膜分离(组件)
膜分离技术综述

膜分离技术综述一膜分离技术是近三十多年来发展起来的高新技术,是多学科交*的产物,亦是化学工程学科发展新的增长点。
它与传统的分离方法比较,具有如下明显的优点:1.高效:由于膜具有选择性,它能有选择性地透过某些物质,而阻挡另一些物质的透过。
选择合适的膜,可以有效地进行物质的分离,提纯和浓缩;2.节能:多数膜分离过程在常温下*作,被分离物质不发生相变, 是一种低能耗,低成本的单元*作;3.过程简单、容易*作和控制;4.不污染环境。
由于这些优点、使膜分离技术在短短的时间迅速发展起来,已广泛有效地应用于石油化工、生化制药、医疗卫生、冶金、电子、能源、轻工、纺织、食品、环保、航天、海运、人民生活等领域,形成了独立的新兴技术产业。
目前,世界膜市场以每年递增14~30%速度发展,它不仅自身形成了每年约百亿美元的产值,而且有力地促进了社会、经济及科技的发展。
特别是,它的应用与节能、环境保护以及水资源的再生有密切的关系,因此在当今世界上能源短缺、水荒和环境污染日益严重的情况下,膜分离技术得到世界各国的普遍重视,欧、美、日等发达国家投巨资立专项进行开发研究,已取得在此领域的领先地位。
我国在“六五”、“七五”、“八五”、“九五”以及863、973计划中均列为重点项目,给予支持。
关于发展膜分离技术的重要性,美国官方的文件说,“18世纪电器改变了整个工业过程,而20世纪膜技术改变了整个面貌”。
1987年日本东京召开的国际膜与膜过程会议上,曾将“21世纪的多数工业中膜过程所扮演的战略角色”列为专题进行深入讨论,与会的专家一致认为,膜技术将是20世纪末到21世纪中期最有发展前途的高技术之一。
世界著名的化工与膜专家,美国国家工程院院士、北美膜学会主席黎念之博士(我校化工系兼职教授)在1994年应邀访问我国时说“要想发展化工就必须发展膜技术”。
国际学术界一致认为“谁掌握了膜技术,谁就掌握了化工的未来”。
可见,发展膜分离技术对于学科建设和经济发展均具有重要而深远的意义。
膜分离技术

螺旋卷式膜组件2
工作:膜组件装进圆柱形压力容器,构
成一个螺旋卷式膜组件,原料从一端进 入组件,沿轴向流动,在驱动力作用下, 易透过也沿径向渗透通过膜至中心管, 另一端为渗余液。
应用:反渗透、超滤、气体分离。
螺旋卷式膜组件3
特点:
结构紧凑——单位体积内膜的有效面积大; 制作工艺相对简单; 安装、操作比较方便; 适合于低流速、低压操作; 对原料前处理要求高——膜一旦被污染,不 易清洗。
膜分离在制药工业中的应用2
内蒙古中润制药有限公司利用膜分离技 术回收6-APA结晶母液。
采用EA技术于常温常压下回收母液中的溶剂, 脱出溶剂的母液经纳滤膜浓缩,结晶重新获 得6-APA晶体。 通量比反渗透膜提高30%, 6-APA浓缩程度 也可提高一倍,大大降低了投资及运行成本。
膜分离在制药工业中的应用3
主要应用于超滤、微滤、反渗透、渗透 气化和电渗析。
圆管式膜组件1
在圆筒状支撑体的内侧或外侧刮制上半 透膜而得到的圆管形分离膜。
下图所示,为膜刮制在多孔支撑管的内 侧,原料液被泵送至管内,渗透液经半 透膜后,通过多孔支撑管排出,浓缩液 从管子另一端排出。
能使滤液被渗透通过, 则需在支撑管和膜之间安装一层很薄的多孔 纤维网,帮助滤液向支撑管上的孔眼横向传 递,同时对膜提供必要的支撑作用。
特点:流动状态好;容易清洗;设备和
操作费用高;膜装填密度大。
用于:超滤、微滤和单级反渗透。
螺旋卷式膜组件1
由中间是多孔支撑材料,两边是膜的双 层结构装配而成。
其中三个边沿被密封而粘结成膜袋状,另一 个开放的边沿与一根多孔中心透过液收集管 连接,在膜袋外部的原料液侧再垫一层网眼 形间隔材料(隔网),也就是膜-多孔支撑 材料-膜-隔网依次叠合。绕中心透过液收集 管紧密地卷在一起,形成一个膜卷。
各类膜组件的性能比较及影响因素分析

