗为无穷大; 对于三相五柱式和壳式变压器, 对于三相五柱式和壳式变压器,零序励磁电抗 也相当于无穷大; 也相当于无穷大; 对于三相三柱式变压器,零序励磁电抗较小, 对于三相三柱式变压器,零序励磁电抗较小, 其值可用试验方法求得
RT 1 RT 2
2 Pk 1 %U N , = 2 1000 S N 2 Pk 2 %U N , = 2 1000 S N 2 Pk 3 %U N , = 2 1000 S N
RT 3
1 Uk1%= (Uk(1−2)%+Uk(1−3)%−Uk(2−3)%) 2 1 Uk 2% = (Uk (1−2) %+ Uk (2−3) %− Uk (1−3) %) 2 1 U k 3 % = (U k (1−3 ) % + U k ( 2−3 ) % − U k (1−2 ) %) 2
自耦变压器是 自耦变压器是一次与二次绕组有共同部分的变压器 可等值于普通变压器,等值电路与参数计算方法相同。 可等值于普通变压器,等值电路与参数计算方法相同。 但其第三绕组容量总是小于变压器的额定容量, 但其第三绕组容量总是小于变压器的额定容量,如果 制造厂提供的短路数据未经归算, 制造厂提供的短路数据未经归算,归算的方法也与普 通三绕组变压器相同, 通三绕组变压器相同,即将短路损耗乘以额定容量和 第三绕组容量比的平方, 第三绕组容量比的平方,短路电压乘以额定容量和第 三绕组容量比
三绕组变压器近似等效电路
3.2.1 变压器正序参数与等值电路
第二章电力系统各元件的数学模型
试验时小绕组不过负荷,存在归算问题,归算到SN
2) 对于(100/50/100)
2
Pk (12)
P' k (12)
IN 0.5IN
P 4 ' k (12)
2
Pk ( 23)
P' k (23)
IN 0.5IN
P 4 ' k ( 23 )
3) 对于(100/100/50)
2
Pk (13)
P' k (13)
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
一次整循环换位:
A B
C
换位的目的:为了减 少三相参数的不平衡
§2.3 电力线路的参数和数学模型
Xd
§2.1 发电机的数学模型
受限条件
定子绕组: IN为限—S园弧
转子绕组: Eqn ife 励磁电流为限—F园弧 Xd
原动机出力:额定有功功率—BC直线
其它约束: 静稳、进相导致漏磁引起温升—T弧
进相运行时受定 子端部发热限制 受原动机出力限制
定子绕组不超 过额定电流
励磁绕组不超 过额定电流 留稳定储备
2、由短路电压百分比求XT(制造商已归算,直接用)
U U U U 1 k1(%) 2
k(12) (%) k(13) (%) (%) k(23)
XT1
Uk
1(%
)U2 N
100SN
U U U U 1 k2 (%) 2
k(12) (%) k(23) (%) (%) k(13)
1 电力系统各元件数学模型
1 电力系统各元件数学模型1.1 发电机组参数及数学模型发电机组在稳态运行时的数学模型(图1所示)极为简单,通常由两个变量表示,即发出的有功功率P 和端电压U 的大小或发出的有功功率P 和无功功率Q 的大小。
以第一种方式表示时,往往还需伴随给出相应的无功功率限额,即允许发出的最大、最小无功功率max Q 、min Q 。
图 1 发电机数学模型1.2 变压器参数及数学模型1.2.1双绕组变压器Γ型等值电路模型TjX 图2 双绕组变压器Γ型等值电路模型双绕组变压器Γ型等值电路模型如图2所示,电路参数通过以下公式计算。
