高考数学二轮复习考点解析7:数列的综合考查
高考数学二轮复习数列求和及其综合应用
(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.
山东高考数列知识点梳理
山东高考数列知识点梳理1. 引言数列是高中数学中的重要内容,也是高考考试中的常见题型。
在山东高考中,数列相关的知识点经常出现,掌握好这些知识点对于提高数学成绩至关重要。
本文将梳理山东高考数列的知识点,帮助同学们更好地理解和应用数列。
2. 数列的概念数列是指按照一定规律排列的一串数。
在数列中,每个数称为项,用字母a表示,而项的位置称为索引,用自然数n表示。
数列可以分为等差数列、等比数列以及其他特殊数列。
3. 等差数列等差数列是指相邻项之间具有相同差值的数列。
在山东高考中,等差数列相关的考点较多,主要包括以下内容:- 公式推导:根据等差数列的定义,可以推导出等差数列的通项公式和前n项求和公式。
深入理解这些公式的推导过程可以帮助同学们更好地掌握等差数列的性质和应用。
- 应用题:山东高考中常常出现一些应用题,要求同学们通过等差数列的知识解决实际问题。
这类题目需要同学们能够灵活运用等差数列的概念和公式,从中提取关键信息,进行合理推断和计算。
4. 等比数列等比数列是指相邻项之间具有相同比值的数列。
在山东高考中,等比数列也是一个重要的考点,主要包括以下内容:- 公式推导:与等差数列类似,等比数列也有通项公式和前n项求和公式。
同学们需要通过公比来推导出这些公式,掌握它们的推导过程,便于在解题时应用。
- 应用题:等比数列在实际问题中的应用也是经常出现的。
同学们需要学会识别等比数列,并能够根据题目中的条件和要求,灵活运用等比数列的概念和公式解决问题。
5. 其他特殊数列除了等差数列和等比数列,山东高考中还会考察一些其他特殊的数列,如斐波那契数列、等差(等比)数列的混合数列等。
同学们需要了解这些数列的定义和特点,并熟悉它们的应用。
6. 总结在山东高考中,数列是一个常见且重要的考点。
同学们需要掌握数列的概念和性质,熟练运用等差数列和等比数列的公式,灵活应用数列解决实际问题。
此外,同学们还需了解其他特殊数列的定义和特点。
通过系统学习和练习,相信同学们一定能够在山东高考中取得好成绩!以上简要梳理了山东高考数列的知识点,希望对同学们的学习有所帮助。
高考数学二轮复习考点知识专题讲解20---数列综合问题的探究(含解析)
9、设数列{an}是首项为 1,公差不为零的等差数列,Sn 为其前 n 项和,若 S1,S2,S4 成
等比数列,则数列{an}的公差为________.
【答案】:. 2
思路分析 先用公差 d 分别表示 S2,S4,列方程求出 d.
设公差为 d,其中 d≠0,则 S1,S2,S4分别为 1,2+d,4+6d.由 S1,S2,S4成等比数列,
2
2
得(2+d) =4+6d,即 d =2d.因为 d≠0,所以 d=2.
10、设公差为 d(d 为奇数,且 d>1)的等差数列{an}的前 n 项和为 Sn, 若 Sm-1=-9,Sm
*
=0,其中 m>3,且 m∈N ,则 an=________.
3 / 25
【答案】: 3n-12
ma1+am
【解析】: 因为 Sm-1=-9,Sm=0,所以 am=9.又 Sm=
32 项之和的比为 ,则这个数列的公差为__________.
27
【答案】:5
【解析】 由题意偶数项和为 192,奇数项和为 162,又 的公差为 5.
,所以这个数列
4、已知数列 {an} 是递增的等比数列,
,则数列{an}的前 n 项和等
1 / 25
于.
【答案】: 2n −1
a7
5、已知数列{an}是等差数列,且 <-1,它的前 n 项和 Sn 有最小值,则 Sn 取到最小正 a6
6 / 25
3
5
解法 2 因为 S6=S3(1+q ),所以由 S6-2S3=5 得 S3= 3 >0,从而 q>1,故 S9-S6=
q -1
6
6
3
3
6 5q
数列的高考知识点总结
数列的高考知识点总结数列是高中数学中的一个重要知识点,也是高考考试中常常出现的题型。
掌握好数列的概念、性质以及解题方法,对于高考取得较好的成绩非常重要。
本文将对数列的相关知识进行总结归纳,希望对高中生进行复习和备考提供一定的帮助。
一、概念与性质数列是由一系列按照一定规律排列的数所组成的。
数列中的每个数称为数列的项,用$a_n$表示第n项。
数列中的规律可以通过数列的通项公式来表示。
1.1 等差数列等差数列的特点是每一项与它的前一项的差值都相等。
设首项为$a_1$,公差为$d$,则等差数列的通项公式为$a_n=a_1+(n-1)d$。
1.2 等比数列等比数列的特点是每一项与它的前一项的比值都相等。
设首项为$a_1$,公比为$q$,则等比数列的通项公式为$a_n=a_1q^{(n-1)}$。
1.3 递推数列递推数列是指根据前几项的值,通过某种规律得到后面的项。
递推数列的通项公式一般比较复杂,常见的有斐波那契数列、阶乘数列等。
1.4 序列极限当$n$趋向于无穷大时,数列可能会趋向于某个常数或无穷大。
这个常数或无穷大就是数列的极限。
数列的极限有正无穷大、负无穷大以及存在有限极限三种情况。
二、数列求和求和是数列相关题目中的常见题型,也是高中数学考试必考的内容之一。
对于等差数列和等比数列,求和的方法有所不同。
2.1 等差数列求和对于首项为$a_1$,公差为$d$的等差数列,前n项的和可以通过以下公式求得:$S_n=\frac{n}{2}(a_1+a_n)$。
其中,$a_n$为第n项的值。
2.2 等比数列求和对于首项为$a_1$,公比为$q$的等比数列,当$q \neq 1$时,前n项的和可以通过以下公式求得:$S_n=\frac{a_1(1-q^n)}{1-q}$。
当$q =1$时,等比数列求和的公式为$S_n=na_1$。
三、数列的应用数列的应用非常广泛,它可以用于解决很多实际问题。
3.1 约瑟夫环问题约瑟夫环问题是数列应用的一个典型例子。
2024年高考数学专项复习数列求和与递推综合归类 (解析版)
数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。
高三数学二轮复习数列的综合应用课件
P2
P1
Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,
求由该折线与直线y=0,x=x1,x=xn+1
所围成的区域的面积Tn.
