第三章+基因与基因组学

合集下载

遗传学第三章 基因的概念和结构

遗传学第三章 基因的概念和结构
• 重叠基因:指在同一段DNA顺序上,由于阅读框架不同或终 止早晚不同,同时编码两个以上基因的现象。
基因重叠方式
• Mis-reading for stop codon
( Q RNA virus 1973. A. Weiner )
400Nt
800Nt
AUG----------------------UGA-----------------------UAA
设有两个独立起源的隐性突变,具有类似的表现型。判断是属于同一个基因 突变,还是属于两个基因突变?即判断是否属于等位基因? ①建立双突变杂合二倍体; ②测定突变间有无互补作用。
• 顺反测验:顺式排列为对照(是两个突变座位位于同一条染色 体上),其表现型野生型。实质上是进行反式测验(反式排列是 两个突变座位位于不同的染色体上)。
① 反式排列为野生型:突变分属于两个基因位点; ② 反式排列为突变型:突变分属于同一基因位点。
Complementary assay
rII47 0
rII106 0
rII 47
rII106
rII106 0 rII51 0
rII106 rII51
Why?
plane E.coli K12
依据; One gene
2、假基因(pseudo gene)
• 假基因:同已知的基因相似,处于不同的位点,因缺失或突变而 不能转录或翻译,是没有功能的基因。
第五节、外显子和内含子
• 内含子(intron):DNA序列中不出现在成熟mRNA的片段; • 外显子(extron):DNA序列中出现在成熟mRNA中的片段。
Ovalbumin DNA X cDNA
5387 bp 11 genes 3 mRNA 9 peptides

分子生物学-基因与基因组.doc

分子生物学-基因与基因组.doc

分子生物学-基因与基因组(总分:406.00,做题时间:90分钟)一、名词解释(总题数:53,分数:106.00)1.基因(gene)(分数:2.00)__________________________________________________________________________________________ 2.上游启动子元件(upstream promoter elements)(分数:2.00)__________________________________________________________________________________________ 3.应答元件(response element)(分数:2.00)__________________________________________________________________________________________ 4.基因组(genome)(分数:2.00)__________________________________________________________________________________________ 5.C值(C-value)(分数:2.00)__________________________________________________________________________________________ 6.C值矛盾(C-value paradox)(分数:2.00)__________________________________________________________________________________________ 7.基因重叠(gene overlapping)(分数:2.00)__________________________________________________________________________________________ 8.多顺反子mRNA(polycistronic mRNA)(分数:2.00)__________________________________________________________________________________________ 9.逆转录病毒(retrovirus)(分数:2.00)__________________________________________________________________________________________ 10.单顺反子mRNA(monocistron mRNA)(分数:2.00)__________________________________________________________________________________________ 11.间隔DNA(spacer DNA)(分数:2.00)__________________________________________________________________________________________12.高度重复序列(highly repetitive sequences)(分数:2.00)__________________________________________________________________________________________ 13.反向重复序列(reverse repeated sequence)(分数:2.00)__________________________________________________________________________________________ 14.回文序列(palindrome)(分数:2.00)__________________________________________________________________________________________ 15.卫星DNA(satellite DNA)(分数:2.00)__________________________________________________________________________________________ 16.微卫星DNA(microsatelliteDNA)(分数:2.00)__________________________________________________________________________________________ 17.小卫星DNA(minisatellite DNA)(分数:2.00)__________________________________________________________________________________________ 18.DNA指纹(DNA finger-print)(分数:2.00)__________________________________________________________________________________________ 19.端粒(telomere)(分数:2.00)__________________________________________________________________________________________ 20.0t卫星DNA(α satellite DNA)(分数:2.00)__________________________________________________________________________________________ 21.中度重复序列(moderate repetitive sequences)(分数:2.00)__________________________________________________________________________________________ 22.短分散片段(short interspersed repeated segments,SINES)(分数:2.00)__________________________________________________________________________________________ 23.长分散片段(1ength interspersed repeated segments,LINES)(分数:2.00)__________________________________________________________________________________________24.Alu家族(Alu family)(分数:2.00)__________________________________________________________________________________________ 25.Kpn Ⅰ家族(Kpn Ⅰ family)(分数:2.00)__________________________________________________________________________________________ 26.Hinf家族(Hinf family)(分数:2.00)__________________________________________________________________________________________ 27.单拷贝序列(single copy sequence)(分数:2.00)__________________________________________________________________________________________ 28.多基因家族(multi gene family)(分数:2.00)__________________________________________________________________________________________ 29.基因簇(gene cluster)(分数:2.00)__________________________________________________________________________________________ 30.假基因(pseudogene)(分数:2.00)__________________________________________________________________________________________ 31.超基因(supergene)(分数:2.00)__________________________________________________________________________________________ 32.自私DNA(selfish DNA)(分数:2.00)__________________________________________________________________________________________ 33.基因组学(genomics)(分数:2.00)__________________________________________________________________________________________ 34.结构基因组学(structural genomics)(分数:2.00)__________________________________________________________________________________________ 35.遗传图谱(genetic map)(分数:2.00)__________________________________________________________________________________________36.遗传标记(genetic marker)(分数:2.00)__________________________________________________________________________________________ 37.RFLP(restriction fragment length polymorphism,限制性酶切片段长度多态性)(分数:2.00)__________________________________________________________________________________________ 38.RAPD(random amplified polymorphism DNA,随机扩增多态性DNA)(分数:2.00)__________________________________________________________________________________________ 39.AFLP(amplified fragment length polymorphism,扩增片段长度多态性)(分数:2.00)__________________________________________________________________________________________ 40.SSLP(simple sequence length polymorphism,简单序列长度多态性)(分数:2.00)__________________________________________________________________________________________ 41.SSCP(single strand conformation polymorphism,单链构象多态性)(分数:2.00)__________________________________________________________________________________________ 42.SNP(single nucleotide polymorphism,单核苷酸多态性)(分数:2.00)__________________________________________________________________________________________ 43.物理图谱(physical map)(分数:2.00)__________________________________________________________________________________________ 44.序列标签位点(sequnce-tagged site,STS)(分数:2.00)__________________________________________________________________________________________ 45.转录图谱或表达图谱(transcription map or expression map)(分数:2.00)__________________________________________________________________________________________ 46.表达序列标签(expressed sequence tag,EST)(分数:2.00)__________________________________________________________________________________________ 47.序列图(sequence map)(分数:2.00)__________________________________________________________________________________________48.功能基因组学(functional genomics)(分数:2.00)__________________________________________________________________________________________ 49.比较基因组学(comparative genomics)(分数:2.00)__________________________________________________________________________________________ 50.蛋白质组学(proteomics)(分数:2.00)__________________________________________________________________________________________ 51.蛋白质组(proteome)(分数:2.00)__________________________________________________________________________________________ 52.功能蛋白质组(functional proteome)(分数:2.00)__________________________________________________________________________________________ 53.CpG岛(CpG island)(分数:2.00)__________________________________________________________________________________________二、是非判断题(总题数:37,分数:37.00)54.迄今所发现的各种病毒仅含有一种核酸,或DNA,或RNA。

