混合电动汽车整车控制策略研究及发展趋势探讨

合集下载

混动汽车的动力系统协同控制策略优化分析

混动汽车的动力系统协同控制策略优化分析

混动汽车的动力系统协同控制策略优化分析随着对环境保护和能源效率的日益关注,混动汽车作为一种既具备内燃发动机又具备电动机的汽车类型,逐渐受到了消费者的青睐。

混动汽车的核心在于动力系统的协同控制策略,使得内燃发动机和电动机能够高效合作,实现汽车动力的优化。

本文将对混动汽车的动力系统协同控制策略进行分析,并提出优化建议。

一、混动汽车动力系统的组成混动汽车的动力系统由内燃发动机、电动机、电池组和传动系统等组成。

内燃发动机负责提供动力,而电动机则通过电池组储存的电能进行驱动。

传动系统将两种动力源相结合,实现动力输出。

这种设备结构使得混动汽车能够在不同工况下选择最佳的动力来源,从而提高燃油经济性和减少对环境的影响。

二、混动汽车动力系统协同控制策略的原理混动汽车的动力系统协同控制策略是指通过智能控制系统对内燃发动机和电动机进行有效的协调工作,使其在不同工况下实现最佳的功率输出。

具体来说,协同控制策略主要包括功率分配策略和能量管理策略。

1. 功率分配策略功率分配策略决定了内燃发动机和电动机在驱动汽车过程中所承担的功率比例。

对于加速行驶情况下,应优先使用电动机提供动力,以实现快速响应和高效能量利用;而在持续高速行驶时,则应更多地依赖内燃发动机,充分利用其经济性能。

因此,合理的功率分配策略能够在不同工况下最大化动力输出效率。

2. 能量管理策略能量管理策略主要指根据系统能量需求和能源状态,对电池组的充电和放电过程进行控制,以提高能量利用效率和延长电池寿命。

在低速行驶或怠速时,电动机主要通过充电和回馈能量的方式进行工作,并将多余的能量储存到电池中;而在高速行驶或加速时,则将电池储存的能量直接转化为动力输出,以提高整体的能源利用率。

三、混动汽车动力系统协同控制策略的优化建议为了进一步提高混动汽车动力系统的性能和能源利用率,以下是一些优化建议:1. 结合车辆特性和驾驶需求,制定适宜的功率分配策略。

根据不同的行驶工况和驾驶模式,动态调整内燃发动机和电动机的功率输出比例,以实现最佳的动力输出效果。

混合动力汽车研究现状和发展趋势

混合动力汽车研究现状和发展趋势

混合动力汽车研究现状和发展趋势一、引言混合动力汽车是指同时搭载内燃机和电动机,通过两种动力形式的协同工作来驱动汽车的一种新型汽车技术。

混合动力汽车具有减少燃料消耗和排放、提高燃油利用率、降低污染物排放等优势,因此备受关注。

本文将对混合动力汽车的研究现状和发展趋势进行详细分析。

二、混合动力汽车研究现状1. 技术发展混合动力汽车的研究始于20世纪70年代,经过多年的发展,技术逐渐成熟。

目前,混合动力汽车的主要技术包括电动机和内燃机的协同控制、能量管理系统、能量回收系统等。

各大汽车创造商纷纷投入研发资源,推出了多款混合动力汽车。

2. 市场现状混合动力汽车市场规模逐渐扩大,消费者对环保和节能的需求不断增加。

根据统计数据显示,2022年全球混合动力汽车销量达到了500万辆,占乘用车市场总销量的15%。

混合动力汽车在欧洲、美国和中国等地市场表现出较高的增长潜力。

3. 政策支持各国政府纷纷出台支持混合动力汽车发展的政策。

例如,中国政府出台了《新能源汽车产业发展规划(2022-2035年)》,明确提出要加大对混合动力汽车的支持力度,鼓励企业加大研发投入,推动混合动力汽车的普及和推广。