O
x 1 x2
x3
x4
x
已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,
(1)求S1,S2及数列{Sn}的通项公式;
(2)若数列{bn}满足bn =
1
7
≤|Tn|≤ .
3
9
−1
,且{bn}的前n项和为Tn,求证:当n≥2时,
已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(1)求S1,S2及数列{Sn}的通项公式;
(2)若数列{bn}满足bn =
Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=
xn+1所围成的区域的面积Tn.
y
P4
P3
P2
P1
O
x1 x2
x3
x4
x
数列求和的
基本方法
01
公式法
02
分组求和法
03
错位相减法
04
倒序相加法
05
裂项相消法
考点2:数列与不等式综合问题
已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
1
7
≤|Tn|≤ .
3
9
−1
,且{bn}的前n项和为Tn,求证:当n≥2时,
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
备战2025年高考 理科数学考点一遍过:数列的综合应用
数列的综合应用能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系,往往用到转化与化归的思想方法.考向一等差、等比数列的综合应用解决等差数列与等比数列的综合问题,关键是理清两个数列的关系:(1)如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;(2)如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.典例1已知各项均为正数的数列{}n a 是公差为2的等差数列,若数列141231,,,,,,,,n a a b b b b 成等比数列,则32b a =A .27B .81C .275D .2435【答案】D【解析】由141,,a a 成等比数列,得2141a a =⨯,又因为正数的数列{}n a 是公差为2的等差数列,所以214116a a a =⨯=+,解得31=a 或12a =-(舍去),所以2325a =+=,因为数列1411,,,,a a b 23,,,,n b b b 成等比数列,设其公比为q ,则131a q ==,所以5313243b =⨯=,所以322435b a =.故选D .【名师点睛】本题考查了等比、等差数列的通项公式的应用,属于基础题.求解时,由141231,,,,,,,,n a a b b b b 成等比数列,结合{}n a 是公差为2的等差数列,得31=a ,进而求出23,a b ,即可得答案.典例2已知等差数列{}n a 中,1242,16a a a =+=.(1)设2n a n b =,求证:数列{}n b 是等比数列;(2)求{}n n a b +的前n 项和.【答案】(1)见解析;(2)()3231142277n n n +++⋅-.【解析】(1)设等差数列{}n a 的公差为d ,由2416a a +=,可得()()11316a d a d +++=,即12416a d +=.又由12a =,可得3d =.故()()1121331n a a n d n n =+-=+-⋅=-,依题意,312n n b -=,因为323131222n n n n b b ++-==(常数),故{}n b 是首项为4,公比8q =的等比数列.(2)因为{}n a 的前n 项和为()()13122n n a a n n ++=,{}n b 的前n 项和为31332142214211877n n n b b q q -+--⋅==⋅---,故{}n n a b +的前n 项和为()3231142277n n n +++⋅-.【名师点睛】本题主要考查了等差数列和等比数列的通项公式,以及等差、等比数列的求和的应用,其中熟记等差、等比数列的通项公式和求和公式是解答的关键,着重考查了推理与运算能力,属于基础题.求解本题时,(1)设{}n a 的公差为d ,由题意求得3d =,即可求得数列的通项公式,进而得到数列{}n b 的通项公式,利用等比数列的定义,即可作出证明;(2)由(1)可得{}n a 的前n 项和和{}n b 的前n 项和,即可得到数列{}n n a b +的前n 项和.1.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.考向二数列与函数、不等式等的综合应用1.数列可看作是自变量为正整数的一类函数,数列的通项公式相当于函数的解析式,所以我们可以用函数的观点来研究数列.解决数列与函数综合问题的注意点:(1)数列是一类特殊的函数,其定义域是正整数集,而不是某个区间上的连续实数,所以它的图象是一群孤立的点.(2)转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题.(3)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化.2.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:(1)判断数列问题中的一些不等关系;(2)以数列为载体,考查不等式的恒成立问题;(3)考查与数列问题有关的不等式的证明问题.在解决这些问题时,要充分利用数列自身的特点,例如在需要用到数列的单调性的时候,可以通过比较相邻两项的大小进行判断.在与不等式的证明相结合时,注意构造函数,结合函数的单调性来证明不等式.典例3已知函数()x f x a =的图象过点11,2⎛⎫ ⎪⎝⎭,且点()*21,n a n n n ⎛⎫-∈ ⎪⎝⎭N 在函数()x f x a =的图象上,又{}n b 为等比数列,3144,b a b a ==.(1)求数列{}n a 及{}n b 的通项公式;(2)若()31n n n n a b c n +⋅⋅=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:4n S <.【答案】(1)212n n n a -=,32n n b -=;(2)见解析.【解析】(1) 函数()x f x a =的图象过点11,2⎛⎫ ⎪⎝⎭,()11,22x a f x ⎛⎫∴== ⎪⎝⎭.又点()*21,n a n n n ⎛⎫-∈ ⎪⎝⎭N 在函数()x f x a =的图象上,从而2112n n a n -=,即212n n n a -=,∴31441,2,b a b a ====∴公比2,q =3332n n n b b q --∴=⋅=.(2)()()()231312313124n n n n n n n n a b n n c n n --+⋅⋅+⋅⋅+⋅===,()()141211111112124313313313331n c n n n n n n n n n n ⎛⎫⎛⎫⎛⎫∴===<-=- ⎪ ⎪ ⎪+⋅++++⎝⎭⎝⎭⎝⎭,121111111114141422311n n S c c c n n n ⎛⎫⎛⎫∴=+++<-+++-=-< ⎪++⎝⎭⎝⎭.【名师点睛】本题考查了通过点在函数图象上求出函数解析式、以及考查求等比数列的通项公式、利用裂项相消法求数列的前n 项和.2.已知数列{}n a 为等比数列,数列{}n b 为等差数列,且111b a ==,212b a a =+,3326a b =-.(1)求数列{}n a ,{}n b 的通项公式;(2)设21n n n c b b +=,数列{}n c 的前n 项和为n T ,证明:1153n T ≤<.考向三等差、等比数列的实际应用1.数列实际应用中的常见模型①等差模型:增加或减少的量是一个固定的常数c ,c 是公差;②等比模型:后一个量与前一个量的比是一个固定的常数q ,q 是公比;③递推数列模型:题目中给出的前后两项之间的关系不固定,随项的变化而变化,由此列递推关系式.2.解答数列实际应用题的步骤①审题:仔细阅读题干,认真理解题意;②建模:将已知条件翻译成数学语言,将实际问题转化为数学问题;③求解:求出该问题的数学解;④还原:将所求结果还原到实际问题中.在实际问题中建立数学模型时,一般有两种途径:①从特例入手,归纳猜想,再推广到一般结论;②从一般入手,找到递推关系,再进行求解.典例4某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年比上一年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯利润(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)从第几年开始获得纯利润?(2)若五年后,该台商为开发新项目,决定出售该厂,现有两种方案:①年平均利润最大时,以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂.问哪种方案较合算?【解析】由题意,知每年的经费构成了以12为首项,4为公差的等差数列,则f (n )=50n-[12n+()12n n -×4]-72=-2n 2+40n-72.(1)获得纯利润就是要求f (n )>0,即-2n 2+40n-72>0,解得2<n <18.又n ∈N *,故从第三年开始获得纯利润.(2)①年平均利润为op =40-2(n+36)=16-2(-2≤16,当且仅当n =6时取等号.故此方案获利6×16+48=144万美元,此时n =6.②f (n )=-2n 2+40n-72=-2(n-10)2+128,当n =10时,f (n )max =128.故此方案共获利128+16=144万美元.