各类膜组件的性能比较及影响因素分析膜组件是膜分离技术的核心部分,广泛应用于水处理、气体分离、电池等领域。
在不同应用中,不同类型的膜组件拥有独特的性能和功能。
本文将对各类膜组件的性能进行比较,并分析影响其性能的因素。
首先,我们来介绍一些常见的膜组件类型。
常见的膜组件包括反渗透(RO)膜、超滤(UF)膜、纳滤(NF)膜和微滤(MF)膜。
RO膜主要用于水处理领域,能够有效去除溶解性离子、大分子有机物和微生物。
UF膜用于从水中去除大分子有机物、胶体颗粒和浑浊物质。
NF膜的孔径介于RO膜和UF膜之间,用于除去溶解性离子、胶体和有机物。
MF膜的孔径最大,用于去除悬浮物、微生物和大颗粒。
各类膜组件的性能比较涉及到多个方面的考虑。
首先是截留率,即膜组件对目标物质的分离效率。
RO膜在水处理中具有很高的截留率,能够有效去除大部分离子和有机物。
UF和NF膜的截留率相对较低,但对大分子有机物的去除效果较好。
而MF膜主要用于去除悬浮物和微生物,截留率较低。
其次是通量,指的是单位时间内通过膜的物质量。
RO膜具有较低的通量,主要受限于膜孔径和分子尺寸。
UF、NF和MF膜的通量相对较高,可用于大量产水。
通量的提高可以通过增加工作压力、调整进料浓度和温度来实现。
膜选择还需考虑膜的稳定性和耐久性。
RO膜对氧化剂和酸碱性环境较为敏感,需要防止膜的破损和污垢堵塞。
而UF、NF和MF膜在使用过程中相对稳定,适用于较复杂的水质环境。
此外,膜的材料也会影响性能。
常见的膜材料有聚酯、聚醚、聚氨酯、聚丙烯等。
不同材料的膜具有不同的热稳定性、化学稳定性和机械强度。
选择适合应用环境的材料能够提高膜的性能和寿命。
在实际应用中,膜组件的性能受到多种因素的影响。
首先是进料水的水质。
水中的溶解物、悬浮物和微生物会影响膜的通量和寿命。
因此,在使用膜组件前,通常需要对进料水进行预处理,如过滤、调整酸碱度和添加抗菌剂。
其次是操作条件的影响。
膜组件的工作压力、温度和流速都会对性能产生影响。
膜分离技术

膜分离技术膜分离技术膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。
目录简介重要组成——膜工艺优点历史与现状发展简史现状应用领域微滤超滤纳滤反渗透其他技术特点微滤(MF)超滤(UF)纳滤(NF)反渗透(RO)工艺原理系统应用澄清纯化技术浓缩提纯技术行业应用制药行业食品行业染料化工和助剂淀粉糖品环保及水处理领域生物技术工艺流程操作:清洗:保存:膜系统图片展开简介重要组成——膜工艺优点历史与现状发展简史现状应用领域微滤超滤纳滤反渗透其他技术特点微滤(MF)超滤(UF)纳滤(NF)反渗透(RO)工艺原理系统应用澄清纯化技术浓缩提纯技术行业应用制药行业食品行业染料化工和助剂淀粉糖品环保及水处理领域生物技术工艺流程操作:清洗:保存:膜系统图片简介膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。
膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。
重要组成——膜膜是具有选择性分离功能的材料。
利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。
它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。
膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。
有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。
全面认识污水处理MBR处理工艺:结构、膜组件、应用及展望