基因组与基因组学

基因组与基因组学

人体细胞的核型(Spectral Karyotype)
18
一些模式生物的基因组大小
基因组大小/bp T4噬菌体 2.0×10 5 大肠杆菌(Escherichia coli ) 4.2×10 6 酵母(Sccharomyces cerevisiae) 1.5×10 7 拟南芥(Arabidopsis thaliana ) 1.0×10 8 秀丽小杆线虫(Caenorhbditis elagans) 1.0×10 8 果蝇(Drosophila melanogaster) 1.65×10 8 水稻(Oryza sativa ) 3.89×10 8 小白鼠(Mus musculus ) 3.0×10 9 人类(Homo sapiens) 3.3×10 9 玉米(Zea mays ) 5.4×10 9 普通小麦(Triticum aestivum) 1.6×10 10
其DNA是与蛋白质结合,不形成染色体结构, 只是习惯上将之称为染色体。细菌染色体DNA在胞 内形成一个致密区域,即类核(nucleoid),类 核无核膜将之与胞浆分开。
2.功能相关的几个结构基因往往串联排列在一起 组成操纵子结构,受上游共同的调控区控制。 3.原核生物基因组中基因密度非常高,结构基因是 连续的多为单一拷贝。
3、编码序列只占基因组总DNA量的5%以下,非
编码区占95%以上,大量为重复序列。
49
重复序列
1.高度重复序列:重复频率 >105,通常这些序列的 长度为6-200bp,如卫星DNA; 2.中度重复序列:重复频率 101-105,重复单位平均 长度约300bp占基因总量的35%。(rRNA gene, tRNA gene, 组蛋白gene );
52
二、基因组学概念及范畴

医学遗传学(第3版)配套习题集:第3章 人类基因组学

医学遗传学(第3版)配套习题集:第3章 人类基因组学

第三章人类基因组学基因组指一个生命体的全套遗传物质。

从基因组整体层次上研究各生物种群基因组的结构和功能及相互关系的科学即基因组学。

基因组学的研究内容包括三个基本方面,即结构基因组学,功能基因组学和比较基因组学。

人类基因组计划(HGP)是20世纪90年代初开始,由世界多个国家参与合作的研究人类基因组的重大科研项目。

其基本目标是测定人类基因组的全部DNA序列,从而为阐明人类全部基因的结构和功能,解码生命奥秘奠定基础。

人类基因组计划的成果体现在人类基因组遗传图,物理图和序列图的完成,而基因图的完成还有待大量的工作。

后基因组计划(PGP)是在HGP的人类结构基因组学成果基础上的进一步探索计划,将主要探讨基因组的功能,即功能基因组学研究。

由此派生了蛋白质组学,疾病基因组学,药物基因组学,环境基因组学等分支研究领域,同时也促进了比较基因组学的展开。

后基因组计划研究的进展,促进了生命科学的变革,可以预见会对医学、药学和相关产业产生重大影响。

HGP的成就加速了基因定位研究的进展,也提高了基因克隆研究的效率。

基因的定位与克隆是完成人类的基因图,进而解码每一个基因的结构和功能的基本研究手段。

一、基本纲要1.掌握基因组,基因组学,结构基因组学,功能基因组学,比较基因组学,基因组医学,后基因组医学的概念。

2.熟悉人类基因组计划(HGP)的历史,HGP的基本目标;了解遗传图,物理图,序列图,基因图的概念和构建各种图的方法原理。

3.了解RF1P,STR和SNP三代DNA遗传标记的特点。

4.熟悉后基因组计划(PGP)的各个研究领域即功能基因组学、蛋白质组学、疾病基因组学、药物基因组学,比较基因组学、生物信息学等的概念和意义。

5.了解基因定位的各种方法的原理。

6.了解基因克隆的三种研究策略。

7.了解全基因组扫描的策略和方法。

8.熟悉基因组医学与遗传病研究的关系。

9.熟悉基因组医学与个体化治疗的关系。

二、习题(一)选择题(A型选择题)1.人类基因组计划仍未完成的基因组图为OA.遗传图B.物理图C.序列图D.连锁图E.基因图2.下列不属于基因组学分支学科的是oA.基因组文库B.环境基因组学C.疾病基因组学D.药物基因组学E.比较基因组学3.HGP的任务是oA.构建遗传图B.物理图C.确定DNA序列D.定位基因E.以上都是4.HGP是美国科学家在年率先提出的。