比较两种方案,在获利相同的前提下,第①种方案只需六年,第②种方案需要十年,故选择第①种方案.3.某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元、绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%.照此推算,此人2019年的年薪为______万元(结果精确到0.1).考向四数列中的探索性问题对于数列中的探索性问题主要表现为存在型,解答此类问题的一般策略是:(1)先假设所探求对象存在或结论成立,以此假设为前提进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在;(2)若推不出矛盾,能求得符合题意的数值或取值范围,则能得到肯定的结论,即得到存在的结果.典例5已知数列{}满足1=0,218a =,且对任意,∈∗都有()221211324m n m n a a a m n --+-+=+-.(1)求3,5;(2)设=2r1−2K1(∈∗).①求数列{}的通项公式;②设数列11n n b b +⎧⎫⎨⎬⎩⎭的前项和为,是否存在正整数,,且1<<,使得1,,成等比数列?若存在,求出,的值,若不存在,请说明理由.【解析】(1)由题意,令=2,=1,则()231232214a a a +=+-,解得3=1.令=3,=1,则()251332314a a a +=+-,解得5=5.(2)①以+2代替,得2r3+2K1=22r1+3.则[2(r1)+1−2(r1)−1]−(2r1−2K1)=3,即r1−=3.所以数列{}是以3为公差的等差数列.1=3−1=1,∴=1+(−1)×3=3−2.②因为()()111111323133231n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以11111111113447323133131n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,则1=14,=3r1,=3r1.因为1,,成等比数列,所以2131431p q p q ⎛⎫=⋅ ⎪++⎝⎭,即26134p q p q ++=.又1<<,所以34433q q q +=+>,则2613p p +>,解得3333p -+<<.又1<,且∈∗,则=2,=16.所以存在正整数=2,=16,使得1,,成等比数列.4.已知公差不为零的等差数列{}n a 满足11a =,2a 是1a 与5a 的等比中项.(1)求数列{}n a 的通项公式;(2)设2n an b =,判断数列{}n b 是否为等比数列.如果是,求数列{}n b 的前n 项和n S ,如果不是,请说明理由.考向五数列的求和求数列的前n 项和,根据数列的不同特点,通常有以下几种方法:(1)公式法,即直接利用等差数列、等比数列的求和公式求解;(2)倒序相加法,即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.(3)裂项相消法,即将数列的通项拆成结构相同的两式之差,然后消去相同的项求和.使用此方法时必须注意消去了哪些项,保留了哪些项,一般未被消去的项有前后对称的特点.常见的裂项方法有:(4)错位相减法,若数列{}n a 是等差数列,{}n b 是等比数列,且公比为(1)q q ≠,求{}n n a b ⋅的前n 项和时,常用错位相减法求和.基本步骤是:列出和式,两边同乘以公比,两式相减并求和.在写出n S 与n qS 的表达式时,要将两式“错项对齐”,便于准确写出n n S qS -的表达式.在运用错位相减法求和时需注意:①合理选取乘数(或乘式);②对公比q 的讨论;③两式相减后的未消项及相消项呈现的规律;④相消项中构成数列的项数.(5)分组求和法,如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.典例6已知等比数列的前n 项和为,且满足.(1)求的值及数列的通项公式;(2)若数列满足,求数列的前n 项和.【解析】(1)由题意知1122222,2n n n n n n a S S p p n +-=-=+--=³,则234,8a a ==,又1142a S p ==+,且{}n a 成等比数列,则48424p =+,解得1p =-.则112,222n n n a a -==⨯=.(2)由1(3),2n n a b n a p +=+可得2n n n b =,则212222n n n T =+++ ,2311122222n n n T +=+++ ,两式相减得231111(1)11111221222222212n n n n n n n T ++-=++++-=-- ,则11222n n n n T -=--.典例7已知数列{}n a 是公差不为0的等差数列,12a =,且2a ,3a ,41a +成等比数列.(1)求数列{}n a 的通项公式;(2{}n b 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d ,由12a =和2a ,3a ,41a +成等比数列,得,解得,或.当时,,与成等比数列矛盾,舍去,,即数列的通项公式为(2)=,1211111111223111n n n S b b b n n n n =+++=-+-++=-=+++.5.设数列{}n a 满足*123232()n n a a na a n ⋅⋅⋅⋅=∈ N .(1)求{}n a 的通项公式;(2)求数列122n n a +⎧⎫+⎨⎬⎩⎭的前n 项和n S .1.在等差数列{}n a 中,11a =,且21a a -,31a a -,41a a +成等比数列,则5a =A .7B .8C .9D .102.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则A .10a d >,40dS >B .10a d <,40dS <C .10a d >,40dS <D .10a d <,40dS >3.已知等比数列{}n a 中,23a =,581a =,3log n n b a =,数列{}n b 的前n 项和为n T ,则8T =A .36B .28C .45D .324.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{a n }中,12a =,公和为5,则18=a A .2B .﹣2C .3D .﹣35.中国人在很早就开始研究数列,中国古代数学著作《九章算术》、《算法统宗》中都有大量古人研究数列的记载.现有数列题目如下:数列{}n a 的前n 项和214n S n =,*n ∈N ,等比数列{}n b 满足112b a a =+,234b a a =+,则3b =A .4B .5C .9D .166.如图所示的三角形数阵满足:其中第一行共有一项:02,第二行共有二项:12,22,第三行共有三项:32,42,52,依此类推,第n 行共有n 项,若该数阵的第15行中的第5个数是2m ,则m =A .105B .109C .110D .2157.已知数列{}n a 的通项公式)*11n a n n n =∈++N ,数列{}n a 的前n 项和n S 满足()*9n S n >∈N ,则n 的最小值为A .98B .99C .100D .1018.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足:100010182πa a +=,620122b b =,则2201632015tan 1a a b b +=+__________.9.在等比数列{}n a 中,14a ,42a ,7a 成等差数列,则35119a a a a +=+_______.10.已知函数2()cos(π)f n n n =,且()(1)n a f n f n =++,则1220a a a +++= __________.11.设n S 为数列{}n a 的前n 项和,已知37a =,()12222n n a a a n -=+-≥.(1)证明:{}1n a +为等比数列;(2)求{}n a 的通项公式,并判断n ,n a ,n S 是否成等差数列?12.已知等比数列{}n a 的前n 项和为n S ,公比0q >,2222S a =-,342S a =-.(1)求等比数列{}n a 的通项公式;(2)设2log n n b a =,求11{}n n b b +的前n 项和n T .13.已知数列{}n a 的前n 项和为n S ,点()()*,n n S n ∈N在函数2()2f x x x =+的图象上.(1)求数列{}n a 的通项公式;(2)设12n a n n b a -=,求数列{}n b 的前n 项和n T .14.设等差数列{}n a 的前n 项和为n S ,且534,,2S S S 成等差数列,521322a a a =+-.(1)求数列{}n a 的通项公式;(2)设12n n b -=,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .15.已知正项数列{}n a 的前n 项和为n S,1n a =-.(1)求1a 的值,并求数列{}n a 的通项公式n a ;(2)设2n an n b a =+,数列{}n b 的前n 项和为n T ,求使不等式2626n n T n <+- 成立的正整数n 组成的集合.1.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>2.(2017新课标全国Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .24-B .3-C .3D .83.【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .1104.