高一数学《指数函数与对数函数》PPT课件
合集下载
人教A版高中数学必修一课件 《对数》指数函数与对数函数PPT(第一课时对数的概念)
【解】 (1)loge16=a,即 ln16=a. (2)log6414=-13. (3)32=9. (4)xz=y.
将下列指数式与对数式互化:
(1)log216=4;
(2)log127=-3; 3
(3)43=64; (4)14-2=16. 解:(1)由 log216=4 可得 24=16.
(2)由
1.对数的概念 一 般 地 , 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 _以___a_为___底__N__的__对__数____ , 记 作 _x_=___lo_g_a_N__ , 其 中 a 叫 做 ___对__数__的__底__数____,N 叫做真 __数___.
把对数式 loga49=2 写成指数式为( )
A.a49=2
B.2a=49
C.492=a
D.a2=49
答案:D
log32x- 5 1=0,则 x=________.
答案:3
指数式与对数式的互化
将下列指数式与对数式互化: (1)ea=16; (2)64-13=14; (3)log39=2; (4)logxy=z(x>0 且 x≠1,y>0).
log127=-3 3
可得13-3=27.
(3)由 43=64 可得 log464=3.
(4)由14-2=16
可得
log116=-2. 4源自利用对数式与指数式的关系求值
求下列各式中 x 的值: (1)log27x=-23; (2)logx16=-4; (3)lg10100=x; (4)-lne-3=x.
4.3对数 第一课时 对数
的概念
第四章 指数函数与对数函数
考点
学习目标
《指数函数》指数函数与对数函数PPT演示课件
过一个虚拟的人进行洗钱,当然,这一切只有他一个人知道。在监狱中,他因为冒死替狱友争取到了啤酒,从而赢得了狱友们的尊重
和友谊,从那些无所不能的狱友们弄到一把铁捶和一张明星的海报。一年又一年的监狱生活,带走了
对他来说,简直就是希望和救星,他找到监狱长,救他,说这是他可以翻案的机会,只要找到那名犯人,再加上他的学生做证,他就
讨论:
1
1
(1)如果 a<0,如 y=(-4)x,这时对于 x=4,x=2等,在实数范围内函数值
不存在;
(2)如果 a=0,
当 > 0 时, 恒等于 0,
当 ≤ 0 时, 无意义;
(3)如果a=1,y=1x=1,是个常数函数,没有研究的必要;
(4)如果0<a<1或a>1,即a>0且a≠1,x可以是任意实数.
指数函数与对数函数
4.2 指数函数
-1-
首页
课标阐释
思维脉络
1.理解指数函数的概念和意义,
能画出具体指数函数的图象.
2.初步掌握指数函数的性质,并
能解决与指数函数有关的定义
域、值域、定点问题.
3.逐步体会指数函数在实际问
题中的应用.
课前篇
自主预习
整部片子比较压抑,可能因为是讲述在监狱里发生的事情吧,但看完后心情却久久不能平静,那样的荡气回肠,那样的震憾人心!一
一
二
个年轻有为的银行家安迪,因为与妻子发生口角气跑了妻子,而当天妻子与她的情人双双被枪杀在床上,他成为最有杀人动机的嫌疑
犯,加上口吐莲花的律师,就这样,一个年轻有为的银行家被送了肖申克监狱。在监狱里发生了许多的事情,先是被老犯人们打赌,
第一晚谁会扛不住最先哭泣,最有权威的老犯人阿瑞看他白白净净,瘦瘦弱弱的样子,押了他两盒烟的赌注,第一次就让阿瑞输了赌
和友谊,从那些无所不能的狱友们弄到一把铁捶和一张明星的海报。一年又一年的监狱生活,带走了
对他来说,简直就是希望和救星,他找到监狱长,救他,说这是他可以翻案的机会,只要找到那名犯人,再加上他的学生做证,他就
讨论:
1
1
(1)如果 a<0,如 y=(-4)x,这时对于 x=4,x=2等,在实数范围内函数值
不存在;
(2)如果 a=0,
当 > 0 时, 恒等于 0,
当 ≤ 0 时, 无意义;
(3)如果a=1,y=1x=1,是个常数函数,没有研究的必要;
(4)如果0<a<1或a>1,即a>0且a≠1,x可以是任意实数.
指数函数与对数函数
4.2 指数函数
-1-
首页
课标阐释
思维脉络
1.理解指数函数的概念和意义,
能画出具体指数函数的图象.
2.初步掌握指数函数的性质,并
能解决与指数函数有关的定义
域、值域、定点问题.
3.逐步体会指数函数在实际问
题中的应用.
课前篇
自主预习
整部片子比较压抑,可能因为是讲述在监狱里发生的事情吧,但看完后心情却久久不能平静,那样的荡气回肠,那样的震憾人心!一
一
二
个年轻有为的银行家安迪,因为与妻子发生口角气跑了妻子,而当天妻子与她的情人双双被枪杀在床上,他成为最有杀人动机的嫌疑
犯,加上口吐莲花的律师,就这样,一个年轻有为的银行家被送了肖申克监狱。在监狱里发生了许多的事情,先是被老犯人们打赌,
第一晚谁会扛不住最先哭泣,最有权威的老犯人阿瑞看他白白净净,瘦瘦弱弱的样子,押了他两盒烟的赌注,第一次就让阿瑞输了赌
高一上学期数学人教A版必修第一册4.2指数函数(指数函数的概念+指数函数的图像和性质)课件
第4章 指数函数与对数函数
4.2 指数函数
导问:创设情境,引入主题
给我一个支点,我能够撬动地球。
----阿基米德
给我一张足够大的纸,
我能够上月球,你信吗?
给你一张纸,你能折几次呢?
导问:创设情境,引入主题
如果你有一张面积无限、强度无
限,厚度为0.01毫米的纸,如果
折叠能力无限,那么多次对折,
纸张的厚度会变成多少呢?
导问:创设情境,引入主题
导问:创设情境,引入主题
问题1:一张薄薄的纸,却折叠出了惊天的气势,蕴含着神秘的数学知识。
若把纸张的初始厚度设为1,经过x次对折后, 纸张厚度y与对折次数x之间
的关系是什么?
