【9】高分子化学公式推导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论(Introduction)(1)分子量的计算公式:
M0:重复单元数的分子量
M1:结构单元数的分子量
(2)数均分子量:
N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。x i表示相应的分子所占的数量分数。
(3)重均分子量:
m1,m2…m i分别是分子量为M1,M2…M i的聚合物分子的重量
W i表示相应的分子所占的重量分数
(4)Z均分子量:
(5)粘均分子量:
α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间(6)分布指数
:分布指数
第一章绪论(Introduction)
(1)分子量的计算公式:
M0:重复单元数的分子量
M1:结构单元数的分子量
(2)数均分子量:
N1,N2 …Ni分别是分子量为M1,M2 …Mi的聚合物分子的分子数。
xi表示相应的分子所占的数量分数。
(3)重均分子量:
m1,m2 …mi 分别是分子量为M1 ,M2 …Mi的聚合物分子的重量
Wi表示相应的分子所占的重量分数
(4)Z均分子量:
(5)粘均分子量:
α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在 0.5~0.9之间(6)分布指数
:分布指数
第三章自由基共聚合(Free-Radical Co-polymerization)(1)以共聚物组成摩尔比(或浓度比)表示的微分方程
式中:,分别为单体1,2的浓度。
上式的推导用到了以下假定:
1)自由基活性与链长无关,这个等活性理论与处理均聚动力学时相同。
2)前末端(倒数第二)单元结构对自由基活性无影响,即自由基活性仅决定于末端单元的结构。3)无解聚反应,即不可逆聚合。
4)共聚物聚合度很大,引发剂和终止对共聚物组成无影响。
5)稳态,要求自由基总浓度和两种自由基的浓度都不变,除引发速率和终止速率相等外,
还要求和两自由基相互转变的速率相等。
上式推导如下:
二元共聚时有2种引发、4种增长、3种终止反应。
链引发:
式中:,分别代表初级自由基引发单体和的速率常数。
链增长:
式中:和分别表示自由基和单体反应的增长速率和增长速率常数,其余类推。
链终止:
根据共聚物聚合度很大的假定,单体消耗于引发的比例很少,、的消耗速率仅取决于链增长速率,即:
两单体消耗速率比等于两单体进入共聚物的速率比
(1)
式中:为两单体进入共聚物的速率比。
对和分别作稳态假定,得:
满足上述稳态假定的要求,须有两个条件:一是和的引发速率分别等于各自的终止速率,
即自由基均聚中所作的稳态假定;另一是转变成和转变成的速率相等,即
=
变换得到:
代入 (1)式得:
约去,并上下底同除以 k 12 得:
定义竞争聚率:
,
, 是均聚和共聚链增长速率常数之比,表征两单体的相对活性,特称做竞争聚率。得:
(2)以摩尔分率表示的共聚物组成微分方程
式中:,分别代表某瞬间单体和占单体混合物的摩尔分率,
有+ =1,代表同一瞬间单元占单体混合物的摩尔分率,即:
此式的适用条件与用到的假设与上面的公式相同。
推导如下:
通分得:
上下底同除以,即得:
根据,的定义即得:
(3)对竞聚率进行估算的Q-e关联式
推导如下;
自由基同单体的反应的速率常数与共轭效应、极性效应的关系如下式
式中、为从共轭效应来衡量自由基和单体的活性
、分别是自由基和单体极性的度量
假定单体及其自由基的 e值相同,即代表和的极性,
代表和的极性,则相似地我们可以得到
由竞聚率的定义得到
上式中,、可由实验求得,上面只有两个方程却有四个未知数、、、,
因而我们规定苯乙烯的,作为基准。这样我们只需实验测得未知单体与苯乙烯或某一已知Q-e值单体的竞聚率,即可求得该单体的Q-e值。
由此,我们无需实验即可对两个已知Q-e值的单体之间的竞聚率进行估算。
(4)共聚合速率的计算
共聚物组成一般只决定于增长反应,因而在前面的对共聚物组成的推导过程中,我们只用到增长速率方程及5个基本假定推出了共聚物瞬时组成与竞聚率等因素之间的定量关系,
而共聚速率却同时与引发、终止以及增长三步基元反应有关。
在一般情况下,两种单体都能很有效地与初级自由基作用,可以认为引发速率与配料组成无关,我们主要分析终止速率对共聚速率的影响。
如果假定终止反应系化学控制,可等到增长速率
式中
为同种自由基之间相互反应终止的速率常数
为同种自由基之间相互反应终止的速率常数
为与两种自由基相互反应终止的速率常数
同前表示自由基和单体反应的增长速率常数,其余类推。而如果假定终止反应属于扩散控制,增长速率为
公式推导如下:
两种单体共聚有以下三种终止反应
而共聚有以下四种增长反应
共聚总速率为四种增长速率之和
要消去式中的难测的自由基浓度,我们须作稳态假定。
假定一,每种自由基都处于稳态,满足上述稳态假定的要求,可以得到转变成和转变成的速率相等,即
变换得到:
假定二,自由基总浓度处于稳态,即引发速率等于终止速率。
将以上两式代入增长速率的方程中,得到