注意,公式中N U 取不同绕组的额定电压,表示将参数归算到相应绕组所在的电压等级(所得所得阻抗/导纳参数都是等值为Y/Y 接线的单相参数);公式中各参数由变压器厂家提供,采用实用单位。
22020210001001000%100k N T Nk NT N T NN T N P U R S U U X S P G U I S B U ⎧∙=⎪⎪⎪%∙=⎪⎪⎨⎪=⎪⎪⎪=∙⎪⎩(1-1) 其中,k P 为短路损耗,k U %为短路电压百分数,0P 为空载损耗,0%I 为空载电流百分数,N U 为归算侧的额定电压,N S 为额定容量 该电路模型一般用于手算潮流中。
1.2.2 双绕组变压器T 型等值电路模型1jX '图 3 双绕组变压器T 型等值电路模型其中,1R 和1X 为绕组1的电阻和漏抗,'2R ,'2X 为归算到1次侧的绕组2 的电阻和漏抗,m R 和m X 为励磁支路的电阻和电抗。
该电路模型一般用于电机学中加深对一二次侧和励磁支路电阻电抗的理解以及手算潮流计算中。
1.2.2 三绕组变压器Z 图4三绕组变压器的等值电路三绕组变压器的等值电路如图3所示,图中,变压器的励磁支路也以导纳表示。
该电路模型一般用于手算潮流计算中。
三绕组变压器的参数计算如下: 电阻:由短路损耗计算()()()1(12)(31)(23)2(23)(12)(31)3(31)(23)(12)121212k k k k k k k k k P P P P P P P P P P P P ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-2) 211222233100010001000k N T Nk N T Nk NT N P U R S P U R S P U R S ⎧∙=⎪⎪⎪∙⎪=⎨⎪⎪∙⎪=⎪⎩(1-3) 其中,k P 为短路损耗,N U 为归算侧的额定电压,N S 为额定容量对于容量比为100/100/50和100/50/100的变压器,厂家提供的短路损耗是小容量绕组达到自身额定电流()/2N I 时的试验数据,计算时应首先将短路损耗折算为对应于变压器额定电流()N I 的值例如,对于100/100/50型变压器,厂家提供的是未经折算的短路损耗'(23)k P -,'(31)k P -,'(12)k P -首先应进行容量归算'(23)(23)'(31)(31)44k k k k P P P P ----⎧=⎪⎨=⎪⎩(1-4) 按新标准,厂家仅提供最大短路损耗max k P ,按以下公式计算电阻:2max (100%)2(50%)(100%)20002k N T N T T P U R S RR ⎧=⎪⎨⎪=⎩(1-5) 其中max k P 为最大短路损耗,N U 为归算侧的额定电压,N S 为额定容量 电抗:由短路电压百分数计算()()()1(12)(31)(23)2(12)(23)(31)3(23)(31)(12)1%%%%21%%%%21%%%%2k k k k k k k k k k k k U U U U U U U U U U U U ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-6) 211222233100100100k N T Nk N T N k NT N U U X S U U X S U U X S ⎧%=⎪⎪⎪%⎪=⎨⎪⎪%⎪=⎪⎩(1-7) 其中,k U %为短路电压百分数,N U 为归算侧的额定电压,N S 为额定容量 注意,厂家提供的短路电压是经过额定电流折算后的数据。
电力系统各元件的特性和数学模型
参数归算的具体含义?