三、混合动力汽车发展趋势1. 技术创新随着科技的不断进步,混合动力汽车的技术将不断创新。

未来,混合动力汽车有望实现更高效的能量管理、更智能的驾驶辅助系统和更长的电动续航里程。

同时,新材料和新能源技术的应用也将为混合动力汽车提供更多的发展机遇。

2. 产业发展混合动力汽车产业链将逐渐完善,包括电池、机电、电控系统等关键零部件的供应链将进一步健全。

同时,混合动力汽车的生产成本也将逐渐降低,使得混合动力汽车更具竞争力。

3. 市场前景估计未来几年,混合动力汽车市场将保持较快增长。

根据市场研究机构的预测,到2030年,全球混合动力汽车销量有望达到2000万辆以上。

中国市场将成为全球混合动力汽车的主要增长引擎,政府的政策支持和消费者的需求将推动市场的快速发展。

新能源汽车的整车控制系统设计研究

新能源汽车的整车控制系统设计研究

新能源汽车的整车控制系统设计研究随着全球环保意识的增强和可再生能源技术的快速发展,新能源汽车的市场规模逐渐扩大。

整车控制系统作为新能源汽车的核心组成部分,其设计与实现直接影响到车的安全性、可靠性和使用性能。

因此,对新能源汽车整车控制系统的研究具有重要的现实意义。

整车控制系统的定义与功能整车控制系统是通过对电动汽车各个部件的协调与控制,实现对整车功能的高效管理。

传统汽车的控制系统主要集中于发动机和变速箱的控制,而新能源汽车则涉及电池组、驱动电机、能量管理系统和智能化辅助系统等多个方面。

整车控制系统的主要功能包括动力分配、能量管理、智能辅助驾驶、车辆状态监测等。

整车控制系统设计的重要性在于,它不仅需要实现机械部件的基本功能,如加速、制动、转向等,还需要通过高效的能量管理系统,以提高车辆的续航里程和整体能效。

此外,随着智能驾驶技术的发展,整车控制系统还需要具备高度的智能化,能够响应复杂的道路和交通情况,为驾驶者提供更安全、可靠的驾驶体验。

设计要素与架构整车控制系统的设计涉及多个学科,包括电子技术、控制工程、计算机科学、信号处理等。

其基本架构一般可以分为感知层、决策层和执行层。

感知层包括各种传感器和监测设备,如车速传感器、温度传感器、位置传感器等。

这些传感器能够实时获取车辆周围环境和自身状态的信息。

通过数据融合技术,将来自不同传感器的数据进行综合处理,可以构建出更加准确的环境模型。

决策层则负责根据感知层提供的信息,进行系统分析和决策。

通常采用控制算法、优化算法等方法,来处理传感器数据,并根据车辆的状态和驾驶环境,制定合适的控制策略。

决策层可以使用人工智能算法,如深度学习和强化学习等,以不断优化决策过程,提升系统的智能化水平。

执行层负责将决策层的指令转化为具体的控制信号,直接作用于各个执行机构,包括电机驱动控制、刹车控制、转向控制等。

这一层需要精确、迅速地响应,以确保操控的实时性与可靠性。

能量管理系统设计能量管理系统(Energy Management System,EMS)是新能源汽车整车控制系统设计中的关键组成部分。

混合动力新能源汽车的优化控制策略

混合动力新能源汽车的优化控制策略

混合动力新能源汽车的优化控制策略大家好,今天我们要谈论的是混合动力新能源汽车的优化控制策略。

随着环保意识的增强和汽车行业的快速发展,混合动力新能源汽车越来越受到人们的关注。

那么,在这些环保节能的汽车中,优化的控制策略又扮演着怎样的角色呢?接下来,让我们一起来深入探讨。

混合动力汽车的特点混合动力汽车是指搭载了内燃机和电动机的汽车,通过两种动力源的协同工作来驱动车辆。

相比传统燃油汽车,混合动力汽车具有节能环保、动力性好、减少尾气排放等诸多优点。

然而,要发挥混合动力汽车的优势,关键在于合理优化控制策略。

优化控制策略的重要性优化控制策略可以使混合动力汽车在不同工况下实现最佳性能,包括提高燃油经济性、减少排放、优化动力输出等方面。

合理的控制策略能够最大限度地发挥混合动力系统的优势,提升整车的性能表现,也能延长动力系统的使用寿命。

控制策略优化手段1.能量管理系统优化能量管理系统是混合动力汽车控制的核心,通过对内燃机和电动机之间能量分配的优化控制,实现对动力输出的有效管理。

优秀的能量管理系统需要结合车辆状态、驾驶要求和路况等因素,动态调整能量分配策略,以实现最佳性能。

2.车辆动力分配优化在混合动力汽车中,内燃机和电动机的配合是非常重要的。

通过优化车辆动力分配策略,可以在不同驾驶工况下实现动力输出的最佳匹配,提高整车的燃油经济性和性能表现。

3.制动能量回收优化混合动力汽车在制动过程中可以通过电动机将制动能量回收并储存到电池中,这有助于提高能量利用率和车辆的续航里程。

优化制动能量回收策略,可以进一步提升混合动力汽车的节能性能。

混合动力新能源汽车的优化控制策略至关重要。

通过合理优化能量管理系统、车辆动力分配和制动能量回收策略,可以提高汽车的性能、节能环保性能,在未来的发展中获得更广阔的应用空间。

希望本文的内容能够帮助大家更好地了解混合动力新能源汽车的优化控制策略,促进新能源汽车技术的进步与发展。

优化控制策略是混合动力新能源汽车提升性能、节能环保的关键,必须不断完善和创新。

电动汽车驱动工况下的整车控制策略研究

电动汽车驱动工况下的整车控制策略研究

电动汽车驱动工况下的整车控制策略研究一、概述随着全球能源结构的转型和环保意识的日益增强,电动汽车作为新能源汽车的代表,正逐渐成为未来汽车产业的发展方向。

电动汽车的普及不仅有助于减少化石燃料的消耗,降低温室气体排放,还能通过智能化、网联化的技术手段,提升驾驶体验和道路安全性。

电动汽车的发展也面临着诸多技术挑战,驱动工况下的整车控制策略就是关键的技术难题之一。

整车控制策略是电动汽车性能优化的核心,它涉及到电池管理、电机控制、能量回收等多个方面。

在驱动工况下,整车控制策略需要根据车辆的行驶状态、驾驶者的意图以及外部环境的变化,实时调整电池的输出功率、电机的转矩和转速等参数,以实现高效、平稳的驾驶体验。

整车控制策略还需要考虑能量消耗和回收的平衡,以延长电动汽车的续航里程。

国内外学者和汽车厂商对电动汽车整车控制策略进行了广泛而深入的研究。

这些研究涵盖了控制算法的优化、硬件平台的搭建以及实验验证等多个方面。

由于电动汽车的复杂性和多样性,目前仍然存在一些技术难题需要解决。

如何准确识别驾驶者的意图、如何优化电池的能量管理策略、如何在保证安全性的前提下提高电动汽车的性能等。

本文旨在针对电动汽车驱动工况下的整车控制策略进行研究。

通过对现有技术的梳理和分析,提出一种基于模糊控制算法的整车控制策略,旨在提高电动汽车的驾驶性能、续航里程和安全性。

本文还将通过实验验证该策略的有效性和可行性,为电动汽车的进一步发展提供理论支持和实践参考。

1. 电动汽车发展现状与趋势随着全球能源结构的转型和环保意识的日益增强,电动汽车作为新能源汽车的重要代表,正逐渐成为汽车产业未来发展的主流方向。

电动汽车的市场渗透率不断提高,产业链逐步完善,技术不断创新,展现出强劲的发展势头和广阔的发展前景。

从市场角度看,电动汽车的销量持续增长,市场规模不断扩大。

各国政府纷纷出台政策扶持电动汽车产业的发展,如购车补贴、税收优惠、充电设施建设等,为电动汽车市场的快速增长提供了有力支持。

混动汽车控制策略

混动汽车控制策略

混动汽车控制策略混动汽车,结合了发动机和电动机的优势,为现代交通出行提供了更加高效、环保的解决方案。

为了实现混动汽车的优良性能,一套精确的控制策略是必不可少的。

以下是关于混动汽车控制策略的详细内容:1.发动机控制:混动汽车的发动机控制策略旨在优化发动机的工作状态,使其在最佳燃油经济性和最低排放之间达到平衡。

控制策略包括对发动机的启动、停止、加速和减速的控制。

2.电动机控制:电动机作为混动汽车的一个重要组成部分,其控制策略决定了汽车的动力性能和燃油经济性。

控制策略需对电动机的扭矩输出、工作模式等进行调整,以满足驾驶需求。

3.动力分配控制:混动汽车的动力来源于发动机和电动机,动力如何分配是控制策略的核心问题。

控制策略需要决定何时由发动机提供动力,何时由电动机提供动力,以及两者如何协同工作。

4.能量管理策略:能量管理策略负责在汽车行驶过程中合理分配和回收能量,以提高燃油经济性并减少排放。

这包括对电池的充电和放电的控制,以及在何种情况下使用发动机或电动机更为经济。

5.充电与放电控制:对于有电池储能的混动汽车,充电与放电控制是关键。

控制策略需决定何时、如何为电池充电,以及何时、如何从电池放电。

6.驾驶模式切换控制:混动汽车通常具有多种驾驶模式,例如纯电动模式、混合模式、运动模式等。

控制策略需要根据驾驶需求和驾驶模式进行自动或手动切换。

7.故障诊断与处理:混动汽车的控制系统需要对汽车各部分进行实时监测,以发现潜在的故障。

一旦发现故障,控制策略需要快速响应,采取适当的措施防止故障扩大或对安全造成影响。