全面认识污水处理MBR处理工艺:结构、膜组件、应用及展望所属行业: 水处理关键词:污水处理 MBR 膜生物反应器在污水处理,水资源再利用领域,MBR 又称膜生物反应器(MembraneBio-Reactor),是一种由膜分离单元与生物处理单元相结合的新型水处理技术。
膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜);按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。
1工艺组成膜--生物反应器主要由膜分离组件及生物反应器两部分组成。
通常提到的膜--生物反应器实际上是三类反应器的总称:①曝气膜--生物反应器(Aeration Membrane Bioreactor, AMBR) ;②萃取膜--生物反应器(ExtractiveMembrane Bioreactor, EMBR);③固液分离型膜--生物反应器(Solid/Liquid SeparationMembrane Bioreactor, SLSMBR, 简称 MBR)。
1曝气膜曝气膜--生物反应器(AMBR)最早见于Cote.P 等1988年报道,采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point)情况下,可实现向生物反应器的无泡曝气。
该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响。
2萃取膜萃取膜--生物反应器,又称为EMBR(Extractive Membrane Bioreactor)。
因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。
为了解决这些技术难题,英国学者Livingston研究开发了EMB。
化工单元操作任务五 膜分离技术

常规过滤(静态过滤)
• 2) 错流过滤(动态过滤)
• 原料液以切线方向流过膜表面。溶剂和小 于膜孔的颗粒,在压力作用下透过膜,大 于膜孔的颗粒则被膜截留而停留在膜表面 形成一层污染层。与常规过滤不同的是, 料液流经膜表面产生的高剪切力可使沉积 在膜表面的颗粒扩散返回主体流,从而被 带出微滤组件,使污染层不能无限增厚。
电性
非荷电膜、荷电膜
形状
平板膜、管式膜、中空纤维膜
制备方法 烧结膜、延展膜、径迹刻蚀膜、相转换膜、动力 形成墨
分离体系 气-气、气-液、气-固、液-液、液-固分离膜
分离机理 吸附性膜、扩散性膜、离子交换膜、选择性膜、 非选择性膜
分离过程 反渗透膜、渗透膜、气体分离膜、电渗析膜、渗 析膜、渗透蒸发膜
• 2. 膜材料的性能
• (3)螺旋卷式膜组件
• 螺旋卷式膜组件如图c所示。将两张平板膜固定 在多孔性滤液隔网上(隔网为滤液流路),两端 密封。两张膜的上下分别衬设一张料液隔网(为 料液流路),卷绕在空心管上,空心管用于滤液 的回收。
• 螺旋卷式膜组件的比表面积大,结构简单,价 格较便宜。但缺点是处理悬浮物浓度较高的料 液时容易发生堵塞现象。
膜断面图
外压式膜组件结构 内压式膜组件结构
各种膜组件的优缺点
型式
优点
缺点
管式
易清洗,无死角适于处理 保留体积大,单位
含固体较多的料液,单根 体积中所含过滤面
管子可以调换
积较小,压降大
中空纤维式 保留体积小,单位体积中 所含过滤面积较大,可以 逆洗,操作压力较低,动 力消耗较低
料液需预处理,单 根纤维损坏时,需 调换整个膜件
对于表面层截留而言,其过程接近于决定过滤, 容易清洗,但杂质捕捉量相当于内部截留较少, 而对于膜内部截留而言,杂质捕捉量较多,但 不容易清洗,多属于一次性使用。
第二章 第四节膜组件

21