(2017北京理科)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________.5.(2019年高考全国II 卷理数)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.6.(2017天津理科)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .7.(2019年高考浙江卷)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n c n *=∈N证明:12+.n c c c n *++<∈N8.(2019年高考天津卷理数)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n k k c n c b n +=⎧<<=⎨=⎩其中*k ∈N .(i )求数列(){}221n n a c -的通项公式;(ii )求()2*1ni i i a c n =∈∑N .变式拓展1.【答案】(1)21,3n n n a n b =+=;(2)()331(2)2n n n -++.【解析】(1)由11a b =,42a b =,得4212341223()()12S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =.(2)由(1)知(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++ 2(3521)(333)n n =++++++++ (321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++.【名师点睛】本题主要考查等差数列与等比数列,熟记通项公式、前n 项和公式即可,属于常考题型.(1)先由题中条件得到422312S T a a -=+=,再设等差数列{}n a 的公差为d ,结合题中数据求出公差,进而可得{}n a 的通项公式;设等比数列{}n b 的公比为q ,求出公比,即可得出{}n b 的通项公式;(2)先由(1)的结果,得到(21)3n n n a b n +=++,再由分组求和法,结合等差数列与等比数列前n 项和公式,即可得出结果.2.【答案】(1)12,21n n n a b n -==-;(2)1153n T ≤<.【解析】(1)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由题意得11d q +=+,()22126q d =+-,解得2d q ==,所以12,21n n n a b n -==-.(2)因为21n n n c b b +=()()1111212342123n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以111111111453723212123n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111432123342123n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭,因为111042123n n ⎛⎫+> ⎪++⎝⎭,所以13n T <,又因为{}n T 在[)1,+∞上单调递增,所以当1n =时,n T 取最小值115T =,所以1153n T ≤<.【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是熟悉式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k⎛⎫=- ⎪++⎝⎭;(21k =;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦.此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.3.【答案】10.4【解析】由题意可得,基础工资构成以2100元为首项,以210元公差的等差数列,绩效工资构成以2000元为首项,以公比为1.1的等比数列,则此人2019年每月的基础工资为()21002101013990+⨯-=元,每月的绩效工资为92000 1.14715.90⨯≈元,则此人2019年的年薪为()1239904715.9010.4⨯+≈万元,故答案为:10.4.【名师点睛】本题考查了等差数列和等比数列在实际生活中的应用,属于中档题.4.【答案】(1)21n a n =-;(2)是,()2413n n S =⨯-.【解析】(1)设等差数列{}n a 的公差为()d d ≠0,则由11a =得21511;414a a d d a a d d =+=+=+=+,因为2a 是1a 与5a 的等比中项,所以2215a a a =⋅,即2(1)14d d +=+,解得0d =(舍)或2d =,故数列{}n a 的通项公式为1(1)21n a a n d n =+-⋅=-.(2)由2n a n b =,得①当1n =时,11220a b ==≠;②当2n ≥时,12123122422n n a n n a n n b b ----===,故数列{}n b 是以2为首项,4为公比的等比数列,所以()111422411143n n n n q S b q --=⋅=⋅=⨯---.【名师点睛】本题主要考查等差数列与等比数列,熟记等差数列与等比数列的通项公式以及求和公式即可,属于常考题型.(1)先设等差数列{}n a 的公差为()d d ≠0,根据题中条件求出公差,即可得到通项公式;(2)根据2n an b =,结合等比数列的定义,可判断出{}n b 为以2为首项,4为公比的等比数列,进而可求出结果.5.【答案】(1)2n a n =;(2)()()111222n n n n ++-⋅++.【解析】(1)由n =1得12a =,因为*123232()n n a a na a n ⋅⋅⋅⋅=∈ N ,所以当n ≥2时,()()1123123122n n a a a n a n --⋅⋅⋅⋅-=≥ ,由两式作商得:2n a n=(n >1且n ∈N *),又因为1a =2符合上式,所以2n a n=(n ∈N *).(2)设122n n nb a ++=,则b n =n +n ·2n ,所以S n =b 1+b 2+…+b n =(1+2+…+n )+23122232(1)22n n n n -⎡⎤+⋅+⋅++-+⋅⎣⎦设T n =2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,①所以2T n =22+2·23+…+(n -2)·2n -1+(n -1)·2n +n ·2n +1,②①-②得:-T n =2+22+23+…+2n -n ·2n +1,所以T n =(n -1)·2n +1+2.所以()12n n n n S T +=+,即()()111222n n n n S n ++=-⋅++.【名师点睛】本题主要考查了赋值法及方程思想,还考查了分组求和法及乘公比错位相减法求和,考查计算能力及转化能力,属于中档题.求解时,(1)在*123232()n n a a na a n ⋅⋅⋅⋅=∈ N 中,将1n -代n 得:()()1123123122n n a a a n a n --⋅⋅⋅⋅-=≥ ,由两式作商得:2n a n=,问题得解.(2)利用(1)中结果求得b n =n +n ·2n ,分组求和,再利用等差数列前n 项和公式及乘公比错位相减法分别求和即可得解.专题冲关1.【答案】C【解析】设等差数列{}n a 的公差为d ,由213141,,a a a a a a --+成等比数列,得()()()2312141a a a a a a -=-+,即()()2223d d d =⋅+,解得2d =或0d =(舍去),所以5141429a a d =+=+⨯=,故选C.【名师点睛】本题主要考查了等比中项的应用,以及等差数列通项公式的应用,着重考查了运算与求解能力,属于基础题.由213141,,a a a a a a --+成等比数列,求得2d =,再由等差数列的通项公式,即可求解.2.【答案】B【解析】()()()224381111327530a a a a d a d a d d a =⨯⇒+=++⇒+=,不妨令15a =-,3d =,42S =-.故选B.【名师点睛】本小题主要考查等比中项的性质,考查等差数列基本量的计算,属于基础题.根据等比中项列方程,然后利用基本元的思想,将已知转化为1,a d 的形式,用特殊值法选出正确选项.3.【答案】B【解析】由题可得:352273a q q a ==⇒=,所以2212333n n n n a a q ---==⋅=,故13log 31n n b n -==-,所以{}n b 是以公差为1的等差数列,故()1888282b b T +==,故选B .【名师点睛】本题考查等比数列和等差数列的通项和前n 项和,先求出q =3,得到等比数列的通项是解题的关键,属于基础题.根据23a =,581a =可以先求出公比q ,然后根据等比数列通项公式得到n a ,从而得到{}n b 为等差数列,再根据等差求和公式即可.4.【答案】C【解析】根据题意,等和数列{a n }中,12a =,公和为5,则125a a +=,可得23a =,又由a n −1+a n =5,则n a 23n n ⎧=⎨⎩,为奇数,为偶数,则18=a 3.故选C .【名师点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题.5.【答案】C【解析】由题意可得:211221214b a a S =+==⨯=,22234421142344b a a S S =+=-=-⨯=,则等比数列的公比21331b q b ===,故32339b b q ==⨯=.本题选择C 选项.6.