8.优化控制算法:随着技术的发展,不断有新的优化算法出现。

混动汽车的控制策略也需要不断优化,以适应新的技术和市场需求。

9.安全保护机制:混动汽车的安全性是其最重要的特性之一。

控制策略需要包含一系列的安全保护机制,以防止在各种情况下发生事故。

这包括对电池安全的保护、对驾驶安全的保护等。

10.人机交互与显示:良好的人机交互可以提高驾驶的舒适性和安全性。

新能源汽车发展趋势及政策对策研究

新能源汽车发展趋势及政策对策研究

新能源汽车发展趋势及政策对策研究近年来,新能源汽车产业蓬勃发展,成为世界各国关注的焦点。

在全球环保意识的不断增强和能源资源日益短缺的背景下,新能源汽车具有环保、节能、可持续等诸多优势,被认为是未来汽车产业的主要趋势之一。

本文将探讨新能源汽车发展的趋势,并提出相应的政策对策。

首先,新能源汽车发展的趋势之一是电动化。

传统燃油车存在污染排放、能源消耗等问题,而电动汽车以电能作为动力源,零排放、低噪音,并且充电成本相对较低。

随着电池技术的不断进步,电动汽车的续航里程逐渐提高,用户担心里程不足的问题将逐渐减少。

此外,电动汽车还具有动力响应快、驾驶方式灵活等特点,受到越来越多消费者的青睐。

其次,新能源汽车发展的趋势之二是智能化。

随着人工智能和互联网技术的快速发展,汽车正在进一步智能化。

新能源汽车通过与智能手机、智能家居等终端设备的连接,可以实现智能导航、远程控制、智能巡航等功能,提供更加便捷、舒适的行车体验。

此外,新能源汽车还可以通过互联网车联网技术,实现车辆之间的信息交流与共享,提高交通效率,减少拥堵。

再次,新能源汽车发展的趋势之三是多样化。

除了纯电动汽车,插电式混合动力车、燃料电池汽车等也在新能源汽车领域有所涌现。

插电式混合动力车可以根据行驶需求将电能和燃油能源进行切换,既可以满足长途出行的需求,又可以享受纯电动车的低排放和低燃油消耗。

燃料电池汽车则利用氢气和氧气产生电能,无排放,且充电时间短,可以提供更长的续航里程。

针对新能源汽车发展趋势,政策对策也是必不可少的。

首先,政府可以加大对新能源汽车的研发投入,促进新能源汽车技术的创新与突破。

鼓励企业加大研发力度,提高电池技术的能量密度和充电速度,提高新能源汽车的市场竞争力。

其次,政府可以加强对新能源汽车的资金支持和优惠政策。

通过补贴、免税、减免关税等方式,降低购买成本,鼓励消费者购买新能源汽车。

此外,政府还可以加快充电基础设施的建设,提供便捷的充电服务,解决用户的充电焦虑问题。

混合动力汽车结构分析及控制策略研究

混合动力汽车结构分析及控制策略研究
山西 青 年
理 论研 究
混合 动力汽车结构分析及控制策略研究
李 莹
营口 1 1 5 0 0 0 辽宁营 口 职业技术学院 辽宁

要 :本文对 目前常用的 串联式 、并联式以及混联式混合动力汽 提 高发动 机 的效率 ,减 少废 气排放 。缺点 是能量 几经转 换 ,机 械 效 率较低 。故 主要应用 于大型 客车 。 分 为被动型控 制策略和主动型策略来比较分析,为进一步实现对 混合 1 . 2 并联式 混合动 力汽车 ( P H E V ) 并 联式 混合 动 力汽 车 是 由发动 机 、 电动/ 发 电机 或驱 动 电动 动力汽车控制策略 的优化奠定基础。为混合动力汽车的研究发展提供 依据 。 机 两大 动力 总成 组成 ,P H E V 的驱动 系统 由它们 并联组 成 。此时 电动 汽 车可 由发动 机 或 电动 机单 独 驱动 ,也可 以由 它们 共 同驱 关键 词 :混合动力汽车;控制策略 动。所 以,可以降低 对 电机 、发 动机 功率 的要 求 ,而 且 电池 的容 前言 量也 可 以适 当的减小 一点 ,从而 降低 制造汽 车 的成本 。在 P HE V 为 了解决汽 车所 带来 的C O, 排放 问题 以及油价 攀升 问题 ,全 中 。没 有像 串联式混 合动 力汽车 那样在 能量转 化 中的损失 ,而是 球汽 车 公 司 纷纷 转 向混 合 动 力和 电 动 系列汽 车 的 研究 和 开 发 。 采用 高效率 的机 械传动 系统 ,由发动机 直 接带动 P HE V 的驱 动 系 与传 统能 源动 力汽车相 比 ,混合动 力汽 车在环保 和 节能等 方面表 统驱 动P HE V 行 驶 ,发动机 始终 稳定 地运转 在低 油耗 、高效 率和 现 出明显 的优 势 ;与 电动汽 车相 比 ,混 合动 力汽车 的生产成 本较 低排放 的转 速范 围内。 并联式 混合动 力汽车 的驱动 装置是 发动机 HE V 的结构特 点 ,它有 三种 驱动模 式 。分别 是 低 。因此 ,混合 动 力汽车 异军突 起 ,成 为新 一代汽 车的研 究开 发 和 电动机 ,由于P 由发 动机单 独驱 动 、由电动机 单独驱 动和 发动机 与电动机 联合 驱 的热点 。 1混合 动力汽 车结构 及其特 点 动 。但是 一般情 况 下 ,P HE V 主要 由发动机 单独 驱动 。在 这种 驱 近些 年来 。由于 蓄 电池技术 的发展 ,由发电机 和 电动 机组 成 动模 式下 它的动 力特性 跟内燃机 汽车 更接近 。 由于两大动 力 总成 的 混合动 力系 统已经 发展 出串联 式 、并联式 和混联 式这三 种组成 是并 联 的 ,功率 可 以叠 加起来 ,发动 机和 电动机也 不需要 像 串联 方 式。 它们 因为有 着不 同的组合 形式 而各 自有各 自的优缺 点 ,串 式那 样采 用大功 率 的,只要是 并联式 混合 动力 电动汽车最 大 驱动 / 2 到1 之间 。 联 和并联 是 以前就有 的传统 的HE V 动 力系统 组成 方式 ,而混联 式 功率 的 1 并 联式结构 最适 合在城 市 间公 路和 高速公路 上稳 定行驶 的工 是 后来 发展起 来 的 ,它的特点 是有更 多的 工作模 式可供 选择 ,既 具 有 串联 式混 合动 力电动 汽车 的特征 ,又具 有并联 式混 合动 力电 况 。 由于 并联式 驱动 系统受汽 车行驶 工况 点影 响 ,因此 不适合 汽 动 汽车 的特征 。 车 行驶 工况较 多 ,较大 ;相 比于 串联结构 式 ,需 要变速 装置 和动 1 . 1 串联 式混合 动力汽 车( S H E V ) 力复合 装置 ,传 动结 构复杂 。 由于 它的尺 寸 比较 小 。主要在 中小 串联式 混合动 力 电动汽车 的驱动 系统 是 由发 动机 、发 电机 和 型汽车 上应用 。 1 . 3 混联式 混合动 力汽车 ( P S H E V ) 驱动 电动机 依 次 串联 组成 的 。S H E V 通 过发动 机起 动 ,然后 发电 机 组将 机械 能转化 为 电能 ,用 来驱动 电动机 或者 给 电池 组充 电 , PS HE V 既具 有 串联 式 混 合 动 力汽 车 的 结 构 形 式 与功 能特 这样可 以延长 串联 式混合 动力 动汽车 的行驶 里程 。 串联 式混合 动 性 ,又 具有 并联 式混 合动 力汽车 的结构形 式与 功能特 性 。混 联式 力汽车 发动机 的转 速控 制在一 定 的范围之 内 ,运 行工 况对 它没有 混合 电动 车 的动 力总 成 系统 包括 发动 机 、 电动/ 发 电机 以及 驱动 S HE V 的动 力驱动 系统 在车 辆 的行驶 速度 比较低 时运 任何 影响 ,所 以S H E V 能 够保 证 它的运 转状 态在任 何 时候都 是高 电动机 。 P H E V 相似 ;P S H E V 的动 力驱动 系统在车 辆 的行 驶速度 效率 的 ,同时能 量消耗 和排放 也 非常低 。串联 式混合 动力汽 车主 行状态 与S 要有 一种 电动机 驱动 模式 , 所 以它的控 制系统 和驱动 系统都 非 常 比较 高时 运行状 态则 与P HE V 相 似 。当混联 式混 合动 力汽 车起 动 简单 ,三 大动 力总能 够很 自由地在 底盘上 布置 ,它的动力特 性与 时 ,发动机 发动产 生驱动 转矩 ,其 中有 一些 由传动 装置传 送给汽 纯 电动汽 车 的更接 近。 S H E V 三 大动 力总功 率要 求与 它的最 大驱 车车轮 ,而 剩下 的就用来 给发 电机发 电 ,这 些电能 用动功 率相近 。 串联 式结 构适 用于频 繁起步 和低速 行驶 工况 ,可 以将 发动机 混联式 混合动 力汽车 的驱动 系统具 有S H E V 和P H E V 的驱动 系 调 整在最 佳工 况点 附近稳定 运转 ,通过 调整 电池和 电动机 的输 出 统 的优点 ,所 以它能够 在不 同的路 况下选 择不 同的工作模 式 ,实 来 调整 车速 的 目的 。使发 动机避 免怠 速和低 速运转 的工 况 ,从 而 现低 油耗 和低排 放的 控制 目的。混联 式混 合动 力电动汽 车 的结 构