归算阻抗与归算侧电压相关,归算阻抗的两端电压
16
与归算侧电压匹配。
2019/10/20
一、双绕组变压器的参数和数学模型 ——阻抗导纳归算至一次侧的等值电路*
1
U1t/U2t
2
I1 1
ZT、YT
U1
2 k12:1 2
理想变压器支路
17
k12=U1t/U2t:变压器一、二次侧实际抽头电压之比
(1)短路试验参数和空载试验参数分别对应绕组阻抗 和铁芯导纳的标幺值。
(2) UN为变压器的额定抽头电压,可为一次或二次侧, 对应阻抗导纳为一次或者二次侧的归算参数。
(3) UT代替UN 。
24
2019/10/20
二、三绕组变压器的参数和数学模型 ——等值电路
同双绕组一样,三绕组变压器的阻抗导纳参数 也可以是任意一侧的归算值。本课程只介绍一 种,即三侧绕组的阻抗和激磁导纳参数都归算 至一次侧。
重点
① 复功率、综合用电负荷、供电负荷与发电负 荷、波 阻抗与自然功率的基本概念。
② 发电机组的运行极限。 ③ 变压器和输电线路的阻抗参数和等值电路模型。 ④ 三绕组变压器的结构与漏抗之间的关系。 ⑤ 三相架空线、分裂导线、电缆线路在电抗与对地电纳
方面的差别。
难点
变压器参数的归算与网络的等值电路
Uk3% (Uk31% Uk 23% Uk12 %) / 2
量 相 同
28
2019/10/20
二、三绕组变压器的参数和数学模型 ——三个绕组的阻抗计算公式*
RTi
PkiU
2 N
1000S
2 N
电力系统各元件的特性和数学模型课件
变压器的主要参数
额定电压
变压器能够长期正常工作的电压值。
额定容量
变压器的最大视在功率,表示变压器的输出 能力。
额定电流
变压器能够长期通过的最大电流值。
效率
变压器传输的功率与输入的功率之比,表示 变压器的能量转换效率。
变压器数学模型
变压器数学模型通常采用传递函数的 形式来表示,可以描述变压器在不同 工作状态下的输入输出关系。
THANKS FOR WATCHING
感谢您的观看
配电系统是电力系统的重要组成部分,主要负责将电能从发电厂或上级电网分配给 终端用户。
配电系统的工作原理包括电压变换、电流变换和功率传输等过程,通过变压器、开 关设备和输配电线路等设备实现。
配电系统通常分为高压配电、中压配电和低压配电三个层次,以满足不同用户的需 求。
配电系统的主要参数
电压
配电系统的电压等级通常在1kV至35kV之间,其 中1kV以下为低压配电,35kV以上为高压配电。
电力系统的控制策略
电力系统的控制策略包括发电机的励磁控 制、调速控制等,这些控制策略对电力系
统的稳定性起着至关重要的作用。
电力系统的运行状态
电力系统的运行状态对稳定性有直接影响 ,如负荷的大小和分布、发电机的出力、 电压和频率等。
外部环境因素
外部环境因素包括自然灾害、战争、恐怖 袭击等,这些事件可能导致电力系统受到 严重干扰,影响其稳定性。
04
负荷:消耗电能的设备或设施。
电力系统元件的分类
一次元件
包括发电机、变压器、输电线路等,是构成电力系统的主体 部分。
二次元件
包括继电器、断路器、测量仪表等,用于控制、保护和监测 电力系统。
电力系统各元件的特性和数学模型
E q
Ixd cos
P ,Q
Eq sin
Q
Ixd
Ixd cos
U
I
Ixd
sin
Eq
cos
U
I I
cos sin
Eq sin
xd
Eq cos
xd
U
P
UI
cos
由此,
Q UI sin
EqU sin
xd
EqU cos
xd
U 2
EqU cos
xd
U2
xd
(2-2)
(2-3)
按每相的绕组数目
双绕组:每相有两个绕组,联络两个电压等级
三绕组:每相有三个绕组,联络三个电压等级,三个绕 组的容量可能不同,以最大的一个绕组的容量为变压器 的额定容量。
类别 普通变 自耦变
高 100% 100% 100% 100%
中 100% 50% 100% 100%
低 100% 100% 50% 50%
1.3 凸极机的稳态相量图和数学模型
11
第一节 发电机组的运行特性和数学模型
12
第一节 发电机组的运行特性和数学模型
13
第一节 发电机组的运行特性和数学模型
稳态分析中的发电机模型
发电机简化为一个节点 节点的运行参数有:
U U G
节点电压:U U u 节点功率:S~ P jQ
S~ P jQ
19
第二节 变压器的参数和数学模型
2.1 变压器的分类:有多种分类方法
按用途:升压变、降压变 按电压类型:交流变、换流变 按三相的磁路系统:
单相变压器、三相变压器 按每相绕组的个数:双绕组,三绕组 按绕组的联结方式:
电力系统各元件的特性和数学模型
电力系统各元件的 特性和数学模型
复功率的规定
•
• 国际电工委员会(IEC)的规定 S U I
j U
•
S U I Ue ju Ie ji UIe j(u i ) UIe j
UI cos j sin
I
u
i
S cos j sin
P jQ
“滞后功率因数 运行”的含义
符号 S φ P Q
电力系统各元件的特性和数学模型
18
双绕组变压器和三绕组变压器
• 双绕组变压器:每相两个绕组,联络两个电压等级
2020/9/7
电力系统各元件的特性和数学模型
6
2.1节要回答的主要问题
• 功角的概念是什么?与功率因数角的区别? • 隐极机的稳态功角特性描述的是什么关系?(由此可
以引申出高压输电网的什么功率传输特性?) • 发电机的功率极限由哪些因素决定?对于隐极机,这
些因素如何体现在机组的运行极限图中?发电机的额 定功率与最大功率有什么关系?发电机能否吸收无功 功率? • 稳态分析中所采用的发电机的数学模型是怎样的?