【答案】B【解析】由题中三角形数阵中可知,第一行有1个数字,第二行有2个数字,第三行由3个数字, ,第n 行有n 个数字,由等差数列的前n 项和公式可得前14行共有()141141052⨯+=个数字,即第14行的最后一个数字为1042,所以第15行的第1个数字为1052,第15行的第5个数字为1092,故选B .【名师点睛】本题主要考查了数表、数阵数列的应用,其中根据数表、数阵数列的数字排列规律,合理利用等差、等比数列的通项公式和前n 项和公式求解是解答的关键,着重考查了分析问题和解答问题的能力,以及转化与化归思想的应用.解本题时,根据三角形数阵的数字的排列规律,利用等差数列的求和公式,可计算得出第14行的最后一个数字,从而求得第15行的第5个数字的值.7.【答案】C【解析】化简n a,得到通项公式为:n a =n a =-,1n a -=,11a =,则有1n S =10>99n ⇒>,则n 的最小值为100.故选C.【名师点睛】本题考查累加法求和,属于基础题.对于本题,化简n a ,利用累加法直接求n S 得值即可.8.【答案】【解析】∵数列{}n a 是等差数列,数列{}n b 是等比数列,∴10001018100922πa a a +==,即1009πa =;26201210092b b b ⋅==.∴220161009232015100922πtantan tan 113a a ab b b +===++.故答案为.9.【答案】14【解析】14a ,42a ,7a 成等差数列,17444a a a ∴+=,即6311144a a q a q +=,解得:32q =,243511108611911114a a a q a q a a a q a q q ++∴===++.本题正确结果:14.【名师点睛】本题考查等差数列和等比数列的综合应用问题,关键是能够求解出等比数列的基本量,属于基础题.求解时,根据三项成等差数列可构造方程求得等比数列的公比q 满足32q =,将所求式子化为1a 和q 的形式,化简可得结果.10.【答案】20-【解析】当n 为奇数时,()()1n a f n f n =++()()()()2222cos π1cos 1π121n n n n n n n -⎡⎤==++=+⎣⎦++.当n 为偶数时,()()1n a f n f n =++()()()()2222cos π1cos 1π121n n n n n n n ⎡⎤=+-=-+++⎣⎦-=.()21,21n n n a n n 为奇数,为偶数+⎧⎪∴=⎨-+⎪⎩.所以1220357911133941a a a +++=-+-+-++- ()()()()()35791113394121020-+-+-++-=-⨯=-= .【名师点睛】本题主要考查了分类思想及分组求和方法,考查计算能力,属于中档题.求解时,对n 的取值分奇数、偶数求得n a ,再利用分组求和法求和即可.11.【答案】(1)见解析;(2)见解析.【解析】∵37a =,3232a a =-,∴23a =,∴121n n a a -=+,∴11a =,()1111222211n n n n a a n a a ---++==≥++,∴{}1n a +是首项为2,公比为2的等比数列.(2)由(1)知,12nn a +=,∴21nn a =-,∴11222212n n n S n n ++-=-=---,∴()12222210n n n n n S a n n ++-=+----=,∴2n n n S a +=,即n ,n a ,n S 成等差数列.【思路点拨】(1)根据条件构造等比数列:1121n n a a -+=+(),再根据等比数列的定义给予证明;(2)先根据等比数列通项公式求得12nn a +=,即得{}n a 的通项公式,再根据分组求和法得n S ,最后判断2n n n S a +=是否成立.12.【答案】(1)2nn a =;(2)1n nT n =+.【解析】(1)等比数列{}n a 的前n 项和为n S ,公比0q >,2222S a =-①,342S a =-②.②﹣①,得3422a a a =-,则220q q --=,又0q >,所以2q =,因为2222S a =-,所以12222a a a +=-,所以12a =,所以2n n a =.(2)由(1)得22log log 2nn n b a n ===,所以11111(1)1n n b b n n n n +==-++,所以11{}n n b b +的前n 项和11111111223111n n T n n n n =-+-++-=-=+++ .【名师点睛】裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.【答案】(1)21n a n =+()*n ∈N ;(2)1614499n n n T ++=-.【解析】(1)把点()()*,n n S n ∈N 代入2()2f x xx =+得22n S n n =+,*n ∈N ,则1n =时,13a =,2n ≥时,2212(1)2(1)21n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦,经验证,1n =也满足21n a n =+()*n ∈N ,所以21n a n =+()*n ∈N .(2)由(1)得21n a n =+,所以12(21)4n a n n n b a n -==+,则123434547494(21)4nn T n =⨯+⨯+⨯+⨯+++ ,①23414345474(21)4(21)4n n n T n n +=⨯+⨯+⨯++-++ ,②①-②得1234133424242424(21)4n n n T n +-=⨯+⨯+⨯+⨯++⨯-+ ()124144(21)414n n n +⨯-=+-+-故1614499n n n T ++=-.【名师点睛】本题主要考查了数列通项的求法,以及数列前n 项和的方法.求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等.求数列前n 项和常用的方法有:错位相减、裂项相消、公式法、分组求和等.属于中等题.14.【答案】(1)a n =2n −1;(2)12362n n n T -+=-.【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由534,,2S S S 成等差数列,可知345S S S +=,即120,a d -=①由521322a a a =+-得:1420a d --=,②联立①②解得11,2a d ==.因此,()*21n a n n =-∈N.(2)令()11212n n n n a c n b -⎛⎫==- ⎪⎝⎭,则12n n T c c c =+++ ,∴()21111113521222n n T n -⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎝⎭⎝⎭,③()23111111352122222nn T n ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,④③−④,得()2111111122122222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⋅+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111212n -⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()1212n n ⎛⎫--⋅ ⎪⎝⎭=2332nn +-,所以12362n n n T -+=-.【名师点睛】本题主要考查等差数列的公差及首项的求法,是中档题,解题时要认真审题,注意等差数列的性质、错位相减法的合理运用.15.【答案】(1)11,21n a a n ==-;(2){}1,2.【解析】(1)由1n a =-,得当1n =时,11a =;当2n时,1n n n a S S -=-,代入已知有11n n S S -=-+,即211)n S -=-.又0n a >,1=-(舍)1=-1(2)n -=,由定义得是以1为首项,1为公差的等差数列,n =,则21n a n =-.(2)由题得212=212n an n n b a n -=+-+,所以数列{}n b 的前n 项和212122222=(121)233n n n n T n n ++--+-+=+.因为2626nn T n <+- ,所以2(2)9280,n n -⋅+<即128n <<,所以03n <<.所以正整数n 组成的集合为{1,2}.【名师点睛】本题主要考查数列的通项,考查等差、等比数列求和,考查数列分组求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.求解时,(1)由数列递推式求出首项,进一步得到是以1为首项,1为公差的等差数列,求出等差数列的通项公式可得n S ,代入1n a =求得数列{}n a 的通项公式;(2)先求出212223n n T n +-=+,再代入不等式解不等式即得解.直通高考1.【答案】B 【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则()()212341110,a a a a a q q+++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥2.【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A .【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=,所以对应满足条件的最小整数293054402N ⨯=+=,故选A.【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.4.