(整理)第三章基因与基因组

(整理)第三章基因与基因组

第三章基因与基因组第一节基因概念的历史演变第二节DNA与基因第三节真核生物的割裂基因第四节基因大小第五节重叠基因第六节真核生物的基因组第七节真核生物DNA序列组织第八节细胞器基因组第九节基因鉴定第十节人类基因组计划第三章基因与基因组1 基因(gene)的概念基因是遗传的功能单位,DNA分子中不同排列顺序的DNA片段构成特定的功能单位;含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列。

广义地说,基因是有功能的DNA片段。

第一节基因概念的历史演变2 基因概念的历史演变:(1)Mendel提出基因的存在(2)Morgan证实基因在染色体上(3)“一个基因一个酶”修正为“一个基因一个多肽链”“基因”一词的创立: 1909年,丹麦遗传学家约翰逊“基因”(gene)。

Gregor MendelThomas Hunt Morgan3 基因概念的理论基础3.1 一个基因一个酶1941年G W Beadle 和E L Tatum研究证实红色链孢霉各种突变体的异常代谢是一种酶的缺陷,产生这种酶缺陷的原因是单个基因的突变。

3.2 一个基因一条多肽链本世纪50年代,Yanofsky有些蛋白质不只由一种肽链组成,如血红蛋白和胰岛素,不同肽链由不同基因编码,因而又提出了“一个基因一条多肽链”的假设。

3.3 基因的化学本质是DNA(有时是RNA)1944年,O T Avery 证实了DNA是遗传物质。

有些病毒只含有RNA。

1953年沃森和克里克建立DNA分子的双螺旋结构模型。

3.4 基因顺反子(Cistron)的概念1955年,美国本兹尔(Benzer)提出顺反子的概念:是指编码一个蛋白质的全部组成所需信息的最短片段,即一个基因。

基因仅是一个功能单位,基因内部的碱基对才是重组单位和突变单位。

一对同源染色体上两突变(a和b)在同一染色体上时,称为顺式构型,在两个染色体上时,为反式构型;顺反互补测验(cis-trans test):比较顺式和反式构型个体的表型来判断两个突变是否发生在一个基因(顺反子)内的测验。

现代分子生物学 第三版 课后习题及答案(整理版)

现代分子生物学 第三版 课后习题及答案(整理版)

朱玉贤-现代分子生物学第三版课后习题及答案(整理版)现代分子生物学课后习题及答案(共10章)第一章绪论1.你对现代分子生物学的含义和包括的研究范围是怎么理解的?答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。

狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。

分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。

所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。

阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

2.分子生物学研究内容有哪些方面?答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。

由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。

由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。

研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。

遗传信息传递的中心法则(centraldogma)是其理论体系的核心。

表观遗传学&基因与基因组学

表观遗传学&基因与基因组学

第十三章 表观遗传学第一节 概 述基因的表达相同的基因型不同的表型:一.表观遗传学(epigenetic)DNA的序列不发生变化、基因表达改变、并且这种改变可稳定遗传。

二.表观遗传学研究的内容:1.基因选择性转录、表达的调控。

2.基因转录后调控。

(表观遗传通常被定义为DNA的序列不发生变化但是基因表达却发生了可遗传的改变,也就是说基因型未变化而表型却发生了改变,这种变化是细胞内除了遗传信息以外的其他可遗传物质的改变,并且这种改变在发育和细胞增殖的过程中能稳定的传递下去。

表观遗传学研究内容具体来说主要包括DNA甲基化表观遗传、染色质表观遗传、表观遗传基因表达调控、表观遗传基因沉默、细菌的限制性基因修饰等。

从更加广泛的意义上来说,DNA甲基化、组蛋白甲基化和乙酰化、基因沉默、基因组印记、染色质重塑、RNA剪接、RNA编辑、RNA干扰、x染色体失活等等都可以归入表观遗传学的范畴,而其中任何一个过程的异常都将影响基因结构以及基因表达,导致某些复杂综合症、多因素疾病或癌症。

) 三.表观遗传修饰从多个水平上调控基因表达:1.RNA水平:非编码RNA可通过某些机制实现对基因转录以及转录后的调控,例如microRNA、RNA干扰等2.蛋白质水平:通过对蛋白质的修饰或改变其构象实现对基因表达的调控,例如组蛋白修饰3.染色质水平:通过染色质位置、结构的变化实现对基因表达的调控,例如染色质重塑以上几个水平之间相互关联,任何一方面的异常都将影响染色质结构和基因表达。