A cross-flow hollow fiber module used to obtain better flow distribution and reduce concentration polarization (the Tyobo Hollosep reverse osmosis module). Feed enters through the perforated central pipe and flows towards the module shell
2013-7-9
32
板框式膜组件特点
构造比较简单,且可单独更换膜片;
可作为试验机,将各种膜样品同时安装在一起进 行性能检测;
流道的断面积可适当增大,压降较小,线速度可 达1~5m/s,且不易被纤维屑等异物堵塞; 为促进膜组件内的湍流效果,不少厂家将原液导 流板的表面设计成各式凹凸或波纹结构或在膜面 配置筛网等物。
39
Horizontal DDS plate-and-frame ultrafiltration system. Courtesy of Alfa Laval Nakskov A/S, Naksvov, Denmark
2013-7-9
40
四. 膜组件形式之四——螺旋卷式
螺旋卷式(简称卷式)膜组件的结构是由中间为多孔 支撑材料,两边是膜的“双层结构”装配组成的。 其中三个边沿被密封而粘结成膜袋状,另一个开 放的边沿与一根多孔中心产品水(液)收集管连接, 在膜袋外部的原水侧再垫一层网眼型间隔材料 (隔网),也就是把膜~多孔支撑体~膜~原水侧隔 网依次叠合,绕中心集水管紧密地卷在一起,形 成一个膜元件,再装进圆柱型压力容器里,构成 一个螺旋卷式膜组件。
化工单元操作任务五膜分离技术(共93张PPT)

(5)其他类聚合物膜 具体包括聚偏氟乙烯超滤膜和再 生纤维素膜等。聚偏氟乙烯超滤膜可高温消毒、耐一 般溶剂、耐游离氯等。
• (6)复合超滤膜 分别用不同材料制成致密层和 多孔支撑层,从而使两者达到最优化。
• (7)无机膜 通常具有非常好的化学稳定性,热稳定 性和机械稳定性,但使用有限。
• 5 超滤分离系统
• 降低供给水的混浊度 悬浮物和交替物质的去除 可溶性有机物的去除 微生物(细菌、藻类等)去 除 调整进水水质(供水温度、pH)。
• 2.超滤系统工艺流程
• 超滤系统工艺流程设计有多种多样,按运行方式分 为循环式、连续式和部分循环连续式。按组件组合 排列形式分为一级一段、一级多段和多级等。
(1)间歇操作 闭式回路间歇操作
• 1 超滤的基本概念和分离范围
• 超滤是一种在静压差为推动力的作用下,原料液中 大于膜孔的大粒子溶质被膜截留,小于膜孔的小溶 质粒子通过通过滤膜,从而实现分离的过程,其分 离机理一般认为是机械筛分原理
• 超滤主要用于料液澄清、溶质的截留浓缩及溶质之间 的分离。其分离范围为相对分子质量500~1×106的大 分子物质和胶体物质,相对应粒子的直径为0.005~ 0.1µm。操作压力一般为0.1~0.5MPa。
• 4 超滤膜与膜材料
• (1)醋酸纤维素 这是研究最早的超滤膜,是利用 纤维素及其衍生物分子线性不容易弯曲的特点,来 制备反渗透和超滤膜。具有亲水性好、通量大、工 艺简单、成本低、无毒、操作范围窄、适用的pH范 围窄(3~6)、容易被生物将解等特点。
• (2)聚砜类超滤膜 具有化学稳定性优异、适 用的pH范围宽(1~13)、耐热性好、耐酸碱性好 、抗氧化性和抗氯性能好等特点。适于制作超滤 膜、微滤膜和复合膜的多孔支撑膜。
膜分离

分离膜种类
1.2 膜分离技术发展简史
1)高分子膜的分离功能很早就已发现。1748年,耐克特发 现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的 研究。 2)1861年,施密特首先提出了超过滤的概念。他提出用比 滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加 压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋 白质、胶体等微小粒子,其精度比滤纸高得多。这种过滤可 称为超过滤。按现代观点看,这种过滤应称为微孔过滤。