【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==.【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.5.【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列.(2)由(1)知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【名师点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.6.【思路分析】(1)根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列的首项1a 和公差d 及等比数列的公比q ,即可写出等差数列和等比数列的通项公式;(2)利用错位相减法即可求出数列221{}n n a b -的前n 项和.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①.由114=11S b ,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4nn T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯ 112(14)4(31)414n n n +⨯-=---⨯-1(32)48n n +=--⨯-,即1328433n n n T +-=⨯+,所以数列221{}n n a b -的前n 项和为1328433n n +-⨯+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.7.【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析.【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-.所以2*,n b n n n =+∈N .(2)*n c n ===∈N .我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++< .那么,当1n k =+时,121k k c c c c +++++<<<=-=.即当1n k =+时不等式也成立.根据(i )和(ii),不等式12n c c c +++< 对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.8.【答案】(1)31n a n =+;32n n b =⨯;(2)(i )()221941n n na c -=⨯-;(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.。
高考数学二轮复习数列多选题知识点总结及答案
高考数学二轮复习数列多选题知识点总结及答案一、数列多选题1.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( )A .19919S a =B .数列{}22na 是公比为8的等比数列C .若()1nnnb a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22na 是公比为82的等比数列,故B 错误;若()()()1141nnnn b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD . 【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.2.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.3.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A.若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.4.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC. 【点睛】方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.5.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.6.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确; 若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.7.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误. 选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列. 所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.8.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎫⎥=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭115()n -=+, 令1nn n F b-=⎝⎭,则11n n b ++,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭以510-32-为公比的等比数列, 所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.二、平面向量多选题9.下列关于平面向量的说法中正确的是( )A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λabB .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .若a c b c ⋅=⋅且0c ≠,则a b =D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】对于选项A : 由向量共线定理知选项A 正确;对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则()()122530a a b λλλλ⋅+=+++=+>解得53λ>-,当a 与a λb +共线时,()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭,故选项B 不正确; 对于选项C :若a c b c ⋅=⋅,则()0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()1222AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.故选:AD 【点睛】易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.10.已知直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,G 为弦AB 的中点,23AB =( )A .弦AB 的中点轨迹是圆B .直线12,l l 的交点P 在定圆()()22222x y -+-=上 C .线段PG 长的最大值为421 D .PA PB ⋅的最小值642+ 【答案】ABC 【分析】对于选项A :设()00,G x y ,利用已知条件先求出圆心到弦AB 的距离CG ,利用两点之间的距离公式即可得到结论;对于选项B :联立直线的方程组求解点P 的坐标,代入选项验证即可判断;对于选项C :利用选项A B 结论,得到圆心坐标和半径,利用1112max PG PG r r =++求解即可;对于选项D :利用平面向量的加法法则以及数量积运算得到23PA PB PG ⋅==-,进而把问题转化为求1112min PG PG r r =--问题,即可判断.【详解】对于选项A :设()00,G x y ,23AB =G 为弦AB 的中点, 3GB ∴=,而()()22:114C x y +++=, 半径为2,则圆心到弦AB 的距离为()22231CG =-=,又圆心()1,1C --,()()2200111x y ∴+++=,即弦AB 的中点轨迹是圆. 故选项A 正确; 对于选项B : 由310310mx y m x my m --+=⎧⎨+--=⎩,得222232113211m m x m m m y m ⎧++=⎪⎪+⎨-+⎪=⎪+⎩, 代入()()2222x y -+-整理得2, 故选项B 正确;对于选项C :由选项A 知:点G 的轨迹方程为:()()22111x y +++=,由选项B 知:点P 的轨迹方程为:()()22222x y -+-=,()()11121,1,1,2,2,G r P r ∴--=所以线段1112max 11PG PG r r =++=+=,故选项C 正确; 对于选项D :()()PA PB PG GA PG GB ⋅=+⋅+ ()2PG PG GA GB GA GB =+⋅++⋅ 22203PG PG GB PG =+⋅-=-,故()()2minmin3PA PBPG ⋅=-,由选项C知:1112min 11PG PG r r =--=-=,所以()()2min136PA PB⋅=-=-,故选项D 错误; 故选:A B C. 【点睛】关键点睛:本题考查了求圆的轨迹问题以及两个圆上的点的距离问题.把两个圆上的点的距离问题转化为两个圆的圆心与半径之间的关系是解决本题的关键.。
高考数学二轮复习数列多选题知识归纳总结及解析