对折次数
纸张厚度
每折叠一次,得到的纸张的厚度都约
0
1
1
为前一次的2倍.也就是每次的厚度相
比于折叠之前都增长了100%,我们称
这节课我们都学了什么?
R
对称性
定义域
定义
值域
指
数
函
数
奇偶性
图
性
象
质
非奇非偶函数
单调性
过定点(0,1)
在第一象限内“底大图高”
感谢凝听!
2
3
···
这个100%为增长率。
···
增长率为常数的变化方式,我们称为指数增长。
导问:创设情境,引入主题
问题2:《庄子·天下篇》 中写道: “一尺之棰,日取其半,万世不竭。“
设原长度为1,设
取x天之后,剩
1
长度都变为前一天的
2
一半.也就是每天的长
3
度相比于前一天都衰
下y,请完成表格:
···
4.2 指数函数
导问:创设情境,引入主题
给我一个支点,我能够撬动地球。
----阿基米德
给我一张足够大的纸,
我能够上月球,你信吗?
给你一张纸,你能折几次呢?
导问:创设情境,引入主题
如果你有一张面积无限、强度无
限,厚度为0.01毫米的纸,如果
折叠能力无限,那么多次对折,
纸张的厚度会变成多少呢?
导问:创设情境,引入主题
导问:创设情境,引入主题
问题1:一张薄薄的纸,却折叠出了惊天的气势,蕴含着神秘的数学知识。
若把纸张的初始厚度设为1,经过x次对折后, 纸张厚度y与对折次数x之间
的关系是什么?
对折次数
纸张厚度
每折叠一次,得到的纸张的厚度都约
0
1
1
为前一次的2倍.也就是每次的厚度相
比于折叠之前都增长了100%,我们称
这节课我们都学了什么?
R
对称性
定义域
定义
值域
指
数
函
数
奇偶性
图
性
象
质
非奇非偶函数
单调性
过定点(0,1)
在第一象限内“底大图高”
感谢凝听!
2
3
···
这个100%为增长率。
···
增长率为常数的变化方式,我们称为指数增长。
导问:创设情境,引入主题
问题2:《庄子·天下篇》 中写道: “一尺之棰,日取其半,万世不竭。“
设原长度为1,设
取x天之后,剩
1
长度都变为前一天的
2
一半.也就是每天的长
3
度相比于前一天都衰
下y,请完成表格:
···
人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册
一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y=logbx(b>1)的增长有何差异?
一般地,无论k(k>0)、a(a>1)、b(b>1)如何取值,三种函数在区间(0,+∞)上都单调递增,但一次函数总是保持固定的增长速度;指数函数的增长速度都会越来越快,并且指数函数的函数值最终总会大于一次函数的函数值;对数函数的增长速度都会越来越慢,并且对数函数的函数值最终总会小于一次函数的函数值.
401
626
901
y2
2
32
1024
32768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
【解析】(1)由于指数型函数的增长式为爆炸式增长,则当x越来越大时,函数y=的增长速度最快,故选A.
(2)从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数变化.
x
y=2x
y=2x
0
1
0
2
4
4
4
16
8
6
64
12
8
256
16
10
1024
20
12
4096
24
…
…
…
可以看到,当自变量x越来越大时,y=2x的图象就像与x轴垂直一样,2x的值快速增长;而函数y=2x的增长速度依然保持不变,与函数y=2x的增长速度相比几乎微不足道.
高中数学指数函数与对数函数课件PPT
2-9 指数函数与对数函数
1.掌握指数函数与对数函数的概念,图象和性 质.能利用指数函数和对数函数的性质解决某些简 单的实际问题。 2.理解指数函数y=ax(a>0且a≠1)与对数函数y=logax (a>0且a≠1)互为反函数,灵活运用指数函数、对数 函数的图象和性质,会用数形结合、分类讨论、函 数与方程(不等式)等数学思想方法解决一些综合 问题。
-3 x -2或 - 2 x 1. 函数定义域为(-3, -2)( -2, 1].
变式1.(1) 解:
求函数y loga [loga (loga x) ]的定义域(a 0且a 1). (loga x) 0 loga 1 loga log x 0 a x0
变式1.(2)
已知2
x2 x
1 x2 2 ( ) , 求函数y log 2 (3 x 6 x 4) 4
的值域. 解: 2x2 x 22( x2) , x2 x 2( x 2),
即x 2 3 x-4 0,
2
-4 x 1.
2
令u 3 x 6 x 4 3( x 1) 1 x [-4,1], u是减函数, 1 u 76. 又y log u是增函数, log2 1 log2 u log2 76.
考点梳理
1.指数函数与对数函数的概念: 指数函数: y=ax(a>0且a≠1) 对数函数: y=logax (a>0且a≠1)
2.指数、对数函数的图象与性质 根据图象写出函数的定义域、 值域、单调性、定点等性质.
y=ax的图象 0<a<1 a>1 y (0,1)
0
x
y=logax 的图象 3.指数函数与对数函数互为反函数. a>1 y 图象关于y=x对称,定义域、值域互换. 指数函数过点(0,1),(1,a),(-1,1/a)
1.掌握指数函数与对数函数的概念,图象和性 质.能利用指数函数和对数函数的性质解决某些简 单的实际问题。 2.理解指数函数y=ax(a>0且a≠1)与对数函数y=logax (a>0且a≠1)互为反函数,灵活运用指数函数、对数 函数的图象和性质,会用数形结合、分类讨论、函 数与方程(不等式)等数学思想方法解决一些综合 问题。
-3 x -2或 - 2 x 1. 函数定义域为(-3, -2)( -2, 1].
变式1.(1) 解:
求函数y loga [loga (loga x) ]的定义域(a 0且a 1). (loga x) 0 loga 1 loga log x 0 a x0
变式1.(2)
已知2
x2 x
1 x2 2 ( ) , 求函数y log 2 (3 x 6 x 4) 4
的值域. 解: 2x2 x 22( x2) , x2 x 2( x 2),
即x 2 3 x-4 0,
2
-4 x 1.
2
令u 3 x 6 x 4 3( x 1) 1 x [-4,1], u是减函数, 1 u 76. 又y log u是增函数, log2 1 log2 u log2 76.