我国电动汽车的研究现状及发展趋势

我国电动汽车的研究现状及发展趋势

我国电动汽车的研究现状及发展趋势随着环境保护意识的提高和国家政策的支持,电动汽车作为清洁能源汽车受到了越来越多的关注和重视,我国电动汽车的研究现状和发展趋势备受关注。

本文将从我国电动汽车的研究现状、发展趋势以及面临的挑战等方面进行探讨。

一、研究现状1. 技术水平逐步提升随着电动汽车技术的不断发展,我国的电动汽车技术水平也在不断提升。

目前,我国电动汽车的技术水平已经进入了一个相对成熟的阶段,电池技术、电机技术、充电技术等方面都有了长足的发展。

特别是在电池技术方面,我国成为了全球领先的电池生产国之一,拥有了先进的动力电池技术和制造能力。

2. 政策扶持力度加大为了推动电动汽车产业的发展,我国相关部门出台了一系列政策支持措施,包括购车补贴、充电设施建设补贴、税收优惠等方面的支持政策。

这些政策的出台为电动汽车产业的发展提供了强有力的支持,激发了广大消费者购买电动汽车的积极性,也为电动汽车产业的发展创造了良好的环境。

3. 产业链日趋完善我国的电动汽车产业链日趋完善,整个产业从上游的电池、电机、控制系统到下游的整车制造和销售都有了相对完善的规划和布局。

特别是在电池、电机等关键零部件的研发和生产方面,我国已经具备了相当强大的实力,乘用车和商用车的电动车辆在市场上也取得了一定的成绩。

二、发展趋势1. 技术创新驱动未来,技术创新将继续是我国电动汽车产业发展的主要驱动力。

在电池技术、电机技术、充电技术等方面,我国将继续加大研发力度,推动技术水平的不断提升。

特别是在新能源汽车关键零部件的研发和生产方面,我国将继续加大投入力度,提高自主创新能力。

2. 产品多样化未来,我国的电动汽车产品将会呈现出多样化的发展趋势。

不仅仅是传统的乘用车、商用车,还会涌现出更多种类的电动汽车产品,如纯电动客车、混合动力客车、电动物流车等。

这些新型电动汽车产品将进一步满足市场的多样化需求,推动电动汽车产业的发展。

3. 全产业链协同发展未来,整个电动汽车产业链将会实现更加紧密的协同发展。

新能源汽车电控技术的研究与发展

新能源汽车电控技术的研究与发展

新能源汽车电控技术的研究与发展在当今汽车行业的飞速发展中,新能源汽车作为未来的发展趋势备受关注。

而新能源汽车的核心技术之一就是电控技术,它直接影响着车辆的性能、安全性以及节能环保程度。

本文将深入探讨新能源汽车电控技术的研究现状和未来发展方向。

电控技术在新能源汽车中的地位电控技术是新能源汽车的灵魂所在,它负责管理电动汽车的动力系统、能量转换系统和车辆控制系统。

通过精密的控制算法和实时监测,电控技术可以实现对电机、电池等部件的精准控制,从而提高车辆的效率和性能。

新能源汽车电控技术的研究方向1.高效能量管理系统新能源汽车的能量管理对于提高续航里程至关重要。

研究人员致力于开发高效的能量管理系统,通过智能控制电池充放电,最大限度地延长电池寿命,并提高能源利用率。

2.智能驾驶辅助系统电控技术的另一个重要方向是智能驾驶辅助系统的研发。

结合传感器技术和数据处理算法,实现车辆的自动驾驶、自动泊车等功能,提升驾驶安全性和舒适性。

3.车辆网络通信系统随着车联网技术的发展,新能源汽车电控技术也在向智能化、互联化方向发展。

车辆网络通信系统的研究旨在实现车辆之间、车辆与基础设施之间的信息交流,提升驾驶效率和交通流畅度。

未来展望新能源汽车电控技术的不断创新和发展将推动整个汽车行业向更智能、更环保的方向发展。

未来,我们可以期待更先进的电控系统、更智能的驾驶辅助功能,以及更便捷的车辆互联体验。

新能源汽车电控技术的研究和发展是推动汽车产业升级的重要引擎。

只有不断创新,不断突破技术瓶颈,才能为新能源汽车的普及和发展提供更强有力的支撑。

让我们共同期待新能源汽车电控技术的未来,创造更加智能、绿色的出行新体验。

新能源汽车电控系统的发展趋势

新能源汽车电控系统的发展趋势

新能源汽车电控系统的发展趋势近年来,随着环境问题的日益严峻和可再生能源技术的不断发展,新能源汽车逐渐成为了汽车行业的热点话题。

而作为新能源汽车的核心组成部分,电控系统的发展也备受关注。

本文将就新能源汽车电控系统的发展趋势进行探讨,并展望其未来的发展方向。

1.智能化与网络化随着科技的进步和物联网的兴起,智能化与网络化已经成为了许多行业的发展趋势,汽车行业也不例外。

新能源汽车电控系统的智能化和网络化已经成为了发展的方向之一。

通过智能化技术,电控系统可以实现自主学习和自适应,提高车辆的性能和效率。

网络化技术的应用可以实现车联网、远程监控和远程维护等功能,提升用户的使用体验,并且更好地满足人们对智能化生活的需求。

2.提高能效和续航里程能源是新能源汽车发展的核心问题之一,而电控系统在提高能效和续航里程方面起着至关重要的作用。

为了提高能效,电控系统需要不断优化和创新电池管理技术,实现更高的充放电效率和更长的电池寿命。

通过智能化和网络化技术的应用,电控系统可以实时监测车辆的能耗和状态,优化能量管理,最大程度地提高续航里程,满足用户的需求。

3.强化安全性和可靠性安全性和可靠性一直以来都是汽车行业的重中之重,而新能源汽车电控系统的安全性和可靠性更是至关重要。

新能源汽车的高压电系统和复杂的电路结构使得电控系统更容易面临各种安全隐患,如电池过热、短路等问题。

因此,电控系统需要加强安全防护和故障监测,提供有效的安全措施和报警机制,确保车辆在运行过程中的安全可靠性。

4.简化系统架构和降低成本随着新能源汽车市场的逐渐扩大,电控系统不仅需要提高性能和可靠性,还需要降低成本,以满足大众市场的需求。

因此,简化电控系统的架构和降低成本成为了发展的趋势之一。

通过优化电控系统的设计和布局,减少元器件的数量和重复利用,可以大幅降低系统的成本,并提高产品的竞争力。

新能源汽车电控系统的发展趋势是智能化、网络化、提高能效和续航里程、强化安全性和可靠性,以及简化系统架构和降低成本。

《2024年纯电动汽车动力系统参数匹配及整车控制策略研究》范文

《2024年纯电动汽车动力系统参数匹配及整车控制策略研究》范文

《纯电动汽车动力系统参数匹配及整车控制策略研究》篇一一、引言随着环境保护意识的逐渐加强和科技的不断进步,纯电动汽车作为一种新型的交通工具,正受到越来越多的关注和重视。