表示如下:
(C) 复合制膜工艺
1.10 膜的保存
微生物的破坏主要发生在醋酸纤维素膜; 而水解和冷冻破坏则对任何膜都可能发生。温度、pH值不适 当和水中游离氧的存在均会造成膜的水解。冷冻会使膜膨胀而破 坏膜的结构。 膜的收缩主要发生在湿态保存时的失水。收缩变形使膜孔径
大幅度下降,孔径分布不均匀,严重时还会造成膜的破裂。当膜
(C)在常温下进行,适合处理热敏性物料; (D)设备没有运动的部件,可靠性高,操 作、维护方便。
1.6 膜分离过程的传递机理
物质透过膜的三种传递方式:被动传递、促进 传递和主动传递。 (A)被动传递:物质由高化学位相侧向低化
学位相侧传递,化学位差是膜分离传递过程的
推动力,它可以是压力差、浓度差、电位差、 St (C)通量衰减系数。膜的渗透通量因浓度极 化、膜的压密以及膜孔堵塞等原因将随时间而 衰减。
Jt J1 t
m
Jt、J1为膜运转t小时和1 h后的透过速度;t为 运转时间,m为衰减系数。
1.5 膜分离特点
(A)无需外加物质,可实现高纯度的分离; (B)过程不发生相变化,能耗较低;
与高浓度溶液接触时,由于膜中水分急剧地向溶液中扩散而失水, 也会造成膜地变形收缩。 短期(1、2天):无菌水;中期(1、2星期):0.1% NaOH 长期(1个月以上): 2-5% 甲醛 5%甘油(冬天)
DTRO膜组件结构及工作原理

DTRO膜组件结构及工作原理DTRO(Disc Tube Reverse Osmosis)膜组件是一种用于海水淡化和废水处理的膜技术。
它的结构和工作原理如下:一、结构DTRO膜组件由数个具有膜孔的圆盘状膜片紧密叠加而成。
每个膜片上都有许多小孔,通过这些小孔,水可以通过并形成膜组件的内部流道。
膜组件中央有一个中心轴,所有的膜片都围绕中心轴旋转。
膜组件外部包裹着一个壳体,用于容纳和保护膜组件。
二、工作原理1.预处理:进水经过预处理,去除悬浮物、沉淀物、有机物和杂质等。
2.进水:经过预处理的水流经过进水管道进入膜组件。
3.分离:进水经过膜组件时,膜片产生旋转,形成高速旋转的离心力场。
由于旋转产生的离心力,进水中的悬浮物和沉淀物会被甩离,沉积在膜片内外面形成压滤层。
4.膜分离:进水通过膜片内部的膜孔进入膜组件的内部流道。
膜孔的尺寸很小,只允许水和溶解物通过,而拒绝大部分的溶质和溶剂分子。
这个过程称为逆渗透,即水从高浓度溶液通过膜片进入低浓度溶液,从而实现对水的分离和纯化。
5.浓水排除:在进水通过膜孔后,在膜片外面形成的压滤层将含有溶质的浓水与膜片外面的残留纯水分开。
浓水通过排除管道离开膜组件,而纯水则在膜组件内部流道中向出水口流动。
6.出水:经过膜组件的纯水通过出水口排出,成为可以直接使用的清澈水源。
1.高效分离:DTRO膜组件通过旋转和逆渗透的结合,有效地分离纯水和溶质,具有更高的分离效率。
2.耐污性强:膜组件的旋转和离心力可以有效清除膜表面的污物,延长了膜寿命。
3.可调节性:DTRO膜组件的运行参数可以调节和控制,以适应不同水质和处理需求。
4.操作成本低:相较于其他膜技术,DTRO膜组件在能耗和化学药剂使用方面更为经济高效。
总结:DTRO膜组件是一种高效、耐污的海水淡化和废水处理技术。
其特殊的结构和工作原理使其能够高效地纯化水源,并具有较长的寿命和低的操作成本。
膜分离技术及应用

膜分离技术及应用1 膜分离技术的简介1.1 膜分离的概念利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。
膜分离的一般示意性图见图1。