考点梳理
1.指数函数与对数函数的概念: 指数函数: y=ax(a>0且a≠1) 对数函数: y=logax (a>0且a≠1)
2.指数、对数函数的图象与性质 根据图象写出函数的定义域、 值域、单调性、定点等性质.
y=ax的图象 0<a<1 a>1 y (0,1)
0
x
y=logax 的图象 3.指数函数与对数函数互为反函数. a>1 y 图象关于y=x对称,定义域、值域互换. 指数函数过点(0,1),(1,a),(-1,1/a)
新教材高中数学第四章指数函数与对数函数:对数函数的图象和性质pptx课件新人教A版必修第一册
解析:原不等式可化为
(1-x)的解集为 (-2,1) .
即
解得-2<x<1.
(2)若 loga <1,则 a 的取值范围是 (0, )∪(1,+∞) .
x 的图象关于
x轴 对称.
解析:题中两个对数函数的底数互为倒数,因此它们的图
象关于x轴对称.
二、对数函数的图象和性质
[知识梳理]
对数函数的图象和性质
0<a<1
对数函数
a>1
图象
定义域
(0,+∞)
值域பைடு நூலகம்
性质
R
过定点 (1,0) ,即当 x= 1 时,y= 0
减 函数
增 函数
【思考】
(1)在第一象限内观察函数 y=log2x,y=log3x,y=lo
x,y=lo
x的
图象,你能发现底数的大小与图象左右位置的关系吗?
提示:底数越大,图象越靠右边.
(2)你能解释为什么对数函数 y=logax 的图象恒过定点(1,0)吗?
由此类推函数 y=loga(x-1)的图象恒过哪个定点?
提示:根据loga1=0,知无论a(a>0,且a≠1)取何值,对数函数
y=logax的图象恒过定点(1,0).令x-1=1,则x=2,所以函数y=loga(x-1)
性的影响,对底数进行分类讨论.
【跟踪训练】
1.若 a=log2π,b=lo
A.a>b>c
π,c=π-2,则 (
B.b>a>c
解析:因为 log2π>1,lo
C.a>c>b
)
D.c>b>a
π<0,0<π-2<1,所以 a>c>b,故选 C.
指数函数和对数函数ppt课件
解法 2:a-b=ln22-ln33=3ln2-6 2ln3 =16(ln8-ln9)<0. ∴a<b.同理可得 c<a,∴c<a<b.故选 C.
[答案]C
4.考查函数的定义域 函数的定义域是历年高考中均考查的知识点,其难度 不大,属中低档题,但在求解时易漏掉部分约束条件造成错 解,因而也是易错题. [例 4] 函数 f(x)= 31x-2 x+lg(3x+1)的定义域是
[例 1] (1)化简
3 ÷(1-2
ba)×3 ab;
(2)求值:12lg3429-43lg 8+lg 245.
(2)解法一 12lg3429-43lg 8+lg 245 =lg472-lg4+lg7 5 =lg(472×14×7 5) =lg 10=12lg10=12.
解法二 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5 =12(lg2+lg5) =12lg10=12.
[例7]求不等式x-1<log6(x+3)的所有整数解. [解析]设y1=x-1,y2=log6(x+3),在同一坐标系中作
出它们的图像如图所示,两图像有两个交点,一交点的横坐标
显然在-3和-2之间,另一个交点设为P.
因为x=1时,log6(1+3)-(1-1)>0,x=2时, log6(2+3)-(2-1)<0,所以1<xP<2.
2.指数函数的概念与性质 (1)指数函数的定义
一般地,函数y=ax(a>0,且a≠1)叫作指数函数. (2)y=ax(a>0,a≠1)的图像
0<a<1
a>1
高一数学《指数函数与对数函数》 PPT课件 图文
1
2
1 x1 2
1
2. 求下列函数的单调区间
1) y tg 60x2 4x3
y tg 60 x2 4x3
x22 1
3
2)
y 1 1 x 2x1 2
解答见后面
u 3 :单增
复合函数:同增,异减 减区间为(-∞,2];增区间为[2,+∞)
根式的定义
一般地,若 xn a(n 1, n N*)
则 x 叫做 a 的 n 次方根。
记为: n a
根指数
根式
被开方数
根式的性质 1. 当n为奇数时:
正数的n次方根为正数,负数的n次方根为负数
记作: x n a
2. 当n为偶数时, 正数的n次方根有两个(互为相反数)
记作: x n a
21
11
15
⑴ (2a 3b 2 )(6a 2b 3 ) (3a 6b 6 ) ; 4a
⑵
(
m
1 4
n
3 8
)8
.
m2
n3
3. 计算下列各式:
⑴ (3 25 125 ) 4 5 ; 1255 54 5
⑵
a2 (a>0).
6 a5
a 3 a2
1
1
1
1
4 化简: (x 2 y 2 ) (x 4 y 4 )
(x 1) 减 2
3. 负数没有偶次方根。 4. 0的任何次方根为0。
常用公式
1. 当 n 为任意正整数时,(n a ) n =a. 2. 当n为奇数时 n an a
当n为偶数时 n an a a,a(a,(a0)0) 3. 根式的基本性质:
高中数学 第3章 指数函数和对数函数 3.3 指数函数课件高一必修1数学课件
【做一做1】 函数f(x)=(m2-m-1)ax是指数函数,则实数(shìshù)m=(
A.2
B.1
C.3
D.2或-1
解析:由指数函数的定义,得m2-m-1=1,解得m=2或-1,故选D.
答案:D
第三页,共四十四页。
)
一
二
二、指数函数y=ax(a>0,a≠1,x∈R)的图像(tú xiànɡ)和性质
解得 a=1.
+ 1 ≠ 1,
1
27
答案:(1)
(2)1
第十三页,共四十四页。
f(3)=
.
1 3
3
=
1
.
27
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)
三
探究四
思想方法
指数型函数的定义域与值域问题
【例2】 (1)求下列函数的定义域与值域:
1
①y=2-4 ;
②y=
2 -||
1
的图像关于 y 轴对称
一
二
底 数
a>1
0<a<1
当 a>1 时,a 的值越大,图像越靠近 y 轴,增加的速
底数 a 对函
性
度越快;
数图像的
质
当 0<a<1 时,a 的值越小,图像越靠近 y 轴,减少的
影响
速度越快
第五页,共四十四页。
一
二
【做一做2】 (1)函数y=(
-1)x在
3R上是(
)
∴函数图像恒过定点(1,3).