四.表观遗传学的研究意义:1.表观遗传学补充了“中心法则”所忽略的两个问题,即哪些因素决定了基因的正常转录和翻译以及核酸并不是存储遗传信息的唯一载体。

2.表观遗传信息可以通过控制基因的表达时间、空间和方式来调控各种生理反应。

所以许多用DNA序列不能解释的现象都能够找到答案。

3.与DNA序列的改变不同,许多表观遗传的改变是可逆的,这使表观遗传疾病的治愈成为可能。

染色体基因组和基因ppt课件全篇

染色体基因组和基因ppt课件全篇
整理课件
3. 基因的种类
1) 根 据 产 物 类 别 可 分 为 蛋 白 质 基 因 和 RNA 基 因 (tRNA基因和rRNA基因);
2) 根据产生物的功能可以分为结构基因(酶和不影 响其它基因表达的蛋白质)和调节基因(阻碍蛋 白或转录激活因子)两大类。
整理课件
18
二、基因组的概念 19
一个物种的单倍体染色体的数目称为该物种的基因 组(genome)。
1 第三章 染色体、基因和基
因组
整理课件
2
第一节:原核生物和真核生物细胞 第二节:基因、基因组和C值 第三节:原核生物染色体及基因特征 第四节:染色质结构 第五节:真核生物染色体及结构特征 第六节:真核生物DNA序列特征
整理课件
第一节 原核生物3 与真核生物细胞
按照细胞的结构和遗传物质在细胞内的分布,可将 生命有机体划分为原核生物和真核生物两大类。
整理课件
基因数估计不会超过这28个数字的10%。通过DNA 与RNA杂交试验,在特定类型的细胞中表达的基 因数目大约是10 000个,但各种细胞表达的基因 不相同,估计要乘上一个系数(3-4)才能得到 基因组的基因数目,有功能的基因数目为30 00040 000个。
间接证据是通过对果蝇突变的研究:必需基因的 总数大约为5 000个,其平均基因大小为2 000 bp, 总长度相当于107bp,刚好为基因组大小的10%。 即使考虑这些因素,基因所占基因组的比例也不 会超过20%。
2. 原核生物中一般只有一条染色体,且大都带有单拷 贝基因;只有很少数基因(如rRNA基因)是以多拷 贝形式存在;整个染色体DNA几乎全部由功能基因与 调控序列所组成;几乎每个基因序列都与它所编码的 蛋白质序列呈线性对应状态。(无内含子)

第三章_人类基因组计划

第三章_人类基因组计划
人类基因组计划和 后基因组时代
20世纪,人类科学历程中的三大研究计划将 永垂史册:
40年代的曼哈顿原子弹计划 60年代的阿波罗登月计划 90的人类基因组计划(生命科学登月计
划)
基因、基因组的概念
基因:是遗传的基本物质和功能单位,DNA序列
中的一段脱氧核苷酸序列,是DNA分子中最小 的 功能单位。或者说,基因是决定一个生物物种的 所有生命现象的最基本的因子。
人类基因组是全人类的共同财富和遗产。人类 基因组序列图不仅奠定了人类认识自我的基石,推 动了生命与医学科学的革命性进展,而且为全人类 的健康带来了福音,使我们向着更加幸福的未来迈 出了意义非凡的一步。 我们向参与“人类基因组计划”的所有工作人 员致以热烈的祝贺!他们的创新与奉献,在科学技 术发展史上书写了光辉的一页;他们的杰出成就, 将永远成为人类历史上的一个里程碑! 我们积极倡议,全世界来共同庆祝“人类基因 组计划”所取得的科学成就。
HGP的目的是解码生命、了解生命的起源、了解生
命体生长发育的规律、认识种属之间和个体之间存 在差异的起因、认识疾病产生的机制以及长寿与衰 老等生命现象、为疾病的诊治提供科学依据。 列分析,遗传图、物理图、序列图是最优先考虑的 目标,必须保质保量完成的是DNA序列图。
HGP的主要任务是人类基因组的基因图的构建和序
日本
在美国的推动下于1990年开始的 。
日本对DNA序列图的贡献7%。 但与日本的其它领域的领先地位相比,日本的人类
基因组仍划”成立于1990年年底,诺贝
尔奖金获得者道赛特以自己的奖金建立了“人类多 态性研究中心”。法国民众至少捐助了5000万美元。 “人类多态性研究中心”与相关机构为基因组研究, 主要特点是注重整体基因组、cDNA和自动化。尤 其是第一代物理图与遗传图的构建作出了不可磨灭 的贡献。

医学遗传学名词解释及大题

医学遗传学名词解释及大题

第二章基因1.反向重复序列:两个顺序相同的互补拷贝在同一DNA链上呈反向排列构成。

2.基因:是编码RNA或一条多肽链所必需的全部核酸序列(通常指DNA序列)。

包括编码序列、两侧的侧翼序列及插入序列。

3.割裂基因(断裂基因):基因的编码序列在DNA上不是连续的,而是被不编码的序列隔开。

4.多基因家族(multigene famly)由一个祖先基因经过重复和变异所形成的一组基因。

5.假基因(pseudogene)在多基因家族中,某些成员在进化过程中获得一个或多个突变而丧失了产生蛋白产物的能力,这类基因称为假基因。

如:ψζ、ψα、ψβ6.突变(mutation):包括基因突变和染色体畸变7.基因突变(gene mutation):是指DNA分子中的核苷酸顺序发生改变,使遗传密码编码产生相应的改变,导致组成蛋白质的氨基酸发生变化,以致引起表型的改变。

8.自发突变或自然突变(spontaneous mutation):在没有人工特设的诱变条件下,由外界环境的自然作用或生物体内的生理和生化变化而发生的突变。

突变频率很低。

9.诱发突变(induced mutation):人工运用物理、化学或生物的方法所诱导的突变。

突变频率大大提高。

10.生殖细胞突变(germinal mutation)和体细胞突变(somatic mutation)突变体(mutant):携带突变Gene的细胞或个体。

野生型(Wild type):未突变Gene的细胞或个体。

11.突变的分子基础碱基替换(base substitution) 移码突变(frameshift mutation) 动态突变(dynamic mutation)12.碱基替换(base substitution)一种碱基被另一种碱基替换,又叫点突变(pointmutation)。