动力系统作为纯电动汽车的核心部分,其参数匹配及整车控制策略的研究对纯电动汽车的性能和运行效果起着决定性的作用。

本文将重点探讨纯电动汽车动力系统的参数匹配以及整车控制策略的研究,为相关研究和实践提供理论支持。

二、纯电动汽车动力系统参数匹配1. 电池系统参数匹配电池系统是纯电动汽车的能量来源,其性能直接影响到整车的续航里程和动力性能。

电池系统参数匹配主要包括电池类型选择、电池容量确定以及电池组布置等。

应根据车辆的使用需求、成本考虑以及环境适应性等因素,选择合适的电池类型和容量。

同时,合理的电池组布置可以保证电池系统的散热性能和安全性。

2. 电机系统参数匹配电机系统是纯电动汽车的动力输出部分,其性能直接影响到整车的动力性能和能效。

电机系统参数匹配主要包括电机类型选择、额定功率和峰值功率的确定等。

应根据车辆的使用需求、电机效率、成本等因素,选择合适的电机类型和功率。

3. 控制系统参数匹配控制系统是纯电动汽车的动力传递和管理部分,其性能直接影响到整车的运行稳定性和能效。

控制系统参数匹配主要包括控制器类型选择、控制策略的制定等。

应结合电池系统和电机系统的特性,制定合理的控制策略,以实现整车的高效运行。

三、整车控制策略研究1. 能耗优化控制策略能耗优化控制策略是纯电动汽车控制策略的重要组成部分,其主要目的是在保证车辆动力性能的前提下,降低能耗,提高续航里程。

可以通过优化车辆的运行模式、驾驶者的驾驶行为以及电池管理系统等手段,实现能耗的优化。

2. 充电策略研究充电策略是纯电动汽车充电过程中的重要控制策略,其目的是在保证充电安全的前提下,提高充电效率。

应根据电池系统的特性,制定合理的充电策略,包括充电模式选择、充电电流和电压的控制等。

3. 故障诊断与保护策略故障诊断与保护策略是保证纯电动汽车安全运行的重要措施。

插电式混合动力汽车控制策略研究

插电式混合动力汽车控制策略研究

插电式混合动力汽车控制策略研究今天,插电式混合动力汽车正在迅速发展,它在燃油经济性、低排放性和更低成本操作等方面可提供显著优势。

然而,插电式混合动力汽车在操纵动力系统的过程中面临着一系列问题,其中包括:燃油经济性,动力控制和排放控制。

为了确保插电式混合动力汽车的可靠性,有必要研究并确定合适的控制策略。

首先,要开发有效的插电式混合动力汽车控制策略,就必须了解每种组件如何工作。

插电式混合动力汽车系统主要包括发动机,发动机控制器(ECU),变速箱,储能器,燃料控制和电动机控制。

发动机控制器(ECU)通过测量机械状态和发动机参数(如转速,温度和推力)来控制发动机运行。

变速箱用于传递动力至轮胎,并且可以根据不同的行程路线来调整车速;而储能器通过预充电电压、旧能量的释放和重新充电来提供发动机所需的电能。

燃料控制系统通过燃料喷射系统把一定量的燃料供给到燃烧室,并维持燃烧过程的稳定。

最后,电动机控制系统负责控制电机的运行,从而实现电动汽车的前进和转向功能。

第二,要确定合适的控制策略,需要确定插电式混合动力汽车的工作模式,也就是汽车运行时的燃料消耗情况、能量转换效率和发动机排放控制策略等。

在确定工作模式时,需要综合考虑多种因素,如发动机的性能、电池的有效能量,以及适用于插电式混合动力汽车的控制策略。

为了确保最佳的动力控制性能,有必要研究多种动力场景下的控制策略,并建立恒定加载下的动力控制策略。

第三,在研究机动车排放物控制策略时,需要考虑汽油、柴油等不同燃料发动机的特性,以及插电式混合动力汽车的特性。

插电式混合动力汽车特性涉及到发动机与电机的融合,从而实现低排放的目标。

通过开发一系列控制策略,如开环控制、闭环控制、自控制和对策积分控制等,可以更全面地理解插电式混合动力汽车的传动模型。

第四,有必要实际测试插电式混合动力汽车,为了确定不同控制策略的有效性。

例如,可以在实践中测量汽车处于不同工作模式时的燃料消耗及其排放状态,从而评估控制策略的有效性。

新能源汽车整车控制策略研究

新能源汽车整车控制策略研究

新能源汽车整车控制策略研究在当今社会,随着环保意识的不断提高和能源危机的日益严峻,新能源汽车作为一种可持续发展的交通解决方案,正逐渐成为汽车行业的主流趋势。

新能源汽车的核心技术之一是整车控制策略,它对于车辆的性能、安全性、可靠性和能源利用效率起着至关重要的作用。

新能源汽车的整车控制策略主要包括能量管理策略、驱动控制策略和制动能量回收策略等。

能量管理策略的目标是合理分配电池的能量,确保车辆在不同工况下都能有足够的续航里程。

例如,在城市拥堵路况下,车辆需要频繁启停,此时能量管理策略应注重减少能量消耗;而在高速公路行驶时,则要提高能量利用效率,以保证车辆的高速性能和续航能力。

驱动控制策略则负责协调电机和变速器等部件的工作,以实现车辆的平稳加速、减速和换挡。

对于纯电动汽车,电机的扭矩输出特性直接影响车辆的动力性能。

因此,驱动控制策略需要根据驾驶员的操作意图和车辆的行驶状态,精确控制电机的输出扭矩,以提供良好的驾驶体验。

对于混合动力汽车,还需要考虑发动机和电机之间的协同工作,实现最优的动力分配。

制动能量回收策略是新能源汽车提高能源利用效率的重要手段。

在制动过程中,车辆的动能可以通过电机转化为电能并存储到电池中,从而减少能量的浪费。

制动能量回收策略需要根据制动强度和车辆的行驶速度等因素,合理调整回收的能量大小,既要保证制动效果,又要最大限度地回收能量。

为了实现有效的整车控制策略,需要依靠先进的传感器技术和精确的算法。

传感器能够实时采集车辆的各种状态信息,如车速、加速度、电池电量等。

这些信息被传输到整车控制器中,通过复杂的算法进行处理和分析,从而生成相应的控制指令。

例如,基于模型预测控制(MPC)的算法可以根据车辆的未来行驶工况预测能量需求,并提前调整控制策略,以实现最优的性能和能源利用。

然而,新能源汽车整车控制策略的开发面临着诸多挑战。

首先,车辆的工作环境复杂多变,不同的路况、气候条件和驾驶习惯都会对控制策略的效果产生影响。

混合动力汽车研究现状和发展趋势

混合动力汽车研究现状和发展趋势

混合动力汽车研究现状和发展趋势1 绪论1.1 混合动力汽车的定义混合动力汽车的定义:使用两种或两种以上不同的储能器,能源或转换器作驱动能源来推进车辆行驶,其中至少有一种能源提供电能的汽车称为混合动力汽车。