• 负荷以超前功率因数运行时所吸收的无功功率为 负。——容性无功负荷(负)
• 发电机以滞后功率因数运行时所发出的无功功率为 正。——感性无功电源(正)
• 发电机以超前功率因数运行时所发出的无功功率为 负。——容性无功电源(负)
2020/9/7
ห้องสมุดไป่ตู้
电力系统各元件的特性和数学模型
3
目录
2.1 发电机组的运行特性和数学模型 2.2 变压器的参数和数学模型 2.3 电力线路的参数和数学模型 2.4 负荷的运行特性和数学模型 2.5 电力网络的数学模型 本章小结 习题
电力系统各元件的特性和数学模型
变压器需要承受一定的机械应力,包括自身的重量、运输 过程中的振动以及运行时的电磁力等。因此,变压器需要 有足够的机械强度和稳定性。
数学模型
01 02
电路模型
变压器可以用电路模型表示,其中电压和电流的关系由阻抗和导纳表示 。对于多绕组变压器,需要使用复杂的电路模型来描述各绕组之间的耦 合关系。
。
调相机
主要用于无功补偿和电压调节 ,通过吸收或发出无功功率来
维持电压稳定。
电动机
作为电力系统的负荷,能将电 能转换为机械能。
数学模型
同步发电机
基于电磁场理论和电路理论, 建立电压、电流、功率等变量
的数学关系。
异步发电机
通过分析转子磁场与定子绕组 的相互作用,建立数学模型。
调相机
基于无功功率理论,建立电压 与无功电流之间的数学关系。
05
CATALOGUE
电力电子元件
特性
非线性特性
动态特性
电力电子元件在正常工作状态下表现出非 线性特性,如开关状态下的电压-电流关系 。
电力电子元件的动态特性表现在其工作状 态的快速变化,如开关的快速通断。
时变特性
控制性
由于电力电子元件的工作状态和效率会随 着时间、温度、负载等因素的变化而变化 。
电力系统各元件的 特性和数学模型
contents
目录
• 发电机 • 变压器 • 输电线路 • 配电系统元件 • 电力电子元件
01
CATALOGUE
发电机
特性
01
02
03
04
同步发电机
作为电力系统中的主要电源, 能将机械能转换为电能,具有
稳定的电压和频率输出。
异步发电机
电力系统数学模型与稳定性分析
电力系统数学模型与稳定性分析电力系统是现代社会中不可或缺的基础设施,它承担着电能的生产、传输和分配的重要任务。
为了确保电力系统的安全运行,人们需要对电力系统进行数学建模和稳定性分析。
本文将介绍电力系统数学模型和稳定性分析的基本概念、方法和应用。
一、电力系统数学模型1.1 电力系统的基本组成部分电力系统主要由发电机、变压器、输电线路、配电网和负荷等组成。
发电机用于将机械能转化为电能,变压器用于变换电压,输电线路用于电能的长距离传输,配电网用于将电能分配到各个用户,负荷则表示对电能的需求。
1.2 电力系统的数学模型电力系统的数学模型主要包括节点模型和支路模型。
节点模型是用来描述电力系统中各个节点(发电机、变压器、负荷等)的状态和特性,通常使用节点电压和相角来表示。
支路模型是用来描述电力系统中各个支路(输电线路、变压器等)的传输特性,通常使用支路功率和阻抗来表示。
1.3 节点模型节点模型是电力系统数学模型的核心部分,它描述了电力系统中各个节点的电压和相角的变化规律。
节点模型基于基尔霍夫电流法和基尔霍夫电压法,利用电流平衡和功率平衡等原理建立。
节点模型可以通过节点电压和相角的变化来分析电力系统的稳态和暂态行为。
1.4 支路模型支路模型描述了电力系统中各个支路的传输特性,包括输电线路的电阻、电抗和电导等参数。
支路模型基于欧姆定律和基尔霍夫电压法,利用电压平衡和功率平衡等原理建立。