有两种形式:转换(transition):DNA分子中一个嘌呤被另一个嘌呤替代或一个嘧啶被另一个嘧啶所替代。

基因组

基因组

(1)几个结构基因的编码区无间隔:几个基因 几个结构基因的编码区无间隔: 的编码区是连续的、不间断的, 的编码区是连续的、不间断的,即编码一条多 肽链,翻译后切割成几个蛋白质。 肽链,翻译后切割成几个蛋白质。 mRNA没有 ′端帽子结构 没有5 (2)mRNA没有5 ′端帽子结构 5 ′ 端非编码区 RNA形成特殊的空间结构称翻译增强子 形成特殊的空间结构称翻译增强子。 的RNA形成特殊的空间结构称翻译增强子。 (3)结构基因本身没有翻译起始序列,必须在 结构基因本身没有翻译起始序列, 转录后进行加工、剪接,与病毒RNA5 ′端的帽 转录后进行加工、剪接,与病毒RNA5 ′端的帽 结构相连,或与其它基因的起始密码子连接, 结构相连,或与其它基因的起始密码子连接, 成为有翻译功能的完整mRNA。 成为有翻译功能的完整mRNA。
细菌多数基因按功能相关成串排列,组成操纵元的基因 细菌多数基因按功能相关成串排列, 表达调控的单元,共同开启或关闭, 表达调控的单元,共同开启或关闭,转录出多顺反子的 mRNA; mRNA;真核生物则是一个结构基因转录生成一条 mRNA, mRNA是单顺反子 mRNA,即mRNA是单顺反子,基本上没有操纵元的结 是单顺反子, 构,而真核细胞的许多活性蛋白是由相同和不同的多肽 形成的亚基构成的, 形成的亚基构成的,这就涉及到多个基因协调表达的问 真核生物基因协调表达要比原核生物复杂得多。 题,真核生物基因协调表达要比原核生物复杂得多。 原核基因组的大部分序列都为基因编码, 基因组的大部分序列都为基因编码 原核基因组的大部分序列都为基因编码,而核酸杂交等 实验表明:哺乳类基因组中仅约10%的序列为蛋白质 基因组中仅约 的序列为蛋白质、 实验表明:哺乳类基因组中仅约10%的序列为蛋白质、 rRNA、tRNA等编码 其余约90%的序列功能至今还不 rRNA、tRNA等编码,其余约90%的序列功能至今还不 等编码, 清楚。 清楚。 原核生物的基因为蛋白质编码的序列绝大多数是连续的, 原核生物的基因为蛋白质编码的序列绝大多数是连续的, 而真核生物为蛋白质编码的基因绝大多数是不连续的, 而真核生物为蛋白质编码的基因绝大多数是不连续的, 即有外显子(exon)和内含子 和内含子(intron), 即有外显子(exon)和内含子(intron),转录后需经剪接 (splicing)去除内含子 才能翻译获得完整的蛋白质, (splicing)去除内含子,才能翻译获得完整的蛋白质,这 去除内含子, 就增加了基因表达调控的环节。 就增加了基因表达调控的环节。

分子生物学:基因、基因组与基因组学

分子生物学:基因、基因组与基因组学

mRNA
cDNA 酶切
(不能被酶切)
DNA 酶切
DNA中有的序列在mRNA中丢失, 且丢失部分不响基因 功能, 酶切位点在内含子中。
(exon-intron-exon)n structure of various genes
histone
total = 400 bp; exon = 400 bp
操纵子(operon) 是指数个功能相关的结构基因串联在一起,构成信息区, 连同其上游的调控区(包括启动和操纵区)及其下游的转录终止信号构成的 基因表达单位。 4.结构基因无重叠现象,基因组中任何一段DNA不会用于编码2种蛋白质。 5.基因序列是连续的,无内含子结构。
6.编码区和非编码区(主要是调控序列)在基因组中约各占50%。(5%, 95%)
The size of the human genome is ~ 3 X 109 bp; almost all of its complexity is in single-copy DNA.
bony afimshphibians
reptiles
birds
The human genome is thought
2.4.1 原核生物基因组结构与功能的特点
1.基因组通常仅由一条环状双链DNA分子组成。 其DNA是与蛋白质结合,但并不形成染色体结构,只是习惯上将之称为染色 体。细菌染色体DNA在胞内形成一个致密区域,即类核(nucleoid),类核 无核膜将之与胞浆分开。 2.基因组中只有1个复制起点。 3.具有操纵子结构。
7.基因组中的重复序列很少。编码蛋白质结构基因多为单拷贝,但编码 rRNA的基因往往是多拷贝的,这有利于核糖体的快速组装。(15AA/秒, 2AA/秒)

分子生物学--基因与基因组课件

分子生物学--基因与基因组课件

2、物理图ቤተ መጻሕፍቲ ባይዱ:
以特异DNA序列为界标所展示的染色体图,它能反映生物 基因组中基因或标记间的实际距离,图上界标之间的距离是以 物理长度即核苷酸对数如bp、kb、Mb等来表示的。这些特 定的DNA序列可以是多态的,如RFLPs,但主要是非多态的如 STS、STR、EST和特定的基因序列等。
作图的基本方法:
1、家系分析定位
通过分析、统计家系中有关性状的连锁 情况和重组率而进行基因定位的方法。
有用的遗传标记: 取材方便 按孟德尔方式遗传 多态性标记位点
多态性:在一个群体中,某遗传特性存在若干种类型。