1.2 膜的简介在一种流体相间有一层薄的凝聚相物质,把流体相分隔开来成为两部分,这一薄层物质称为膜。
膜本身是均一的一相或由两相以上凝聚物构成的复合体。
被膜分开的流体相物质图1 膜分离过程示意图是液体或气体。
膜的厚度应在0.5mm以下,否则不能称其为膜。
1.2.1 对于不同种类的膜都有一个基本要求:(1)耐压:膜孔径小,要保持高通量就必须施加较高的压力,一般模操作的压力范围在0.1~0.5Mpa,反渗透膜的压力更高,约为1~10MPa(2)耐高温:高通量带来的温度升高和清洗的需要(3)耐酸碱:防止分离过程中,以及清洗过程中的水解;(4)化学相容性:保持膜的稳定性;(5)生物相容性:防止生物大分子的变性;(6)成本低。
1.2.2 膜的分类按孔径大小:微滤膜、超滤膜、反渗透膜、纳滤膜按膜结构:对称性膜、不对称膜、复合膜按材料分:有机高分子(天然高分子材料膜、合成高分子材料膜)膜、无机材料膜1.2.3 各种膜材料(1)天然高分子材料膜主要是纤维素的衍生物,有醋酸纤维、硝酸纤维和再生纤维素等。
其中醋酸纤维膜的截盐能力强,常用作反渗透膜,也可用作微滤膜和超滤膜。
醋酸纤维膜使用最高温度和pH范围有限,一般使用温度低于45~50℃,pH3~8。
再生纤维素可制造透析膜和微滤膜。
(2)合成高分子材料膜市售膜的大部分为合成高分子膜,种类很多,主要有聚砜、聚丙烯腈、聚酰亚胺、聚酰胺、聚烯类和含氟聚合物等。
其中聚砜是最常用的膜材料之一,主要用于制造超滤膜。
聚砜膜的特点是耐高温(一般为70~80℃,有些可高达125℃),适用pH 范围广(pH=l~13),耐氯能力强,可调节孔径范围宽(1~20nm)。
但聚砜膜耐压能力较低,一般平板膜的操作压力权限为0.5~1.0MPa 。
气体膜分离概述、分离机理和装置组件

存在的问题
• 深冷分离技术在费用上有一定的优势; • 变压吸附技术的发展很快。
气体膜分离机理
气体膜分离机理
• 膜法气体分离的基本原理是根据混合气体 中各组分在压力推动下透过膜的传递速率 不同,从而达到分离的目的。
两种机理: 1. 气体通过微孔膜的微孔扩散机理; 2. 气体通过致密膜的溶解-扩散机理。
气体膜分离定义
• 分离原理
• (a) (b) (c) (d) (e) (f) (g)
致密膜气体分离与蒸汽渗透
分离机理
进料
蒸汽渗透
致密膜气体 分离
依赖于膜材 料与分离组 分的相互作
用
依赖于气体 在膜内的传
递速率
蒸汽形式 气体
微孔扩散机理
1. 努森扩散:
2.
微孔直径(dp)远小于气体分子平均自由程(λ)
• 气体在膜内的扩散过程可用费克定律来描 述,稳态时,气体透过膜的渗透流率可用 下式来表达:
J p1 p2 Q QD(c)S(c)
l
溶解-扩散机理
QD(c)S(c)
c2 D(c)dc
D(c) c1 c1 c2
S(c) c1 c2 p1 p2
2.非多孔膜内的扩散
• 对橡胶态膜, 气体渗透通过致密膜的传递方程可由
1
从渗透系数的因次可以看出它与膜面积、 膜厚及推动力无关,是个归一化的参数。 对于相互作用体系,Henry定律不再适用, P也就不在是常数,与推动力有关。
微孔扩散机理
• 对混合气体通过多孔膜的分离过程,为了 获得良好的分离效果,要求混合气体通过 多孔膜的传递过程应以分子流为主。基于 此,分离过程应尽可能地满足下列条件: ①多孔膜的微孔径必须小于混合气体中各 组分的平均自由程,一般要求多孔膜的孔 径在(50~300) ×10-10m;②混合气体的温 度应足够高,压力应尽可能低。高温、低 压都可能提高气体分子的平均自由程,同 时还可避免表面流动和吸咐现象发生。
膜分离技术

.
6
液态膜
按制膜材料形态来分类的一种,即以液态物质为分离 介质形成的膜,亦叫液相膜或液膜。这种膜可以把两 种气相,气液两相或两相不互溶的液体进行分隔和促 进分离,如乳化液膜和支撑液膜
.
