【教育资料】小学四年级数学“三角形的内角和”教案学习专用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级数学“三角形的内角和”教案
教学目标
1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180,能运用这一规律解决一些简单的问题。
2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。
课前准备
多媒体课件,任意三角形,剪刀,纸,三角板,量角器等。教学过程
一、创设情境,导入新课
师:我们已经学习了三角形的分类,你知道三角形按角分可以分为哪几类吗?
生:三角形按角分可以分为钝角三角形、直角三角形、锐角三角形。
师:(出示一副三角尺)这是一副三角尺,它们都是什么形状?每块三角尺的三个角分别是多少度?
生:它们都是直角三角形,(拿起等腰的三角尺)这块三角尺三个角的度数分别是45、45和90;另一块三角尺的三个角分别是30、60、90。
教师指三角尺的角:这三个角都叫做三角形的内角。(板书:内角)一个三角形有几个内角?
生:一个三角形有三个内角。
师:这两个三角形三个内角的和分别是多少度?
生:都是180。
师:一个三角形中三个内角的和称为三角形的内角和。今天我们就来研究三角形的内角和。(板书课题)
二、提出问题,猜想验证
1. 猜想。
师:请同学拿出两块同样的三角尺,把这两块同样的三角尺拼成一个大的三角形,看一看拼成的三角形的内角和是多少度?
学生活动后,反馈:你拼成的三角形是什么样子的?它的内角和是多少度?
生1:我拼成的三角形每个内角都是60,它的内角和是180。生2:我拼成的三角形,三个内角分别是30、30、120,它的内角和也是180。
生3:我拼成的三角形,三个内角分别是45、45、90,它的内角和也是180。
师:从这一现象中,你能猜想一下,三角形的内角和可能存在的规律吗?
生1:我猜想三角形的内角和是180。
生2:我猜想钝角三角形的内角和比180大。
生3:不对。我拼的这个三角形(用两块三角尺拼成一个三个内角是30、30、120的三角形)就是一个钝角三角形,但它的内角和也是180。
师:还有不同的猜想吗?
师:研究数学问题就要像这样,既能大胆地猜想,又敢于对结论提出质疑。有人对三角形的内角和等于180这一猜想提出质疑吗?你能说清楚三角形的内角和等于180的理由吗?(没有人举手)是的,由猜想得出的结论往往是不可靠的,需要我们进一步去验证。
2. 验证。
师:怎样验证三角形的内角和等于180呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。
学生分小组活动,教师参与学生的活动,并给予必要的指导。师:哪个小组先来汇报,你们是怎样验证的?
小组1:我们小组每个人画了一个三角形,用量角器量,量出各个三角形的内角度数,再加一加,并列出了一张表格,(在实物投影仪上展示下面的表格)请大家来看一看。通过计算,我们认为三角形内角和是180这一结论是正确的。
小组2:我们小组把三角形的三个内角拼在一起,(边说边演
示)我们发现三角形的三个内角正好拼成了一个平角,所以我们也认为三角形内角和是180这一结论是对的。
小组3:我们小组采用了折一折的方法。我们将正方形纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形的四个直角的和是360,所以三角形的内角和就是它的一半,是180。
小组4:我们小组采用的是拼一拼的方法。我们将两个完全一样的三角形拼成了一个长方形,长方形的内角和360,所以三角形的内角和就是它的一半,是180。
3. 归纳。
师:通过刚才的活动,我们得出了什么结论?
生:三角形的内角和等于180。
师:刚才,我们是怎样得出三角形内角和等于180这个结论的?
生:我们是用先猜想再验证的方法得出结论的。
师:是的,猜想验证是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。
4. 教学试一试。
师:知道了三角形的内角和等于180,就可以运用它去解决一些问题。我们来试一试。(出示试一试的题目)你能根据1和2的度数,算出3的度数吗?自己先算一算,再用量角器量一量,看与算出的结果是否相同。
学生汇报结果。
三、灵活运用,巩固练习
1. 出示想想做做第1题。
师:你能算出下面每个三角形中未知角的度数吗?独立完成。
学生活动后,集体反馈。
2. 出示下图。
师:用今天学习的结论还能解决生活中的一些问题呢。这里的三张纸片都被撕去了一个角,你能猜一猜,它们原来是什么三角形吗?
生1:第一个三角形是锐角三角形,因为已知的两个角的和大于90了。
生2:第二个三角形是直角三角形,因为两个已知的角的和等于90。
生3:第三个三角形是钝角三角形,因为已知的两个角的和只有40,被撕去的那个角一定是钝角。
师:从这几道题中,还知道了什么?
生:在一个三角形中最多有一个直角或一个钝角。
师:大家的判断真是有理有据,算一算,每个三角形中被去撕去的角是多少度。
学生计算后校对。
3. 出示想想做做第4题。
师:你能算出下面三角形中3的度数吗?
学生练习后,集体反馈。
4. 出示想想做做第5题。
师:在一个直角三角形中,已知一个锐角的度数,你能算出另一个锐角的度数吗?先看第一个直角三角形,一个锐角是35,另一个锐角是多少度?你是怎样算的?
生1:因为直角三角形中有一个直角,所以,用180 - 90 - 35 = 55,2等于55。
生2:因为直角三角形中有一个角是90,所以,两个锐角的和一定是90。可以直接用90减去1的度数,得到2等于55。
师:第二个直角三角形中,2等于多少度?
(略)
四、总结评价,延伸拓展