系性
分连

锁 分
定析

外祖父法
深绿代表红绿色盲患者,浅绿代表红 绿色盲基因携带者,黄色代表正常
家常
细胞融合技术

鼠细胞
人细胞






含全套鼠染色体 , 人 1号染色体,肽酶C
3、核酸分子杂交定位
• 应用已知的核酸探针与待定位的DNA序列进行杂交 对基因进行定位的方法 •具有互补序列两条单链核酸分子在一定条件下 按碱基互补配对原则退火形成双链的过程。 • 杂交的双方是待定位的核酸和已知核酸序列,已知 核酸序列称探针。
5’、、、AGCCGACTATGTCGAAGCTT、、、、、、 GCTTGACTATAAGACA、、、3’
3‘、、、TCGGCTGATACAGCTTCTAA、、、、、、 CGAACTGATATTCTGT、、、5‘
转录调控区
贮存RNA或蛋白质结构信息区 转录终止区
原核基因的结构特点
真核基因的结构特点
(二)基因作图的方法:
1、遗传图谱:

分子生物学课件 第3章 基因与基因组

分子生物学课件 第3章 基因与基因组
最初基因组被定义为一个单倍体细胞中的全套染色体,现 代分子生物学和遗传学则将基因组定义为一个生物体中的 所有遗传信息,由DNA或者RNA编码,包括所有的基因和 非编码序列。
实际应用中“基因组”这个词既可以特指储存在细胞核中 的整套DNA(即核基因组),也可以指储存在细胞器中的 整套DNA(即线粒体基因组或叶绿体基因组),还可以指 一些非染色体的遗传元件,如病毒基因组、质粒基因组和 转座元件等。
不同基因家族各成员之间的序列 相似度也不同:
序列高度相似:经典的基因家族,如rRNA基因家族和组蛋 白基因家族。 保守性较低,但是编码产物具有大段的高度保守的氨基酸 序列。
序列保守性很低,编码产物之间也只有很短的保守氨基酸 序列,但通常由于具有保守的结构和功能区域,因而编码产 物具有相似的功能。
基因家族的成员在染色体上 的分布形式不同:
成簇存在的基因家族(clustered gene family)或称基因簇 (gene cluster),如人类类α链基因簇和类β链基因簇。 散布的基因家族(interspersed gene family),如肌动蛋白 基因家族和微管蛋白基因家族。
基因间隔区较短且内含子较少,基因排列紧密。
3.2.7 沉默基因
沉默基因( Silent Gene)也叫隐蔽基因(Cryptic gene), 是处于不表达状态的基因。它可能是假基因,也可能是被关闭的 基因。这些基因以隐性的方式埋藏在染色体中,但遇到特殊因子 的刺激,有可能解除关闭变成显性基因。
3.2.8 RNA基因
tRNA、rRNA; 核仁小分子RNA(small nucleolar RNA, snoRNA) 微小分子RNA(microRNA, miRNA); 小分子干扰RNA(small interfering RNA, siRNA); 核内小分子RNA(small nuclear RNA, snRNA);

分子生物学第三章 基因与基因组的结构与功能

分子生物学第三章  基因与基因组的结构与功能
第三章 基因与基因组的结构与功能
3.1 基因的概念
基因(gene):是原核、真核生物以及病毒的
DNA和RNA分子中具有遗传效应的核苷酸序
列,是遗传的基本单位和突变体及控制性状
的功能单位。
结构基因
包括:
(编码蛋白质、tRNA、rRNA)
调控基因
(编码调控蛋白)
• 基因通过复制、转录和翻译合成蛋白质以及
• 有关基因的命名方法现在并没有严格的统一。
随着分子生物学的飞速发展。许许多多的基 因组都已大规模被测序,更多的基因也不断 的被鉴定。因而十分需要一个统一的命名方 法。
• 为便于学习理解,根据现代分子生物学中目
前使用最多的方法暂归纳如下:
• 1)用三个小写英文斜体字母表示基因的名
称,例如涉及乳糖(lactose)代谢相关的酶 基因lac;涉及亮氨酸(Leucine)代谢相关 的酶基因leu。
7)植物基因的命名
目前还没有适用于植物的惯用命名法 多数用1~3个小写英文斜体字母表示。 如:hsp90,热激蛋白基因
Oryza sativa,Arabidopsis thaliana
OsAthsp90;
Athsp90;Athsp90.3; Athsp90.6
• 8)脊椎动物基因的命名 • 用描述基因功能的1~4个小写字母和数字
• 2)在三个小写英文斜体字母后面加上一个斜体大写
字母表示其不同的基因座。全部用正体时表示蛋白 产物和表型
• 例如,对于大肠杆菌和其他细菌,用三个小写字母
表示一个操纵子,接着的大写字母表示不同基因座,
lac 操纵子的基因座:lacZ,lacY,lacA;其表达
产物蛋白质则是lacZ,lacY,lacA。