7
天然膜——天然高分子材料
种类:纤维素衍生物,如醋酸纤维、硝酸纤维和再生纤维 优点:醋酸纤维的阻盐能力最强,常用于反渗透膜,也可作超滤膜和微滤膜;再生纤维素可用于制造透
应用案例:
茶叶提取液浓缩、五味子提取液浓缩、金银花提取液浓缩、黄芪提取液浓缩、
三七提取液浓缩、大蒜提. 取液浓缩、虎杖提取液浓缩等。
15
膜分离过程的特点
共同特点:
(1)无相变发生,能耗低; (2)一般无需从外界加入其他物质,节约资源,保护环境; (3)可以实现分离与浓缩、分离与反应同时进行,从而大大提 高效率; (4)常温常压下进行,特别适用于热敏性物质的分离、浓缩; (5)不仅适用于从病毒、细菌到微粒广泛范围的有机物或无机 物的分离,而且还适用于特殊溶液体系的分离如共沸物的分离; (6)膜组件简单,可实现连续操作,易控制、易放大。
不(非)对称膜有相转化膜及复
合膜两类。前者表皮层与支撑层
为同一种材料,通过相转化过程
形成非对称结构;后者表皮层与
支撑层由不同材料组成,通过在
支撑层上进行复合浇铸、界面聚
合、等离子聚合等方法形成超薄
表皮层。
分离效能主要或完全由很薄的皮层决定,传质阻力小,其透过速率较对
称膜高得多。
.
5
非对称膜具有高透过 速度,而且被脱除的 物质大都在其表面, 易于清除。
膜分离技术
.
1
膜分离过程
膜分离过程以选择性透过膜为
分离介质。当膜两侧存在某种
膜分离技术

2024/7/5
膜分离技术
3
1、膜分离技术发展概述
1784年 阿贝.诺伦特首次揭示膜分离现象 1960年洛布和索里拉金 醋酸纤纸素膜 1964年 美国通用原子公司 螺旋式反渗透组件 1965年 美国加利福尼亚大学 管式反渗透装置 1967年 美国杜邦公司首次研制了以尼龙为材料 的中空纤维组件, 1970年又研制了以芳香聚酰 胺为膜材料的中空纤维组件 1968年 美籍华人黎念之研究出乳化液膜 70年代 Cussler研制了含流动载体的液膜
第1章 膜分离技术
(Membrane Separation Processes)
本章主要内容:
膜分离技术概述
扩散渗析(diffusion dialysis)
反渗透( reverse osmosis)
电渗析(electro-dialysis)
2024/7/5
膜分离技术
2
1.1 膜分离概述
1、膜分离发展概述 2、膜分离的概念 3、膜分离法的分类 4、膜分离技术的特点 5.膜分离法的应用
99%
多孔层, 孔径 (1000-4000) ×10-10m
这种膜有不对称结构: 表面结构致密, 孔隙很小, 通称为表皮 层或致密层、活化层; 下层结构较疏松, 孔隙较大, 通称为多 孔层或支撑层。
2024/7/5
膜分离技术
29
膜的照片
在相对湿度为100%时, 膜的含水量高达60%, 其中表皮层只含10%-20%, 且主要是以氢 键形式结合结合水。
2024/7/5
膜分离技术
17
2. 扩散渗析法原理
渗析液A+ B-
H2O
H2O A+
B- B- B-
(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Asymmetric Membranes
Dense Layer Porous support Fiber Support
Pore size
Ceramic membrane pictures (CEM)
Membrane structure
• structure: – symmetric – asymmetric
Solute MW (kDa) Rejection (%)
Linear macromolecule
Selective membrane skin Porous support
Globular Protein
Linear polymer
Pepsin
Cytochrome C
Polydextran
35
13
Fouling reduction/cleaning
• Membrane properties and module design • Optimum process conditions (low TMP) • Cleaning regime
–hydraulic cleaning (backwash, forward flush and airflush© )
Cross-flow filtration
• Advantages:
– turbulent flow – continuous concentrate discharge – control of cake-layer build-up
• Disadvantages:
– more complex process layout – high(er) energy consumption – high(er) investment cost
Take of a membrane
The photo of the produced membrane
Make sheets of it in a module
Make a module of it
More than one membraneSubmຫໍສະໝຸດ rge in a MBR tank
膜结构
RO, NF Skin
▪ Porous asymmetric
UF, MF Support
▪ Porous Symmetric
MF
Porous Symmetric Membranes
Nuclepore Membrane 核径迹成孔
Cellulose Membrane
Symmetric membrane
• 铸膜液制备:聚合物+有机溶剂(NMP, DMF, acetone等易与水互溶).