目前我们通常提到的混合动力汽车HEV( Hybrid- Electric Vehicle)是将电动机与辅助动力单元组合在一辆汽车上作为混合动力装置。

混合动力装置是将发动机做小一点,让一部分动力由电池-电动机系统来承担,既发挥了发动机持续工作时间长、动力性好的优点,又可以发挥电动机无污染、低噪声的优点。

混合动力汽车是采用传统的内燃机和电动机作为动力源,通过混合使用人力和电力两套装置开动汽车达到节省燃料和降低排放污染的目的,实用的内燃机既有柴油机又有汽油机,但是共同的特点是排量小、质量轻、速度快、排放好。

电动系统中包括高效强化的电动机、发电机和蓄电池。

混合动力汽车按照能量的合成主要分为串联式和并联式两种。

混合动力汽车与纯电动汽车相比,降低了对电池能量密度和容量的要求,减轻了电池部分的质量,有利于提高汽车的质量利用系数;动力性、续驶里程以及乘员的舒适性都得到了保证;无需增加充电设施,易于推广应用。

与传统的汽车相比,原动机经常处于最佳工况,降低了排放;能量自动回收,提高了能量利用率;采用纯电动行驶模式,可以在特定的区域实现零排放。

混合动力汽车除发动机、电动机、蓄电池等各种单元基础外,重要的技术是各系统的电子控制技术和整车的动力系统优化,匹配好的系统能达到节省燃料50%、排放下降80%、制动能量回收达到30%。

1.2 混合动力汽车技术研究的目的和意义目前,在石油资源的渐趋匮乏和传统燃油汽车排放所造成环境污染的双重压力下,如何才能减少汽车对不可再生资源的依赖。

据最新数据统计,目前全世界汽车保有量已经达到了10亿辆,平均每6个人就拥有一辆汽车。

而在中国,2011年的汽车产销量已经达到1850.51万辆[1]。

混合动力电动汽车整车控制文献综述

混合动力电动汽车整车控制文献综述

混合动力电动汽车整车控制文献综述发布时间:2021-07-28T10:43:10.680Z 来源:《基层建设》2021年第13期作者:程浩[导读] 摘要:混合动力电动汽车是指以蓄电池与辅助动力单元共同作为动力源的汽车。

身份证号码:32092219931106XXXX摘要:混合动力电动汽车是指以蓄电池与辅助动力单元共同作为动力源的汽车。

由于混合动力电动汽车在节能和降低排放污染方面的明显优势,因而受到很大的重视,研制开发和产业化的进程相当快。

目前混合动力电动汽车主要有两种混合驱动结构:串联式和并联式。

本文结合文献对这两种混合动力系统结构和特点进行了分析,并重点对并联式进行了分析介绍。

最后分析了混合动力电动汽车未来的发展前景。

关键词:混合电动汽车;控制策略;关键技术1.引言[1]节能和环保是汽车技术发展的主要方向之一。

目前世界上大多数大汽车公司,都充分利用内燃机汽车的先进技术和电动机的无污染特性,将他们共同组成混合动力电动汽车,发展一种“超低油耗,超低污染”的车辆,作为内燃机汽车向电动汽车发展的过渡产品。

2.混合动力电动汽车2.1 混合动力结构分析现代电动汽车一般可以分为三类:纯电动汽车,混合动力汽车,燃料电池电动汽车。

混合电动汽车(Hybrid Electrical Vehicle,简称HEV)是指同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。