分子生物学课件第三章 基因与基因组的结构

分子生物学课件第三章 基因与基因组的结构

基因(gene) 1 基因(gene)
1.1 基因概念的发展
1866年G.J.Mendel提出 遗传因子”概念,但未将“基因” 提出“ ⑴ 1866年G.J.Mendel提出“遗传因子”概念,但未将“基因” DNA联系起来 联系起来。 遗传因子”只是一个假设的遗传单位。 与DNA联系起来。“遗传因子”只是一个假设的遗传单位。 1909年W.L.Johannson(丹麦 首创‘gene’一词 提出“ 丹麦) 一词, ⑵ 1909年W.L.Johannson(丹麦)首创‘gene 一词,提出“基 因型” 表现型” 因型”和“表现型”。“ A”、"B 代表显性。“ a”、"b ” 代 、"B” 代表显性。 、 表隐性。这些符号沿用至今。 表隐性。这些符号沿用至今。 1910年T.H.Morgen提出 基因”代表一个有机的化学实体。 提出“ ⑶ 1910年T.H.Morgen提出“基因”代表一个有机的化学实体。 40~50年代 DNA是遗传物质确成定论后 确立了“基因” 年代, 是遗传物质确成定论后, ⑷ 40~50年代,DNA是遗传物质确成定论后,确立了“基因” 是具有一定遗传效应的DNA片段的概念。 DNA片段的概念 是具有一定遗传效应的DNA片段的概念。 1955年Benzer提出顺反子 cistron)概念 提出顺反子( 概念。 ⑸ 1955年Benzer提出顺反子(cistron)概念。目前已从功能单 位的意义上把顺反子和基因统一起来。 位的意义上把顺反子和基因统一起来。一个顺反子可包含多个 突变子(muton)和重组子(recon)。 和重组子(recon) 突变子(muton)和重组子(recon)。
基因与基因组
gene and genome
引 言
基因的分子结构和组织对基因的表达有重要 的影响。 的影响。 基因的分子结构在原核生物中已搞的十分清 但在真核生物中还缺少完整的例子。 楚。但在真核生物中还缺少完整的例子。近几 年来各种生物基因组计划的开展, 年来各种生物基因组计划的开展,特别是最近 发展起来的生物信息学, 发展起来的生物信息学,为深入研究基因的分 子结构和组织奠定了基础。 子结构和组织奠定了基础。

第三章 基因组(医学分子生物学,2011.9,2011级研究生)