(方法二)函数可变形为y-2=ax-1,把y-2看作x-1的指数函数,
第四章指数函数与对数函数课件高一数学上学期人教A版
【期末热考题型1】指数函数的判断与求值
【典例 1】(2023·高一课时练习)下列函数中,属于指数函
数的是
.(填序号)
①
y
2 3x
﹔②
y
;③ 3x1
y
3x
;④
y
(2a
1)x(a
为常数,a
1 2
,a
1 );
⑤ y x3 ;⑥ y 4x ﹔⑦ y (4)x .
【答案】③④
【详解】对①:指数式的系数为 2,不是 1,故不是指数函数;
2 知识回归
知识点 04:指数函数的图象变换
已知函数 y ax (a 0且a 1)
1、平移变换
① y a x 向上平移k个单位长 度(k 0) y a x k ② y a x 向下平移k个单位长 度(k 0) y a x k ③ y a x 向左平移h个单位长 度(h0) y a x+h ④ y a x 向右平移h个单位长 度(h0) y a xh
3 典型例题讲与练
考点05:指数函数的图象
【期末热考题型1】指数函数的图象过定点
【典例 2】(2022 下·浙江温州·高二乐清市知临中学校考期中)函数 y a1x a 0,a 1的
图象恒过定点 A ,若点A 在直线mx ny 1 0mn 0 上,则 1 1 的最小值为
.
2m n
【答案】 3 2 2 2
x
log
N a
知识点 07:对数的性质
①负数和零没有对数.
②对于任意的
a
0且a
1,都有 log1a
0
,
log
a a
,1
1
log
a a
1 ;
③对数恒等式: alogaN N ( a 0 且 a 1)
【典例 1】(2023·高一课时练习)下列函数中,属于指数函
数的是
.(填序号)
①
y
2 3x
﹔②
y
;③ 3x1
y
3x
;④
y
(2a
1)x(a
为常数,a
1 2
,a
1 );
⑤ y x3 ;⑥ y 4x ﹔⑦ y (4)x .
【答案】③④
【详解】对①:指数式的系数为 2,不是 1,故不是指数函数;
2 知识回归
知识点 04:指数函数的图象变换
已知函数 y ax (a 0且a 1)
1、平移变换
① y a x 向上平移k个单位长 度(k 0) y a x k ② y a x 向下平移k个单位长 度(k 0) y a x k ③ y a x 向左平移h个单位长 度(h0) y a x+h ④ y a x 向右平移h个单位长 度(h0) y a xh
3 典型例题讲与练
考点05:指数函数的图象
【期末热考题型1】指数函数的图象过定点
【典例 2】(2022 下·浙江温州·高二乐清市知临中学校考期中)函数 y a1x a 0,a 1的
图象恒过定点 A ,若点A 在直线mx ny 1 0mn 0 上,则 1 1 的最小值为
.
2m n
【答案】 3 2 2 2
x
log
N a
知识点 07:对数的性质
①负数和零没有对数.
②对于任意的
a
0且a
1,都有 log1a
0
,
log
a a
,1
1
log
a a
1 ;
③对数恒等式: alogaN N ( a 0 且 a 1)
人教高中数学A版必修一 《对数》指数函数与对数函数PPT课件(第2课时对数的运算)
=2(lg 2+lg 5)+lg2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2
+lg 5+lg 2=3.
第十六页,共三十五页。
17
对数的换底公式 【例2】 (1)计算: (log2125+log425+log85)·(log1258+log254+log52). (2)已知log189=a,18b=5,求log3645(用a,b表示). [解] (1)(log2125+log425+log85)·(log1258+log254+log52)=(log253+ log2252+log235)·(log5323+log5222+log52)=3+1+13log25·(1+1+1)log52 =133·3=13.
第四页,共三十五页。
5
思考:当 M>0,N>0 时,loga(M+N)=logaM+logaN,loga(MN)= logaM·logaN 是否成立?
提示:不一定.
第五页,共三十五页。
6
2.对数的换底公式 若 a>0 且 a≠1;c>0 且 c≠1;b>0,
logcb 则有 logab=_l_o_g_ca__.
第六页,共三十五页。
1.计算 log84+log82 等于( )
A.log86
B.8
C.6
D.1
7
D [log84+log82=log88=1.]
第七页,共三十五页。
2.计算 log510-log52 等于( )
A.log58 B.lg 5
C.1
D.2
8
C [log510-log52=log55=1.]
第十五页,共三十五页。
16
高中数学新教材必修一第四章《指数函数与对数函数》全套课件
4. (a b)2 a b(a b).
学习新知 探究:
分数指数幂
10
5 a10 5 (a2 )5 a2 a 5 (a 0),
12
4 a12 4 (a3 )4 a3 a 4 (a 0).
0的正分数指数 幂等于0,0 的负 分数指数幂没有 意义.
2
33 aa22 a 3 (a 0),
1
)3
=36+9-7-5=33
巩固练习 3.化简或求值:
1
1
1
1
(3)求值: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
解: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
1
(1 2 16 )(1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
巩固练习
1. 已知 9a2-6a+1=3a-1, 求 a 取值范围.
a1 3
巩固练习
2.设 10m=2, 10n=3,求 10-2m-10-n的值
1 12
巩固练习 3.化简或求值:
1
(1)0.00814
3
(4 4
)2
(2
4
2) 3
160.75
解:
1
0.00814
3
(4 4
)2
(2
4
2) 3
160.75
当 n 为奇数时
2n (a b)n n (a b)n 2(a b) (a b) 3a b
巩固练习
4
1
练习5 : 化简
a 3 8a 3b
2
2
学习新知 探究:
分数指数幂
10
5 a10 5 (a2 )5 a2 a 5 (a 0),
12
4 a12 4 (a3 )4 a3 a 4 (a 0).
0的正分数指数 幂等于0,0 的负 分数指数幂没有 意义.