支路模型可以通过支路功率和阻抗的变化来分析电力系统的稳态和暂态行为。
二、电力系统稳定性分析2.1 稳定性的概念电力系统的稳定性是指系统在外部扰动或内部故障的作用下,能够保持稳定的运行状态。
稳定性分为稳态稳定性和动态稳定性两种。
稳态稳定性是指系统在平衡点附近的行为,动态稳定性是指系统在扰动后恢复稳定的能力。
2.2 稳定性的分析方法稳定性分析的主要方法包括潮流计算、短路计算、暂态稳定性分析和频率稳定性分析等。
潮流计算是用来计算电力系统中各个节点的电压和功率,以确定系统的稳态工作点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 电力系统各元件数学模型及其正、负、零序等值电路2.4.1. 发电机发电机采用次暂态模型,用图2.9(a)所示电路表示,图中为次暂态电抗,忽略定子回路电阻,并设发电机的负序电抗等于次暂态电抗,即。
''E 为次暂态电动势。
发电机的中性点一般不接地,从而没有零序回路;同步发电机在对称运行时,只有正序电势和正序电流,此时的电机参数,就是正序参数。
2.4.2. 负荷负荷采用恒阻抗模型,其正序阻抗由潮流计算求得的负荷功率和负荷节点电压计算,即:(51)负序电抗由经验公式计算或由用户给定,默认为与正序相等。
负荷的中性点一般不接地,从而也没有零序回路。
最新版的故障程序中未考虑负荷。
2.4.3. 线路线路采用集中阻抗模型,如图2.10所示,其正、负序参数相等,根据该图计算正负序节点导纳矩阵的有关元素。
零序参数一般与正负序参数不同,当该线路不存在与其它线路的互感时,也采用图2.10所示的等值电路来形成零序节点导纳矩阵。
当该线路与其平行线路之间还存在零序互感时,则在形成零序节点导纳矩阵时需计及互感的影响。
不妨以两条互感支路为例来说明形成零序节点导纳矩阵时对互感的处理,多条线路组成的互感组的处理可以依此类推。
Zj0.5B j0.5BI J图2.10 线路模型p qr spqIrsIpqZrsZmZ(a)p qr s(b)y'rsmy'-m y'-my'm y'图2.11 互感支路及其等值电路E''dX j''G(a)正序电动势源dX j''G(b) 正序电流源G''dX j''G(c) 负序等值电路图2.9 发电机等值电路由图2.11(a)得两支路的电压-电流方程为:⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--srqprsmmpqrspqrspqrsmmpqsrqpVVVVyyyyIIIIZZZZVVVV''''(52)由此得消互感后的等值电路如图2.11(b)所示,根据该图即可按照无互感的情况计算零序节点导纳矩阵的有关元素。
2.4.4. 变压器(1)双绕组变压器不计变压器励磁回路,双绕组变压器的正负序等值电路用它的漏抗串联一个无损耗的理想变压器模拟,如图2.12所示,其中Z为变压器的标幺值等值阻抗,K 为理想变压器的变比。
经变压器以后,不仅电压和电流的幅值要根据变比变化,它们的相位也会发生变化,即变比为一复数,α∠KK=,其中α取决于变压器的接线方式,当所有计算均针对标幺值时,理想变压器变比的幅值为1,即0.1=K。
以往在进行网络计算时一般是先不考虑经变压器后相位的变化,即认为变比为实数K,解出未经移相处理的各节点电压的相应正、负序分量,再根据变压器对网络相位的分区进行各电气量的相位调整。
这种方法可以保持节点导纳矩阵的对称性,但需要先对正负序网络进行移相分区,求得节点电压后再根据各点的移相系数进行相位调整,计算量大。