第三章 基因组(医学分子生物学,2011.9,2011级研究生)
26
6. 原核生物基因组中的基因密度非常高,基因 组序列中编码区所占的比例较大(约为50% 左右),非编码区内主要是一些调控序列。 7. 结构基因是连续的,没有内含子 8. 基因组中重复序列很少。编码蛋白质的结构 基因常为单拷贝(占99.7%) ,但编码rRNA 的 基因往往是多拷贝的。 9. 具有编码同工酶的同基因 10. 不同的原核生物基因组中的GC含量变化很 大,其范围从25%~75%。因此测量基因组 的GC含量可以用来识别细菌种类。
重复序列
单拷贝序列或低重复序列:在整个基因组
中仅出现一次或少数几次,大部分为编码蛋白 质的结构基因
34
P17
反向重复序列: 两个顺序相同的拷贝在DNA
链上呈反向排列。①两个反向排列的拷贝之间隔 着一段间隔序列;②两个拷贝反向串联在一起, 中间没有间隔序列,又称为回文结构。
串联重复序列: 重复序列 编码区串联重复: 人类5种组蛋白基因密集在
27
第四节
真核生物基因组
28
一、真核生物基因组远大于原核生物基因组
真核生物基因组复杂性体现在两个方面:
具有复杂多样的结构形式
具有复杂精细的基因表达调控机制
真核生物基因组结构庞大,人类单倍 体基因组DNA约3.3109 bp ,约有3~3.5万 个基因。大肠杆菌基因组只有4.6106 bp。
真核基因组中非编码序列(non-coding sequence, NCS) 占90%以上。人类基因组中,编码序列仅占 3%左右。这是真核生物与细菌、病毒的重要区别, 在一定程度上也是生物进化的标尺。 基因的内含子、调控序列等
非编码序列
重复序列
>90%
约占DNA 总量50%
32
编码序列:rRNA、tRNA、组蛋白、 免疫球蛋白的结构基因
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个基因是编码有功能的蛋白 质或RNA所必需的全部核酸序列(通 常是DNA序列),包括编码序列、编 码序列外的侧翼序列及插入序列。
• 插入图片
二、基因组
一个细胞或 病毒的全部遗传 信息称为基因组 (genome)。
第二节 原核生物基因组
什么是原核生物?
原核生物的核物质分散,没有核 膜包绕,遗传物质也比较简单,只有 一个环状的DNA,不含组蛋白,无核 仁,只有核糖体一种细胞器。
一、原核生物基因组一般特征
(四)原核生物的结构基因 原核生物的结 构基因是连续的。
• 插入图片
二、质粒
(一)质粒的命名 质粒(plasmid) 是存在于细菌染色 体以外的,具有自 主复制能力的环状 闭合的双链DNA分 子。
二、质粒
(二)质粒的种类
①耐药性质粒或R质粒 ②致育性质粒或称F质粒 ③毒力质粒或Vi质粒 ④细菌素质粒 ⑤代谢质粒
第三节 真核生物基因组
什么是真核生物?
真核生物较为复杂,有真正的细胞 核,有核膜、核仁。遗传物质与蛋白质 结合形成染色体而集中在细胞核中。细 胞质中有各种细胞器。
多细胞动物、植物等都属于真核生 物。
一、真核生物基因组一般特征
(一)细胞核基因组特征
1.体细胞一般为双倍体。 2.真核基因组远大于原核基因组,具 有许多复制起始点。 3.单顺反子结构 一个基因只编码一 条多肽链或RNA链。
一、真核生物基因组一般特征
线粒体有如下遗传特性
①mtDNA复制具有半自主性。 ②线粒体基因病为母系遗传。 ③异质性。 ④阈值效应。 ⑤mtDNA突变率高。 ⑥多拷贝。
第四节 病毒基因组
一、病毒基因组一般特征
(一)基因组大小 病毒的基因组很小, 基因数少,所含的遗传信息也很少。 (二)基因组核酸类型 病毒的基因组 可以由DNA或RNA中的一种组成。 (三)基因重叠 同一段DNA片段可编 码两种甚至三种蛋白质分子。
DNA病毒的致病性
乳头瘤病毒引起的疣
二、DNA病毒
(二)典型的DNA病毒 1.乙型肝炎病毒基因
组 HBV的基因组为不完
全双链环状DNA,由长 链和短链组成。长链是 负链,短链为正链。负 链DNA含有4个开放读码 框(ORF),分别称为S、 C、P和X区。
二、DNA病毒
(二)典型的DNA病毒
2.人乳头瘤病毒 病毒基因组为一双链环状DNA,长度
第三章 基因与基因组学
学习目标
掌握 基因、基因组、质粒的概念。 熟悉 原核生物、真核生物、病毒基 因组的特征。质粒的种类和特性。 了解 工程质粒的应用;常见病毒的 基因组。
目录
第一节 基因与基因组的概念
第二节 原核生物基因组
第三节 真核生物基因组
第四节 病毒基因组
第一节 基因与基因组的概念
一、基因的分子生物学定义
约7.8~8.0kb,只有其中一条DNA链可 作为转录模板,该链含有3个基因区 早期区、晚期区和上游调控区。
三、RNA病毒
(一)RNA病毒基因组的一般特点
1.RNA病毒的基因组 (1)单链RNA病毒
1)单正链RNA病毒 2)单负链RNA病毒 (2)双链RNA病毒 (3)逆转录病毒
三、RNA病毒
(一)RNA病毒基因组的一般特点
一、病毒基因组一般特征
(四)病毒基因可连续也可间断 (五)基因组中重复序列和非编码区少 (六)基因组主要是单倍体 (七)相关基因丛集 (八)含有不规则结构基因
二、DNA病毒
(一)DNA病毒基因组的一般特点 1.DNA病毒的基因组 (1)线性双链DNA病毒 (2)环状双链DNA病毒 (3)单链环状DNA病毒
二、质粒
(三)质粒的特性
①具有自我复制能力。 ②质粒DNA所编码的产物能赋予细菌某些特定的性状。 ③质粒不是细菌生命活动所必需的物质,可自行丢失 或经人工处理。 ④质粒具有转移性。 ⑤质粒可分为相容性和不相容性两种。
二、质粒 (四)工程质粒的应用
三、大肠杆菌基因组
它的遗传物质由染色体DNA及质粒DNA组成。染 色体DNA是环状双链分子。基因组分子为 2.64×109Da,总长度约为4.6×106个bp,整个基因 组约有3500个基因,已经定位的有1400多个。 染色体DNA的总长度为1100~1400μm,约为大肠杆 菌菌体长度的1000倍。
细菌、立克次体、支原体、衣原 体等都属于原核生物。
一、原核生物基因组一般特征
(一)类核结构 仅仅由一条环状双链DNA分子构 成,不形成明显的细胞核。
(二)一个复制起始点 原核生物的基因组中通 常只有一个DNA的复制起始点。
(三)操纵子结构 原核生物绝大多数的结构基因按照功 能的相关性成簇地串联于染色体上,连同其上游的调控区 以及下游的转录终止信号共同组成了一个基因表达单位。
一、真核生物基因组一般特征
(一)细胞核基因组特征 4.断裂基因 它的结构基因是不连续
的。Байду номын сангаас5.重复序列 真核基因组中非编码序
列中存在着许多重复序列。
一、真核生物基因组一般特征
(一)细胞核基因组特征 6.多态性
(1)限制性片段长度多态性 (2)单核苷酸多态性
一、真核生物基因组一般特征
(一)细胞核基因组特征
二、DNA病毒
(一)DNA病毒基因组的一般特点 2.细胞核内复制 一般DNA病毒在细胞核内复制,但
痘病毒除外。
二、DNA病毒
(一)DNA病毒基因组的一般特点 3.致病性 DNA病毒包括痘病毒科、疱疹病毒科、
腺病毒科、乳头瘤病毒科等。
DNA病毒的致病性
单纯疱疹病毒1型 引起的单纯疱疹
水痘-带状疱疹 病毒引起的带状 疱疹
7.端粒 真核生物染色体末端存在着一 种特殊结构,是DNA和蛋白质在染色体 末端膨大形成的一种结构,能保护染色 体末端,避免其融合或被降解。
端粒
一、真核生物基因组一般特征
(二)细胞质基因组特征 动物细胞线粒体DNA含有37个编码
基因,分别编码2个rRNA、22个tRNA和 13种蛋白质编码基因。
三、RNA病毒
(二)典型的RNA病毒
2.人类免疫缺陷病毒基因组 基因组为两条相同的单正链RNA,
以二聚体形式存在。每条RNA链含有 9749个核苷酸,包括3个结构基因(env、 gag和pol)和6个调节基因(tat、rev、 nef、vif、vpr和vpu),分别编码结构 蛋白和调节蛋白。
人类免疫缺陷病毒基因组
2.RNA病毒变异率
RNA病毒的变异率可高于DNA病毒1 至2个数量级。因为RNA逆转录成DNA所 依赖的逆转录酶的保真性差,进而造成 所形成的cDNA含有较多的突变位点。
三、RNA病毒
(二)典型的RNA病毒 1.丙型肝炎病毒基因组 基因组为单正链RNA,长度约为
9.5kb,由5′末端非编码区、编码区及 3′末端非编码区构成。
相关文档
最新文档