2
33 aa22 a 3 (a 0),
1
)3
=36+9-7-5=33
巩固练习 3.化简或求值:
1
1
1
1
(3)求值: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
解: (1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
1
1
1
1
1
(1 2 16 )(1 2 16 )(1 2 8 )(1 2 4 )(1 2 2 )
巩固练习
1. 已知 9a2-6a+1=3a-1, 求 a 取值范围.
a1 3
巩固练习
2.设 10m=2, 10n=3,求 10-2m-10-n的值
1 12
巩固练习 3.化简或求值:
1
(1)0.00814
3
(4 4
)2
(2
4
2) 3
160.75
解:
1
0.00814
3
(4 4
)2
(2
4
2) 3
160.75
当 n 为奇数时
2n (a b)n n (a b)n 2(a b) (a b) 3a b
巩固练习
4
1
练习5 : 化简
a 3 8a 3b
2
2
高一数学人必修课件指数函数对数函数及其性质的应用
指数函数与对数函数的复合
掌握指数函数与对数函数复合的方法,如换元法、配方法等,能够 熟练地进行复合函数的运算。
复合函数的图像变换
理解复合函数图像变换的原理,掌握常见的图像变换方法,如平移 、伸缩、对称等。
指数方程和对数方程的解法
01
指数方程的解法
掌握解指数方程的基本方法,解出不同类型的指数方程。
02
对数方程的解法
理解对数方程的概念和性质,掌握解对数方程的基本方法,如换底公式
、对数运算法则等,能够熟练地解出不同类型的对数方程。
03
指数方程和对数方程的综合应用
能够将指数方程和对数方程的知识综合运用,解决一些复杂的数学问题
。
指数函数和对数函数在生活中的应用
指数函数在生活中的应用
指数函数的积分
指数函数y=a^x(a>0,a≠1)的不 定积分为∫a^x*dx=a^x/lna+C,其 中C为常数。
对数函数的积分
对数函数y=log_a(x)(a>0,a≠1) 的不定积分为 ∫log_a(x)*dx=x*log_a(x)-x/lna+C, 其中C为常数。
谢谢您的聆听
THANKS
指数函数的图像关于y轴对称。
当a>1时,指数函数在定义域内单调递 增;当0<a<1时,指数函数在定义域内 单调递减。
性质 指数函数的定义域为全体实数。
对数函数定义及性质
性质
当a>1时,对数函数在定义域内单 调递增;当0<a<1时,对数函数 在定义域内单调递减。
定义:如果a^x=N(a>0且a≠1 ),那么x叫做以a为底N的对数, 记作x=log_a N,其中a叫做对数 的底数,N叫做真数。
掌握指数函数与对数函数复合的方法,如换元法、配方法等,能够 熟练地进行复合函数的运算。
复合函数的图像变换
理解复合函数图像变换的原理,掌握常见的图像变换方法,如平移 、伸缩、对称等。
指数方程和对数方程的解法
01
指数方程的解法
掌握解指数方程的基本方法,解出不同类型的指数方程。
02
对数方程的解法
理解对数方程的概念和性质,掌握解对数方程的基本方法,如换底公式
、对数运算法则等,能够熟练地解出不同类型的对数方程。
03
指数方程和对数方程的综合应用
能够将指数方程和对数方程的知识综合运用,解决一些复杂的数学问题
。
指数函数和对数函数在生活中的应用
指数函数在生活中的应用
指数函数的积分
指数函数y=a^x(a>0,a≠1)的不 定积分为∫a^x*dx=a^x/lna+C,其 中C为常数。
对数函数的积分
对数函数y=log_a(x)(a>0,a≠1) 的不定积分为 ∫log_a(x)*dx=x*log_a(x)-x/lna+C, 其中C为常数。
谢谢您的聆听
THANKS
指数函数的图像关于y轴对称。
当a>1时,指数函数在定义域内单调递 增;当0<a<1时,指数函数在定义域内 单调递减。
性质 指数函数的定义域为全体实数。
对数函数定义及性质
性质
当a>1时,对数函数在定义域内单 调递增;当0<a<1时,对数函数 在定义域内单调递减。
定义:如果a^x=N(a>0且a≠1 ),那么x叫做以a为底N的对数, 记作x=log_a N,其中a叫做对数 的底数,N叫做真数。
第四章-指数函数与对数函数PPT课件
❖ 3、在ab=N中,N=__a_b _, a=_b_N__,b=?
-
43
在ab=N中,b叫以a为底N的对数.
2 3 8 中, 3叫以2为底8的对数, 记作3=log28.
3 2 9 中,
记作2=log39.
1
0
1 中,
2
0叫以1/2为底1的对数,记作0=log1/21.
5 -1 1 中, 5
(4)y
=
x-
3 2
.
解:(1)函数 y = x 3 的定义域为 R ;
-
16
4.3幂函数
二、幂函数应用
例1 写出下列函数的定义域:
(1)y = x 3 ;
1
(2)y = x 2 ;
(3)y = x -2 ;
(4)y
=
x-
3 2
.
解:(2)函数
y
=
x
1 2
,即
y
=
x
,
定义域为 [ 0,+∞);
-
17
的函数叫做指数函数,其中 x是自变量.
函数的定义域是 R .
-
27
变式练习: 请问同学们下面的式子是不是指数函 数?
y 32x
-
28
图象
y 2x
x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y 0.25 0.35 0.5 0. 71 1 1.41 2 2.83 4
y
y 2x
-
7
4.2 有理指数幂
❖ 2.有理指数幂的定义
❖ 正数的正分数指数幂的意义是:
❖ amn nam(a 0 ,m ,且 n N ) ❖ 正数的负分数指数幂:
❖
-
43
在ab=N中,b叫以a为底N的对数.
2 3 8 中, 3叫以2为底8的对数, 记作3=log28.
3 2 9 中,
记作2=log39.
1
0
1 中,
2
0叫以1/2为底1的对数,记作0=log1/21.
5 -1 1 中, 5
(4)y
=
x-
3 2
.
解:(1)函数 y = x 3 的定义域为 R ;
-
16
4.3幂函数
二、幂函数应用
例1 写出下列函数的定义域:
(1)y = x 3 ;
1
(2)y = x 2 ;
(3)y = x -2 ;
(4)y
=
x-
3 2
.
解:(2)函数
y
=
x
1 2
,即
y
=
x
,
定义域为 [ 0,+∞);
-
17
的函数叫做指数函数,其中 x是自变量.
函数的定义域是 R .