高考数学二轮复习数列多选题知识归纳总结及解析一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<. 又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确.故选:BCD. 【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.3.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】 ∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩, ∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.4.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( )A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B 错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.5.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.6.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n -+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.7.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式n nn a ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.8.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r+-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-. 选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即12p q +==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知,1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.二、平面向量多选题9.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪ ⎪ ⎪⋅⎭⎭22222121211222211x x y y x y x y x y ⎛⎫+ ⎪=++- ⎪+⎝⎭()()()22222222211221212122112122xy x y x x y y x y x y x x y y =++-+=+-1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.10.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y =C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x y -的最大值为1- 【答案】BCD 【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ 1153(2)222OB OB AB OA OB =+-+=-+,故B 对 x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.。
数列高考大题知识点归纳
数列高考大题知识点归纳数列是高中数学中的重要内容之一,也是高考数学中常考的知识点。
通过对数列的学习和理解,可以掌握数学思维和解题方法,提高数学成绩。
下面将就数列相关知识点进行归纳和解析。
一、数列的基本概念和性质数列是按一定顺序排列的一列数,可以用一个公式来表示,常见的数列有等差数列、等比数列等。
等差数列的通项公式是an=a1+(n-1)d,其中a1是首项,d是公差。
等比数列的通项公式是an=a1*r^(n-1),其中a1是首项,r是公比。
数列有很多基本性质,我们需要掌握并运用于解题中。
例如,若数列an单调增加(减少),则其数列项an与an-1的大小关系为an>an-1(an<an-1);若数列an单调有界,则其数列项an具有极限。
二、数列的前n项和数列的前n项和是指数列前n个数之和,常用Sn表示。
对于等差数列,其前n项和Sn可以用以下公式求解:Sn=n/2(a1+an),其中a1是首项,an是第n项。
对于等比数列,其前n项和Sn可以用以下公式求解:Sn=a1(1-r^n)/(1-r),其中a1是首项,r是公比。
三、等差数列和等比数列的应用等差数列和等比数列在实际问题中有广泛的应用。
在解决一些常见问题时,我们可以通过建立等差数列或等比数列来简化问题,进而求解。
例如,可以通过建立等差数列来计算连续整数的和,通过建立等比数列来解决与指数、增长等相关的问题。
四、常见数列及其性质和应用1. 斐波那契数列斐波那契数列是指从第三项开始,每一项都等于前两项之和。
该数列具有许多有趣的性质,如黄金分割比例等。
斐波那契数列在数学和自然科学中有广泛的应用,如阿波罗尼斯的理发问题、植物的枝干生长规律等。
2. 等差数列等差数列是指数列中相邻两项之差恒定的数列。
等差数列具有简单的性质和运算规律,常用于排队问题和物体运动问题的求解。
3. 等比数列等比数列是指数列中相邻两项之比恒定的数列。
等比数列在实际问题中有重要的应用,如连续衰减的物质含量、复利利息的计算等。
高三数学第二轮复习数列解析版
高三数学第二轮复习数列解析版高三第二轮复习资料(数列)顺序(5学时)一【本章知识结构】等差数列的性质有等差数列正一般术语和整数列的概念,前n个术语和数字等比数列等比序列集性质二、【高考要求】1.了解数列有关概念和几种简单的表示方法(列表、图像、通项公式).2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式和前n项之和公式,并能利用这些知识解决一些实际问题。
三、 [热点分析]1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.系列问题命题倾向:(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点;(2)序列推理是一个新的课题,在过去的高考中经常使用学科几何试题来测试逻辑推理能力。
近两年来,在数字系列试题中,等差等比系列的综合考试也得到了加强;3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列;② 灵活利用等差序列和等比序列的相关性质可以更准确、快速地解决问题。
这种思想在解决客观问题时更为突出。
序列的许多客观问题都有灵活而简单的解5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。
高考数学二轮复习专题过关检测—数列(含解析)
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
(完整)高考数学二轮复习名师知识点总结:数列求和及数列的综合应用,推荐文档
1 1 1 1 1数列求和及数列的综合应用【高考考情解读】 高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件, 求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1. 数列求和的方法技巧(1) 分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2) 错位相减法这是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前 n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3) 倒序相加法这是在推导等差数列前 n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4) 裂项相消法利用通项变形,将通项分裂成两项或 n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,anan +1anan +1 d (a n - )适用于求通项为 常见的拆项公式: 1 1 1①n (n +1)=n -n +1;1 1 1 1的数列的前 n 项和,其中{a n }若为等差数列,则 = an +1 .②n (n +k )=k (n -n +k );1 1 1 1③(2n -1)(2n +1)=2(2n -1-2n +1);1 1④ n + n +k =k ( n +k - n ). 2. 数列应用题的模型(1) 等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2) 等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3) 混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4) 生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5) 递推模型:如果容易找到该数列任意一项 a n 与它的前一项 a n -1(或前 n 项)间的递推关系式,我们可以用递推数列的知识来解决问题.π1 π考点一 分组转化求和法例 1 等比数列{a n }中,a 1,a 2,a 3 分别是下表第一、二、三行中的某一个数,且 a 1,a 2,a 3 中的任何两个数不在下表的同一列.