通过合理复合动力系统,灵活调控整车功率流向,使发动机保持在综合性能最佳的区域工作,从而降低油耗与排放。

2.2 混合动力的优势与纯电动汽车比较,混合动力电动汽车具有以下优点: 1)由于电池容量减小,整车重量轻。

2)汽车的叙事里程和动力性可达到内燃机的水平。

3)保证驾车和乘坐的舒适性(空调,暖风,动力转向的使用)。

与内燃机汽车比较,混合动力汽车具有有以下优点: 1)可以使发动机在最佳的工况区域稳定运行,从而降低排污和油耗。

探讨新能源汽车电控技术的发展现状和趋势

探讨新能源汽车电控技术的发展现状和趋势

探讨新能源汽车电控技术的发展现状和趋势【摘要】新能源汽车电控技术在新能源汽车市场中扮演着至关重要的角色。

本文首先介绍了新能源汽车电控技术的重要性和市场发展情况。

然后对新能源汽车电控技术的现状进行了分析,探讨了其发展趋势、关键挑战、应用前景和未来发展方向。

结论部分指出新能源汽车电控技术具有巨大的发展潜力,将成为新能源汽车行业发展的关键。

随着环保意识的提升和政府政策的支持,新能源汽车电控技术将在未来得到更广泛的应用和发展,推动整个行业朝着更智能、更高效的方向发展。

【关键词】新能源汽车、电控技术、发展现状、趋势、挑战、前景、发展方向、潜力、关键。

1. 引言1.1 新能源汽车电控技术的重要性随着全球能源危机的日益加剧和环境问题的凸显,新能源汽车作为替代传统燃油汽车的重要选择,其电控技术更是至关重要。

电控技术是新能源汽车的核心技术之一,它直接影响着车辆的性能、能效和安全性。

新能源汽车电控技术可以提升车辆的能效。

通过电控技术对电动机、能量管理系统等进行优化控制,可以实现能源的高效利用,提高车辆的续航里程,减少能源浪费,从而降低运行成本,提升竞争力。

新能源汽车电控技术可以改善车辆的性能。

通过精确控制电动机、变速器等关键部件,可以提高车辆的加速性能、稳定性和行驶舒适性,增强驾驶体验,提升用户满意度。

新能源汽车电控技术还是保障车辆安全的重要手段。

通过电控系统对车辆进行实时监测和智能控制,可以提供多层次、多角度的安全保障,预防事故发生,保障驾驶人员和乘客的安全。

新能源汽车电控技术的重要性不言而喻,它是新能源汽车发展的关键支撑,也是推动整个行业向前发展的动力源泉。

我们有理由相信,在不久的将来,新能源汽车电控技术将会迎来更加广阔的发展空间,引领新能源汽车行业走向新的高度。

1.2 新能源汽车市场的发展迅速随着全球对于环境保护意识的不断提高以及能源紧缺问题的日益突出,新能源汽车市场发展迅速成为了全球汽车产业的热门话题。

随着科技的进步和政府对新能源汽车的资金支持,新能源汽车市场规模不断扩大,其销量也呈现出明显增长的趋势。

混合动力汽车控制策略研究现状及发展趋势

混合动力汽车控制策略研究现状及发展趋势

混合动力汽车控制策略研究现状及发展趋势随着环保意识的不断提高,混合动力汽车作为一种新型节能环保的汽车技术,正逐渐走进人们的生活。

混合动力汽车的核心技术在于控制系统,它能够实现汽车的混合动力控制,有效地提高汽车的燃油利用率和减少尾气排放。

本文将会探讨混合动力汽车控制策略的现状及未来发展趋势。

混合动力汽车控制策略主要采用两种方式:一种是基于能量管理的控制策略,另一种是基于动态规划的控制策略。

基于能量管理的控制策略是将混合动力汽车的动力系统分为燃油系统和电力系统两个部分,通过控制两个部分之间的能量转换,实现汽车的混合动力控制。

这种控制策略的优点在于简单易行,适用于大多数混合动力汽车,但是它的缺点也不可忽视,主要表现在会导致一定的能量损失和汽车的驾驶控制受限制。

基于动态规划的控制策略则是通过预测车辆行驶路线和行驶条件,根据最优化算法来控制汽车的动力系统,以达到更好的混合动力控制效果。

这种控制策略的优点在于能够准确预测车辆行驶状况,实现更加精细化的能量管理,但是缺点在于需要复杂的算法计算和较高的计算能力。

未来,混合动力汽车控制策略将会朝着更加智能化、高效化的方向发展。

一方面,随着人工智能、大数据等技术的发展,未来混合动力汽车控制策略将会更加自动化、智能化,实现更加精准的能量管理和优化。

另一方面,混合动力汽车控制策略将会更加注重驾驶者的个性化需求,根据驾驶者的驾驶习惯、行驶路线等信息,实现个性化的混合动力控制,提高驾驶者的驾驶体验和汽车的燃油利用率。

混合动力汽车控制策略是混合动力汽车技术发展的核心,随着技术的不断进步和发展,混合动力汽车控制策略也将会朝着更加高效、智能和个性化的方向发展,为人们的生活带来更多的便利和节能环保的效益。

新能源汽车的整车控制系统设计研究

新能源汽车的整车控制系统设计研究

新能源汽车的整车控制系统设计研究在全球能源危机和环境保护压力日益加大的背景下,新能源汽车(NEV)的发展受到了广泛关注。

作为构成新能源汽车的核心技术之一,整车控制系统扮演着至关重要的角色。

整车控制系统的设计研究不仅涉及到电气工程、计算机科学、机械工程等多学科知识,还包括系统控制理论与应用。

本文将探讨新能源汽车的整车控制系统设计,涵盖其组成部分、工作原理、设计方法以及面临的挑战。

整车控制系统的组成部分通常包括电池管理系统(BMS)、动力总成控制系统(DTC)、车身控制模块(BCM)、和人机交互界面(HMI)等。

电池管理系统负责监控电池的状态,如电压、温度和充放电状态,以确保电池在安全范围内运行,并优化电池使用效率。

动力总成控制系统则协调电动机、变速器及辅助驱动系统之间的协作,确保汽车在各种驾驶条件下的性能优化。

而车身控制模块则负责车辆的灯光、空调、门锁等功能的控制。

人机交互界面则让驾驶者能够轻松访问信息,帮助他们对车辆状态做出及时反应。

整车控制系统的工作原理是通过感知、决策和执行三个基本过程来实现的。

首先,系统通过各种传感器收集环境信息与车辆状态,包括速度、位置、油门踏板位置等,这些数据被传送到中央处理单元。

中央处理单元利用先进的算法和模型对这些信息进行分析,以决定最佳的控制策略。

这一决策结果则通过执行器作用于车辆的各个部件,如电动机和制动系统,从而实现车辆的运动控制。

在整车控制系统的设计过程中,需要采用多种技术和方法。

建模与仿真是关键步骤之一,通过动态模型描述车辆的运动特性和环境交互能力,从而为控制器的设计提供依据。

常用的建模工具有Matlab/Simulink,这些工具能够实现快速原型开发,并通过仿真测试不同设计方案的可行性。

此外,现代整车控制系统越来越多地采用机器学习与人工智能技术,以便在复杂的驾驶场景中自适应调整策略,提高车辆的智能水平。

设计过程中还必须考虑实时性与安全性的要求。

整车控制系统需要在毫秒级甚至更短时间内完成感知与决策,以应对高速行驶中的突发情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混合电动汽车整车控制策略研究及发展趋势探讨张嘉君武汉理工大学汽车工程学院,湖北武汉 430070E-mail:941ai@摘要:混合电动汽车整车控制策略是电动汽车的灵魂。

本文综述了当前混合电动汽车控制关键技术,分析了应用于电动汽车的主要控制理论,提出了整车控制策略研究的重点和突破方向,对混合动力整车控制策略设计与开发具有指导和借鉴意义。

关键词:混合电动汽车,控制策略,关键技术1 引言混合电动汽车(Hybrid Electrical Vehicle, 简称HEV)是指同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。

通过合理复合动力系统,灵活调控整车功率流向,使发动机保持在综合性能最佳的区域工作,从而降低油耗与排放。

美国的PNGV (Partnership for a New Generation of Vehicles)、欧洲的“The Car of Tomorrow ”计划、日本的“Advanced Clean Energy Vehicle Project”以及我国的“清洁汽车行动”都正是基于HEV而制定的战略计划。

刚刚闭幕的“十一五”规划着力自主创新,混合动力技术可能是我国汽车行业自主创新的最大突破口,而在HEV关键技术中,整车控制策略占据着核心灵魂位置,因此,科学深入研究混合动力汽车的整车控制策略显得必然重要。

作者对混合电动汽车的控制理论及技术现状作了系统分析,并指出了HEV控制策略研究关键技术和发展方向。

2 概念与结构混合动力汽车主要有串联(SHEV)、并联(PHEV)和混联(SPHEV),和传统汽车的主要区别在于其多了电动机或发电机,不同混合动力之间的结构区别主要在于起能量流向的不同,图1和图2给出了串联和并联混合动力汽车的能量流向。

抽象的混合动力控制策略,就是通过合理规划整车在具体行使工况中的不同动作,使整车能量高效、合理流动,达到整车经济性、动力性、排放等各项指标达到最佳结合点。

由于各种混合动力电动汽车结构上的差异,因而需要不同的控制策略来调节和控制功率流从不同元件的流进和流出,采用不同控制策略的目的是为了实现不同的控制目标。

具体来说,混合动力控制策略的控制目标主要有以下四个:燃油经济性;排放指标;系统成本;最驱动性能。

- 1 -控制系统的目的就是要实现发动机运行在最佳的工作状态,以使油耗和排污最低,并尽可能充分利用发动机的能量,最大限度地吸收制动能量,尽量减少电池的能量消耗。

目前,在控制策略的制定方面,基本控制机理都是将整个行车过程划分为巡航,加速,制动三个过程加以优化。

而控制策略的实现,都是建立在电动机,APU和电池的性能指标准确的评估之上的。

因此,在即定控制策略下,各动力系统参数的准确性及其动态特性的优良成了策略实现的关键。

因此,控制策略的关键技术还是在,建立动态的驱动系统数学模型,这是参数匹配和优化控制策略的重点也是难点所在。

3 主要技术构成表一 HEV节油理论值项目理论节油比(%)选择较小发动机5~15取消发动机怠速5~10控制发动机在高效率区5~10发动机断油控制 5适当增大电池SOC窗口 3制动能量回收5~12系统总计30~50当前,电动汽车的关键技术细分有整车技术、系统匹配与集成技术、多能源管理与控制策略、电机技术、电池技术、试验与评估技术、及仪表总线等附件技术。