-
27
变式练习: 请问同学们下面的式子是不是指数函 数?
y 32x
-
28
图象
y 2x
x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y 0.25 0.35 0.5 0. 71 1 1.41 2 2.83 4
y
y 2x
-
7
4.2 有理指数幂
❖ 2.有理指数幂的定义
❖ 正数的正分数指数幂的意义是:
❖ amn nam(a 0 ,m ,且 n N ) ❖ 正数的负分数指数幂:
❖
第三章指数函数和对数函数5.1对数函数的概念5.2对数函数的图象和性质ppt课件
反思与感悟 比较两个同底数的对数大小,首先要根据底数来判断对 数函数的增减性;然后比较真数大小,再利用对数函数的增减性判断 两对数值的大小.对于底数以字母形式出现的,需要对底数a进行讨论. 对 于 不 同 底 的 对 数 , 可 以 估 算 范 围 , 如 log22<log23<log24 , 即 1<log23<2,从而借助中间值比较大小.
学习目标
1.理解对数函数的概念. 2.掌握对数函数的性质. 3.了解对数函数在生产实际中的简单应用. 4.了解反函数的概念及它们的图像特点.
重、对数函数的概念
一般地,我们把
函数y=logax(a>0,a≠1) 叫 作 对 数 函 数 ,
性质 (4)当x>1时,y>0,
(4)当x>1时,y<0,
0<x<1时,y<0
0<x<1时,y>0
(5)是(0,+∞)上的增函数 (5)是(0,+∞)上的减函数
三、反函数的概念 一般地,像y=ax与y=logax(a>0,且a≠1)这样的两个函数互为反函数. (1)y=ax的定义域R,就是y=logax的值域,而y=ax的值域(0,+∞)就 是y=logax的定义域. (2) 互 为 反 函 数 的 两 个 函 数 y = ax(a > 0 , 且 a≠1) 与 y = logax(a > 0 , 且 a≠1)的图像关于直线y=x对称. (3)互为反函数的两个函数的单调性相同,但单调区间不一定相同.
跟踪训练 3 设 a=log3π,b=log2 3,c=log3 2,则
√A.a>b>c
B.a>c>b
C.b>a>c
D.b>c>a
解析 ∵a=log3π>1,b=12log23,
《指数与对数函数》课件
对数函数是一 种数学函数, 其定义域为所
有正实数。
对数函数的一 般形式为
y=loga(x), 其中a为底数,
x为真数。
对数函数的值 域为所有实数。
对数函数的图 像是一条向右 下方倾斜的曲 线,其斜率随 着x的增大而减
小。
对数函数的图像:一条曲线, 斜率为1/b,b为底数
指数函数的图像:一条直线, 斜率为1/b,b为底数
指数函数:定义域为全体实数, 值域为全体正实数
对数函数:定义域为正实数, 值域为全体实数
比较:指数函数的定义域更广, 对数函数的值域更广
应用:指数函数常用于描述增 长和衰减,对数函数常用于描 述对数运算和转换
指数函数: y=a^x, a>0,y随x 增大而增大
对数函数: y=loga(x), a>0,y随x 增大而减小
对数函数的性质:单调递增, 值域为R,定义域为(0, ∞)
对数函数的应用:在科学、工 程、经济等领域有广泛应用
科学计算:用于计算自然对数、 对数函数等
工程计算:用于计算电路、机 械、电子等领域的物理量
经济分析:用于计算经济增长 率、通货膨胀率等经济指标
生物学:用于计算种群数量、 基因频率等生物学指标
指数函数与对数函数的定义和性质
指数函数与对数函数的应用实例
添加标题
添加标题
添加标题
添加标题
指数函数与对数函数的图像和性质
指数函数与对数函数的综合应用技 巧
求指数函数y=2^x与对数函数y=log2(x)的交点坐标 求指数函数y=3^x与对数函数y=log3(x)的交点坐标 求指数函数y=4^x与对数函数y=log4(x)的交点坐标 求指数函数y=5^x与对数函数y=log5(x)的交点坐标
指数函数与对数函数的关系(37张PPT)高一数学人教B版必修第二册
一般地,函数 y=f (x) 的反函数记作 y=f-1 (x) .值得注意的是,y=f (x) 的定义域与y=f-1 (x) 的值域相同,y=f (x) 的值域与 y=f-1 (x) 的定义域相同,y=f (x) 与 y=f-1 (x) 的图象关于直线 y=x 对称.
例1 分别判断下列函数是否存在反函数,如果不存在,请说明理由;如果存在,写出反函数.
单调性
0<a<1时,为________;a>1时,为_________
R
(0 ,+∞)
减函数
增函数
(0 ,+∞)
R
由此可以看出,指数函数 y=ax 与对数函数 y=loga x 中,一个函数的定义域是另一个函数的值域,而且它们的单调性相同. 这是因为在上述两个函数中,通过对调其中一个函数的自变量和因变量,可得到另一个函数.
(1)
x
1
2
3
4
3
5
(2)
x
1
2
3
4
5
g(x)
-1
0
1
-2
5
解:(1)因为 f (x)=0时,x=1或 x=2,即对应的 x 不唯一,所以 f (x) 的反函数不存在.(2)因为对 g (x) 的值域{-1,0,1,-2,5}中的任意一个值,都只有唯一的 x 与之对应,所以 g (x) 的反函数 g-1 (x) 存在,可以表示如下:
第四章指数函数、对数函数与幂函数
4.3 指数函数与对数函数的关系
人教B版(2019)
课标要点
核心素养
1.掌握指数函数与对数函数的关系
逻辑推理
2.理解反函数的概念
数学抽象
3.了解求反函数的步骤
逻辑推理
指数函数与对数函数的性质可列表如下:
例1 分别判断下列函数是否存在反函数,如果不存在,请说明理由;如果存在,写出反函数.
单调性
0<a<1时,为________;a>1时,为_________
R
(0 ,+∞)
减函数
增函数
(0 ,+∞)
R
由此可以看出,指数函数 y=ax 与对数函数 y=loga x 中,一个函数的定义域是另一个函数的值域,而且它们的单调性相同. 这是因为在上述两个函数中,通过对调其中一个函数的自变量和因变量,可得到另一个函数.