本程序中考虑在形成导纳矩阵时直接将变比作为复数处理,所以解网络方程求得的电压即为节点的实际电压,无须再作相位调整,物理概念更为明确。
当然这使得导纳矩阵不再对称,必须全行存储,但在计算机内存得以迅速扩充的今天,这已不再成为十分重要的制约因素。
下面根据图2.12对变压器的导纳矩阵元素进行推导。
*===-α||22'211kVKVVI ZV()α||112kI ZVV-=⎪⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛-=**ZkVZVZkVVI||11||21211ααZkVZkVZkkVVkIkII22121112||1||||||||||+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--=-=-=**ααααα从而有:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡212221121121VVYYYYII其中:,ZkY||12*-=α,ZkY||21α-=,2V '2V1V Z k:1122图2.12 双绕组变压器正负序等值电路做法:在形成Y阵时,还按普通的做法,对于对角元没有任何影响。
对于∆Y和∆接法变压器,只考虑11点接线,则有:正序:∆Y接法,5.02330je j+==α;Y∆接法,5.023j-=α。
负序:∆Y接法,5.023j-=α;Y∆接法,5.023j+=α。
对于YY和∆∆接法变压器,0.10==j eα。
双绕组变压器的零序等值电路取决于变压器的接线方式和Y0接法绕组的接地方式,具体如表2.1所示,其中Zμ为激磁阻抗,Z1=Z2=Z t0 /2.0,Z t0为变压器的零序标幺阻抗值。
表2.1 双绕组变压器零序等值电路连接方式零序等值电路单相或外铁形三相变压器三柱式内铁形三相变压器Z NI IIⅠⅡZ IZ II3Z N ZμⅠⅡZ I Z II3Z NI IIⅠⅡZ I Z IIZ IIⅠⅡZ I ZμZ NI IIZ N2ⅠⅡZ I Z II3Z N13Z N2ⅠⅡZ IZ II3Z N1Zμ3Z N2I IIZ NI IIⅠⅡZ I Z IIⅠⅡZ I Z IIⅠⅡZ IZ II3Z N ZμI IIⅠⅡZ IZ IIZμⅠⅡZ I Z IIⅠⅡZ I Z II(2)三绕组变压器三绕组变压器的正负序等值电路图如图2.13所示,其中Z t1、Z t2、Z t3为三个绕组的标幺值正负序等值阻抗,其正负序值相等;O点为虚拟节点,O点与变压器的II、III侧端点之间相当于两台双绕组变压器,其处理与(1)中相同,O点与I侧端点之间无相位变换关系,其处理与普通线路相同。
各种接法三绕组变压器的零序等值电路如表2.2所示,其中Z I、Z II、Z III为三个绕组的标幺值零序等值阻抗。
对三柱式内铁形三相变压器,本也应考虑激磁阻抗Zμ的影响,但程序中没有再作专门的处理,而是认为参数Z III中已计及了Zμ影响。
表2.2 三绕组变压器零序等值电路连接方式零序等值电路单相或外铁形三相变压器三柱式内铁形三相变压器等值电路图均同左图,但Z III应改为Z III //ZμZ NI IIIIIZ NIIIIZ NIIIIIZ NIIIIIIIIIIIIⅠⅡZ IZ II3Z NZ IIIIIIⅠⅡZ IZ II3Z NZ IIIIIIⅠⅡZ IZ IIZ IIIIIIⅠⅡZ IZ II3Z NIZ IIIIII3Z NIIoVV1V:1k1I2I图2.13 三绕组变压器正负序等值电路1tZ3133I2tZ3tZIIII I IIIIIIIⅠⅡZ IZ IIZ IIIIII。