要制定核心层面的先进的整车控制策略,必须对各种部件主要敏感参数有深刻的理解。

日本汽车研究院的一份报告[1]中指出,在燃料电动汽车(FCEV)中,决定燃油经济性最敏感的参数中,电池是最主要因子,而在串联、并联或混联(HEV)中,发动机电动机的关键参数及其合理匹配则占据着更大比例因数。

由表一[2]给出的HEV节油理论值中也容易看出,对电机、发动机工作模式的合理切换与控制正是制定整车控制的目标所在。

当前,美国、欧洲和日本关于电动汽车控制方面先进技术主要有如下几种:1)自适应性控制器。

这种控制器自适应控制电动机和内燃机的输出功率,保持预先设定的关系去驱动车辆以达到某种优化目标。

Rover Group Limited 的Farrall, Simon David 发明的关于车辆动力总成的控制(Control of a vehicle powertrain)的专利技术,该动力总成由内燃机和电动机(由电池供电)组成,控制器利用存储在系统中的图表(通过模糊控制策略)来控制电动机和内燃机的输出转矩以保证它们在整个动力系统中的贡献符合一定的关系,具有自适应功能。

2)精确数学模型模块。

福特全球技术中心Davis, George Carver 等人发明了一种存有内燃机动力总成的数学模型的动力总成控制模块,该控制模块连续监测发动机的各种参数的变化,利用这些参数在内燃机的每个循环实时控制入口气流、喷油时机、点火时间、和ERG 流的设定值,进而得到较好的效率和排放。

3)单部件保护技术。

MITSUBISHI MOTORS CORP. 的IMAI SADAO 和 HORII- 2 -YUSUKE发明了一种控制器来保护电池,称之为混合动力车能量产生控制器(Power Generation Controller For Hybrid Electric Vehicle)。

在混合电动车上电池的充电能量来自于电动机的再生制动产生的电能和发电机的发电产生的电能。

当电动机再生制动产生的电压高于电池的额定电压或电池的温度超出允许范围时,继续充电就会损坏电池或影响电池的命,此时控制器停止发电工作就可以保护电池。

NISSAN MOTOR CO LTD. 的KOMIYAMA SUSUMU 和 OKURA KAZUMA 等人发明的混合动力车控制器(Controller for Hybrid Vehicle),解决了提供混合动力车电驱动用大功率电池充放电的控制问题。

该技术用于由内燃机、电动机分别提供驱动力,启动电机提供引擎的启动力矩,两个电机由一组电池通过DC/DC 变换提供能量,控制器主要根据混合动力车的运行状况以及电池的状态改变DC/DC 变换器的输出能量,控制电动机的输出功率,以保证整车的性能。

这种方法在混合动力电动汽车中已普遍采用。

4)平滑偶合技术。

NISSAN MOTOR CO LTD.ITORAMA HIROYUKI和 KITAJIMA YASUHIKO 等人发明了一种混合动力车控制装置(Control Device for Hybrid Vehicle),该控制系统通过对混合动力车启动时的电机优化控制来加快引擎启动过程和防止电池兼容性的减退。

这种混合动力车的动力总成由为启动和发电用的电机和内燃机联结在一起且相互可驱动。

一个启动检测装置检测启动状态和一个旋转速度检测装置检测内燃机的速度,控制装置控制启动时电机的速度和转矩,也就是当引擎脱离驱动系统启动时,控制装置根据电池的状态来决定电机的启动转矩,从而保证电池的状态和启动过程的兼容。

这种方法克服了由于启动电流过大对电池的伤害。

这种方法专门应用于启动电机的控制。

5)科学分配技术。

Chrysler Corporation 的Boberg, Evan S. 和 Gebby, Brian P.发明的关于混合动力车的热引擎和电机转矩分配策略技术(Heat engine and electric motor torque distribution strategy),它提出了一种混合动力车动力总成系统的控制方法,包括电动机、内燃机转矩的分配控制方法,总的转矩由汽车加速踏板的位置决定、电池的SOC 状态、内燃机和电动机所能提供的转矩来确定,为了控制内燃机的排放,内燃机提供的转矩的上升速度必须严格按要求限制,其不足部分由电动机的输出转矩来补充。

这种方法也在并联或混联混合动力电动汽车中已普遍采用。

4 控制机理与策略4.1 控制理论混合动力总成的控制策略通常有四种:逻辑门限值控制、动态自适应控制、逻辑模糊控制、神经网络控制。

后三种控制方法就是通过实时采集大量的发动机运行资料计算发动机的最佳油耗点和最佳排放点,并在运行中实时跟踪数值的变化,因而,控制系统的软件和硬件都非常复杂。

这三种控制方法对目标的改善效果在很大程度上依赖于发动机的动态模型的精度和运行数据的实时快速检测的精度,精度的偏差可能会导致目标效果急剧恶化。

因此,在目前的情况下,国内外成型混合动力的样车和产品车大多采用逻辑门限值控制方法。

4.2 串联混合动力汽车的控制策略串联型混合动力汽车的发动机与汽车行驶工况没有直接联系,控制策略的主要目标是使- 3 -发动机在最佳效率区和排放区工作。

以下介绍串联型混合动力汽车的两种基本的控制模式。

1)恒温器控制模式当蓄电池SOC 降到设定的低门限值时,发动机启动,在最低油耗(或排放)点按恒功率输出,一部分功率用于满足车轮驱动功率要求,另一部分功率向蓄电池充电。

而当蓄电池组SOC 上升到所设定的高门限值时,发动机关闭,由电机驱动车轮[3]。

在这种模式中蓄电池组要满足所有瞬时功率的要求,蓄电池组的过度循环所引起的损失可能会减少发动机优化所带来的好处。

这种模式对发动机比较有利而对蓄电池有更高的要求.2)功率跟随控制模式采用自动无级变速器CVT(Continuously Variable Transmission) ,通过调节CVT 速比,控制发动机沿最小油耗曲线运行,发动机的功率紧紧跟随车轮功率的变化,这与传统的汽车运行相似。

采用这种控制策略,蓄电池工作循环将消失,与充放电有关的蓄电池组损失被减少到最低程度,目前应用较多,但整车成本有所上升。

现在的研究趋势是将上述两种控制模式也可以结合起来使用,同时充分利用发动机和电池的高效率区,使其达到整体效率最高。

例如,当汽车加速时,为了满足车轮驱动功率要求,降低对蓄电池的峰值功率要求,延长其工作寿命,可采用功率跟随模式;而当汽车车轮功率要求低时,为了避免发动机低效率工况的发生,可以采用恒温器模式,以提高整车系统的效率。

几种模式的选择中,都有电池SOC状态的评估,因此电池SOC的准确估算及其高效区的合理评价,是整车控制策略得以正确实施的前提条件。

4.3 并联混合动力汽车的控制策略由于结构和能量的并向流动因素,并联式混合动力汽车的控制策略比串联式复杂。

其策略主要有如下几种。

1)车速因子控制策略[4]这种控制策略就是以车速为参考指标,将驱动模式分为电机单独驱动、发动机单独驱动及电机发动机联合驱动三种模式。

当汽车车速低于所设定的车速时,由电机单独驱动车轮;当车速高于所设定的车速时,电机停止驱动,而由发动机驱动车轮;当车轮负荷比较大时(如汽车急加速、爬陡坡或以较高车速爬坡时) ,则由发动机和电动机联合驱动车轮。

相关文档
最新文档