(1)
x
1
2
3
4
3
5
(2)
x
1
2
3
4
5
g(x)
-1
0
1
-2
5
解:(1)因为 f (x)=0时,x=1或 x=2,即对应的 x 不唯一,所以 f (x) 的反函数不存在.(2)因为对 g (x) 的值域{-1,0,1,-2,5}中的任意一个值,都只有唯一的 x 与之对应,所以 g (x) 的反函数 g-1 (x) 存在,可以表示如下:
第四章指数函数、对数函数与幂函数
4.3 指数函数与对数函数的关系
人教B版(2019)
课标要点
核心素养
1.掌握指数函数与对数函数的关系
逻辑推理
2.理解反函数的概念
数学抽象
3.了解求反函数的步骤
逻辑推理
指数函数与对数函数的性质可列表如下:
《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】
y= loga x PPT模板:/moban/
P P T背景:www.1ppt.c om /be ij ing/ P P T下载:www.1ppt.c om /xia za i/
资料下载:www.1ppt.c om /zilia o/
一般地,函数____________称为对数函数,其中 试卷下载:/shiti/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
手抄报:www.1ppt.c om /shouc ha oba o/
4.2 对数与对数函数 4.2.3 对数函数的性质与图像 第1课时 对数函数的性质与图像
第四章 指数函数、对数函数与幂函数
考点
学习目标
核心素养
理解对数函数的概念,会 对数函数的概念
判断对数函数
数学抽象
初步掌握对数函数的图
对数函数的图像
直观想象、数学运算
像与性质
对数函数的简单 能利用对数函数的性质
数学建模、数学运算
历史课件:www.1ppt.c om /ke j ia n/lishi/
问题导学
预习教材 P24-P27 的内容,思考以下问题: 1.对数函数的概念是什么?它的解析式具有什么特点? 2.对数函数的图像是什么,通过图像可观察到对数函数具有哪 些性质?
栏目 导引
第四章 指数函数、对数函数与幂函数
对数函数
历史课件:www.1ppt.c om /ke j ia n/lishi/
第4章指数函数与对数函数(复习课件)高一数学(人教A版必修第一册)课件
应为减函数,可知B项正确;而对C项,由y=ax的图象知
y=ax为减函数,则0<a<1,y=loga(-x)为增函数,与C项中
y=loga(-x)的图象不符.
答案:B
典例
例3(2)若直线y=2a与函数y=|ax-1|+1(a>0,且a≠1)的图象
有两个公共点,则a的取值范围是
.
解析:当a>1时,通过平移变换和翻折变换可得如图(1)所示的图
往往是选择题,常借助于指数函数、对数函数的图象特
征来解决;二是判断方程的根的个数时,通常不具体解方
程,而是转化为判断指数函数、对数函数等图象的交点
个数问题.这就要求画指数函数、对数函数的图象时尽
量准确,特别是一些关键点要正确,比如,指数函数的图象
必过点(0,1),对数函数的图象必过点(1,0).
题型四 函数的零点与方程的根
4. 恒成立问题,采用分离参数,转化为求最值问题.
专题三
指数函数、对数函数图象的应用
典例
例3(1)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是( )
解析:由y=loga(-x)的定义域为(-∞,0)知,图象应在y轴左
侧,可排除A,D选项.当a>1时,y=ax应为增函数,y=loga(-x)
f(3)=20,g(3)≈6.7,h(3)≈12.5.
由此可得h(x)更接近实际值,所以用h(x)模拟比较合理.
(2)因为h(x)=30|log2x-2|在x≥4时是增函数,h(16)=60,
所以整治后有16个月的污染度不超过60.
以有2m-3<1,解得m<2.故实数m的取值范围为(-∞,2).
解题技能
y=ax为减函数,则0<a<1,y=loga(-x)为增函数,与C项中
y=loga(-x)的图象不符.
答案:B
典例
例3(2)若直线y=2a与函数y=|ax-1|+1(a>0,且a≠1)的图象
有两个公共点,则a的取值范围是
.
解析:当a>1时,通过平移变换和翻折变换可得如图(1)所示的图
往往是选择题,常借助于指数函数、对数函数的图象特
征来解决;二是判断方程的根的个数时,通常不具体解方
程,而是转化为判断指数函数、对数函数等图象的交点
个数问题.这就要求画指数函数、对数函数的图象时尽
量准确,特别是一些关键点要正确,比如,指数函数的图象
必过点(0,1),对数函数的图象必过点(1,0).
题型四 函数的零点与方程的根
4. 恒成立问题,采用分离参数,转化为求最值问题.
专题三
指数函数、对数函数图象的应用
典例
例3(1)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是( )
解析:由y=loga(-x)的定义域为(-∞,0)知,图象应在y轴左
侧,可排除A,D选项.当a>1时,y=ax应为增函数,y=loga(-x)
f(3)=20,g(3)≈6.7,h(3)≈12.5.
由此可得h(x)更接近实际值,所以用h(x)模拟比较合理.
(2)因为h(x)=30|log2x-2|在x≥4时是增函数,h(16)=60,
所以整治后有16个月的污染度不超过60.
以有2m-3<1,解得m<2.故实数m的取值范围为(-∞,2).
解题技能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 负数没有偶次方根。
4. 当 n 为任意正整数时,(n a ) n =a. 2. 当n为奇数时 n an a
当n为偶数时 n an a a,a(a,(a0)0)
3. 根式的基本性质:
npampnam,(a0)
无此条件,公式不成a立
5
练习
(1) 5 2 6 7 4 3 6 4 2 ; 2 2
分段函数:x≥2, y=(x-2)(x+1) x<2, y= -(x-2)(x+1)
y=|x-2|(x+1)
-1
2
x<2的部分关于 x 轴对称
a
38
6. 如图,点A、B、C都在函数y= x 的图象上,它们的
横坐标分别是a、a+1、a+2.又A、B、C在x轴上的射影分 别是A′、B′、C′,记△AB′C的面积为f(a), △A′BC′ 的面积 为g(a). (1)求函数f(a)和g(a)的表达式; (2)比较f(a)与g(a)的大小,并证明你的结论.
nm
x x2 4
x 2 -4=( m n ) 2 -4=( m n ) 2
nm
nm
2 m n
A=
nm
m n m n nm nm
分子,分母同乘 mn
2mn
mn mn
讨论:见后
a
16
2mn
1. m>0,且 n>0,则 A=
mn mn
若
m n,则
A=
m
n
;若
m<n,则
n
A=
m
n
m
2nm
2. 设 m<0,且 n<0,则 A=
1
⑴ y 0.4 x1
⑵ y 3 5x1 ⑶ y 2 x 1
函数的定义域就是使函数表达式有意义的自变量x 的取值范围。
(1)定义域为{x|x≠1};
1
0 x 1
值域为{y|y>0且y≠1}
a
23
1
⑴ y 0.4 x1
⑵ y 3 5x1 ⑶ y 2 x 1
(2)
定义域为{x|
x
1 5
a
35
2. 作出函数 y 1 x 的图像 2
y
1
x
2
y 1 x
1
2
把 y 轴右边的图形翻折到 y 轴的左边
a
36
3. 作出函数 y= │ 2x -1│的图像
y= │ 2x -1│
y= 2x y= 2x -1
1
把 x 轴下方的图形翻折到 x 轴上方
a
37
4. 作出函数 y=|x-2|(x+1) 的图象
8.