• 添加其它助剂 (pore-formers or nonsolvents).
• 凝固浴 (主要用水和其它聚合物不良溶剂 构成,通过相分离产生‘the pores’ 和‘the membrane body’)
NMP甲基吡咯烷酮 PES聚醚酚
Permeate
Flow IN
Concentrate Spacer
Membrane
Feed flow Permeate
Feed flow
Collection pipe
Residue flow
Feed spacer Membrane
Permeate flow
Membrane
Feed spacer
015-DWG-MW
Fouling of membranes
• Fouling
– Reversible fouling – Irreversible fouling
• Biofouling • Pore blocking • Scaling
foul
a. 1. 肮脏的,污浊的;2. 恶臭的;(食物) 腐败的;3. 邪恶的,可恶的;4. 下流的, 恶语咒骂的;5. (天气等)恶劣的;(风) 逆的;6. (比赛中)犯规的;7. (水管等) 堵塞的;8. (绳索等)被缠住的
ad. 1. 违反规则地;不正当地
n. 1. (比赛中)犯规[C][(+against/on)]
vt. 1. 弄脏;污染;玷污;2. 使堵塞;3. 缠 住;4. 碰撞
vi. 1. 腐败,腐烂;2. (管道等)堵塞 [(+up)];3. (比赛中)犯规;4. (绳索等) 缠结
Resistance Model
–chemical cleaning – relaxation
必需品 • PES聚合物 • NMP 溶剂 •水 • 玻璃片 • 刮膜器
Poly Sulfon (PS)
PS in NMP solution
glassplates
Cleaning glassplates important
Membrane
Filling the knife
knife (0,2 mm) with PS solution
• shapes:
– flat sheet
– tubular:
• tube
(d > 3 mm)
• capillary (0.5 < d < 3.0 mm)
• hollow fibre (d < 0.5 mm)
Module shapes
• Flat Sheet • Spiral Wound • Tubular • Hollow Fiber • Contained vs Submerged
膜制造及膜组件
membranes
膜过程的驱动力
压力驱动 - RO, NF,UF, MF 其它过程 -渗析(浓度差)电渗析(电位差)
压力驱动的膜过滤
进料
浓缩
membrane
膜
透过
• MF
• UF • NF • RO
孔尺寸减小 泵压力增加
实验室膜制备实例
• 高分子材料 (PAN, PES, CA, PVDF).
Fouling in NF/RO
Fouling behavior differs from UF/MF due to: • Lower fluxes and presence of smaller
molecules higher back-diffusion and in general no thick cake layer formation • Charged membrane surfaces (in general negative) adsorption of colloids and biological matter • Scaling (CaSO4, CaCO3)
Dead end Feed
Cross-flow
Feed
Retentate
Permeate
Permeate
Membrane filtration dead-end
Waste water
feed
Permeate
Membrane
Membrane filtration cross flow
concentrate
Reverse Osmose-installation
+/- various configurations
solid level
(fouling
resistance)
plate & frame
+
compactness energy consumption
-
0
price per m2
0
spiral wound
Cascade single pass system
Feed
Concentrate Retentate
Two-stage recirculation system
Permeate
Permeate
Feed pump Feed
Reciprcuumlaption
Stage 1
Concentrate Stage 2
• Porous vs Non Porous • Hydrophilic vs Hydrophobic • Polymeric vs Inorganic
Hydrophilic亲水 Hydrophobic疏水
Porous …………Non Porous Symmetric…… Asymmetric
▪ Dense (Non porous)
100
90
70
0
Cake layer formation
Flow direction
Driving force ∆p
Colloid/protein
Particle
Cake/ fouling layer
Membrane
Fouling in MF/UF
Decrease in flux due to: • Pore-plugging, adsorption and cake-layer formation • No concentration polarization of salts
You can make your own spiral wound module today!!!
• Two A4 papers • Cotton sheet A4 (if available) • Shears to cut • Glue for paper • Plastic tube with a slid (prefabricated)
-
+
+
++
(Є 25/m2)
tube
++
-
0/-
-
(Є 150/m2)
capillary