9. 的图象只可能是( )
A
∵y=bax=(ba)x,∴这是以ba为底的指数函数. 观察直线方 程可知:在选择B中a>0,b>1,∴ba>1,C中a<0,b>1,∴0< ba<1,D中a<0,0<b<1,∴ba>1.故选择B、C、D均与指 数函数y=(ba)x的图象不符合.
a
40
练习题
1. 已知函数 y 1 x1 求定义域、值域,
y a x (a 0且a 1) 的图象和性质。
a>1
0<a<1
图 象
6 5 4 3 2
11
-4
-2
0
-1
2
4
6
6 5 4 3 2
11
-4
-2
0
-1
2
4
6
(1)定义域:R
性
(2)值域:(0,+∞)
质
(3)过点(0,1),即 x=0 时,y=1
(4)在 R 上是增函数
(4)在 R 上是减函数
a
19
根式
知识点 1.整数指数幂的概念
an aa aa(n N*)
n个a
a0 1(a 0)
a n
1 an
(a
0, n N*)
a
1
2.运算性质
a m an a mn (m, n Z ) (am )n a mn (m, n Z ) (ab)n an bn (n Z )
a
2
根式的定义
(2)2 3 3 1.5 6 12
6
(1)拆项,配方,绝对值
(2)变为同次根式,再运算。
a
2 6 33 6 32 6 22 3 22
=2
6
33
32 22
22
3
=23 6
6
指数-分数指数
正数的正分数指数幂
m
a n n a m (a>0,m,n∈N*,且n>1)
根指数是分母,幂指数是分子
7
(2) a a a
a8
(3) 3 (a b)2
(a
b)
2 3
(4) 4
(a
b)3
3
(a b) 4
(5) 3 ab2 a2b
(6) 4 (a3 b3 )2
1
(ab2 a2b)3
1
(a3 b3 ) 2
a
12
2. 计算下列各式(式中字母都是正数):
21
11
15
⑴ (2a 3b 2 )(6a 2b 3 ) (3a 6b 6 ) ; 4a
1
(
x2
x1
) ( x2
x1 2 )
2
x2 x1 0
2
x1 x2 2 0
x1, x2 ,1
y2/y1>1,函数单调增
x1 x2 2 0
x1, x2 1, y2/y1<1,函数单调减
a
25
解法二.(用复合函数的单调性)
设: u x2 2x
则:
y
1
u
2
在R内单减
ux22x
}
值域为{y|y≥1}
5x 1 ≥0
y≥1
(3)所求函数定义域为R
值域为{y|y>1}
a
24
例2. 求函数 y 1 x22x 的单调区间,并证明。 2
解一(作商法):设,x1<x2
结合图像
1 x22 2x2
y2 y1
2 1
x12 2 x1
1 x12 x12 2x2 2x1 2
21
练习
2
4
⑴ 比较大小: (2.5) 3< ,(2.5) 5
2 .5 3 2 2 .5 3 2 , 2 .5 5 4 2 .5 5 4
底数化为正数。
(2). 已知下列不等式,试比较m、n的大小
(2)m (2)n 33
m<n 1.1m 1.1n
a
m<n
22
指数函数的应用
例1. 求下列函数的定义域、值域:
mn nm
若 n m,则
mn
A=
;
若
n<m,则
nm
A=
.
n
m
m n
综上所述得:A=
n
n
m
m
(m (m
n) n)
a
17
指数函数
指数函数的定义 函数 y=ax, (a>0,a≠1) 叫做指数函数, 其中x是自变量,函数定义域是R。
注意 类似与 2ax,ax+3的函数,不能叫指数函数。
a
18
⑵
(
m
1 4
n
3 8
)8
.
m2
n3
3. 计算下列各式:
⑴ (3 25 125 ) 4 5 ; 1255 54 5
⑵
a2 (a>0).
6 a5
a 3 a2
a
13
1
1
1
1
4 化简: (x 2 y 2 ) (x 4 y 4 )
1
1
x4 y4
5 已知 x+x-1=3,求下列各式的值:
1
1
3
3
(1)x 2 x 2 , 5 (2)x 2 x 2 . 2 5
a>0时,向右平移a个单位;
a<0时,向左平移|a|个单位.
a
29
2. y=f(x) →y=f(x)+b:上下平移
y=f(x)+b, b>0 y=f(x) y=f(x)+b, b<0
b>0时,向上平移b个单位; b<0时,向下平移|b|个单位.
a
30
对称变换 y=f(x) →y=f(-x): (关于y轴对称) y=f(x) →y= -f(x): (关于x轴对称) y=f(x) →y= -f(-x): (关于原点对称)
y 1ax
a>1
0<a<1
当a>1时x≤0 ; 当0<a<1时x≥0 值域为 0≤y<1
2.
y
(1)
1 x3
2
x≠ - 3
1 0 x3
y≠1, y>0
值域为 (0,1)∪(1,+∞)
a
28
指数函数3(函数的图象变换) 平移变换
1. y=f(x) →y=f(x-a):左右平移
y=f(x) y=f(x-a),a>0 y=f(x-a),a<0
(1)
1 x2
2
x12
x2x1 5
1
(2)(x2
)3
1
(x 2
)3
1
1
x2 x 2 5
1
(x2
x1 2)[x(x1)1]
xx 13 x0
5(3 1)
a
14
6. 4
3
36 3