第一列第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1) 求数列{a n }的通项公式;(2) 若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前 n 项和 S n .解 (1)当 a 1=3 时,不合题意;当 a 1=2 时,当且仅当 a 2=6,a 3=18 时,符合题意; 当 a 1=10 时,不合题意.因此 a 1=2,a 2=6,a 3=18.所以公比 q =3. 故 a n =2·3n -1 (n ∈N *). (2)因为 b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3] =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3. 1-3n n n当 n 为偶数时,S n =2× 1-3 +2ln 3=3n +2ln 3-1;1-3n n -1 n -1(-n)当 n 为奇数时,S n =2× 1-3 -(ln 2-ln 3)+ 2 ln 3=3n - 2 ln 3-ln 2-1.综上所述,S n =Error!在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数 n 进行讨论,最后再验证是否可以合并为一个公式.(2013·安徽)设数列{a n }满足 a 1=2,a 2+a 4=8,且对任意 n ∈N *,函数 f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足 f ′(2)=0. (1)求数列{a n }的通项公式;(an +)(2)若 b n =2 2an ,求数列{b n }的前 n 项和 S n .解 (1)由题设可得 f ′(x )=(a n -a n +1+a n +2)-a n +1sin x -a n +2cos x ,又 f ′(2)=0,则 a n +a n +2-2a n +1=0,即 2a n +1=a n +a n +2,因此数列{a n }为等差数列,设等差数列{a n }的公差为 d , 由已知条件Error!,解得 Error!a n =a 1+(n -1)d =n +1.( 1 ) 1n+1+(2)b n=2 2n+1 =2(n+1)+2n,1 1S n=b1+b2+…+b n=(n+3)n+1-2n=n2+3n+1-2n.考点二错位相减求和法例2 (2013·山东)设等差数列{a n}的前n 项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;b1 b2 bn 1(2)若数列{b n}满足a1+a2+…+an=1-2n,n∈N*,求{b n}的前n 项和T n.解(1)设等差数列{a n}的首项为a1,公差为d,由Error!得a1=1,d=2,所以a n=2n-1(n∈N*).b1 b2 bn 1(2)由已知a1+a2+…+an=1-2n,n∈N*,①b1 b2 bn-1 1当n≥2 时,a1+a2+…+an-1=1-2n-1,②bn 1 b1 1①-②得:an=2n,又当n=1 时,a1=2也符合上式,bn 1 2n-1所以an=2n(n∈N*),所以b n=2n (n∈N*).1 3 5 2n-1所以T n=b1+b2+b3+…+b n=2+22+23+…+2n .1 1 3 2n-3 2n-12T n=22+23+…+2n +2n+1.1 1 (2 2 2 )2n-13 1 2n-1 2n+3++…+两式相减得:2T n=2+22 23 2n -2n+1=2-2n-1-2n+1. 所以T=3-2n .n错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n 项和S n.解(1) 由已知,得当n≥1 时,a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1. 而a1=2,符合上式,所以数列{a n}的通项公式为a n=22n-1.(2)由b n=na n=n·22n-1 知S n=1·2+2·23+3·25+…+n·22n-1. ①f (x )+ - - (f (x )从而 22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1, 1即 S n =9[(3n -1)22n +1+2]. 考点三 裂项相消求和法例 3 (2013·广东)设各项均为正数的数列{a n }的前 n 项和为 S n ,满足 4S n =a n +2 1-4n -1,n ∈N *, 且 a 2,a 5,a 14 构成等比数列.(1) 证明:a 2= 4a 1+5; (2) 求数列{a n }的通项公式;1111(3) 证明:对一切正整数 n ,有a 1a 2+a 2a 3+…+anan +1<2.(1)证明 当 n =1 时,4a 1=a 2-5,a 2=4a 1+5,又 a n >0,∴a 2= (2) 解 当 n ≥2 时 ,4S n -1=a n -4(n -1)-1,4a 1+5.∴4a n =4S n -4S n -1=a n +2 1-a 2-4,即 a n +2 1=a n +4a n +4=(a n +2)2,又 a n >0,∴a n +1=a n +2, ∴当 n ≥2 时,{a n }是公差为 2 的等差数列.又 a 2,a 5,a 14 成等比数列.∴a 2=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得 a 2=3.由(1)知 a 1=1.又 a 2-a 1=3-1=2,∴数列{a n }是首项 a 1=1,公差 d =2 的等差数列.∴a n =2n -1. 1 1 1 1 1 11 (3)证明 a 1a 2+a 2a 3+…+anan +1=1 × 3+3 × 5+5 × 7+…+(2n -1)(2n +1) 1[( 1) (1 1) 1 1)] 1(1 )1 =23 3 5 2n -1 2n +1 =2 2n +1 <2. 数列求和的方法:(1)一般地,数列求和应从通项入手,若无通项,就先求通项,然后通过对通项变形,转化为与特殊数列有关或具备适用某种特殊方法的形式,从而选择合适的方法求和得解.(2)已知数列前 n 项和 S n 或者前 n 项和 S n 与通项公式 a n 的关系式,求通项通常利用 a n =Error!.已知数列递推式求通项,主要掌握“先猜后证法”“化归法”“累加(乘)法”等.(2013·西安模拟)已知x , 2 , 3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3,此数列的前 n 项和为 S n ,对于所有大于 1 的正整数 n 都有 S n =f (S n -1).(1) 求数列{a n }的第 n +1 项;1 1(2) 若 bn 是an +1,an 的等比中项,且 T n 为{b n }的前 n 项和,求 T n .解 (1)因为 x , 2 , 3(x ≥0)成等差数列,所 以 2× 2 = x + 3,整理,得 f (x )=( x + 3)2.因为 S n =f (S n -1)(n ≥2),所以 S n =( Sn -1+ 3)2,f (x )1- +…+ 1-()1 1 1 1 (3 3 3n( )( ) - - + )] 18 + 18n +9 1 3因为 a 1=3,所以 S 1=a 1=3,所以 Sn = S 1+(n -1) 3= 3+ 3n - 3= 3n . 所以 S n =3n 2(n ∈N *). 所以 a n +1=S n +1-S n =3(n +1)2-3n 2=6n +3. 1 1 1 1(2)因为 bn 是an +1与an 的等比中项, 所以( bn )2=an +1·an , 1111 1 - 1 所 以 b n =an +1·an =3(2n +1) × 3(2n -1)=18× 2n -1 2n +1 , [(1- )+( ) (- 1 1 (1- 1 )n T n =b 1+b 2+…+b n = 考点四 数列的实际应用3 3 5 2n 1 2n 1 = 2n 1 = .例 4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金 2 000 万元,将其投入生产,到当年年底资金增长了 50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金 d 万元,并将剩余资金全部投入下一年生产.设第 n 年年底企业上缴资金后的剩余资金为 a n 万元.(1) 用 d 表示 a 1,a 2,并写出 a n +1 与 a n 的关系式;(2) 若公司希望经过 m (m ≥3)年使企业的剩余资金为 4 000 万元,试确定企业每年上缴资金 d 的值(用 m 表示).(1) 由第 n 年和第(n +1)年的资金变化情况得出 a n 与 a n +1 的递推关系;(2) 由 a n +1 与 a n 之间的关系,可求通项公式,问题便可求解.3 5解 (1)由题意得 a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =2a 1-d =4 500-2d . 3a n +1=a n (1+50%)-d =2a n -d .3 3 3) ( ) (3)[ ( )( ) ]2 (2)由(1)得 a = an -2-d -d =2 2 -d = 22a 2 2 n -1 1+ + - d -d =…= a -d 2 2 2+…+ 2 n -2 . n a n -1 n -2 13 3 3整理得 a =(2)n -1(3 000-d )-2d[(2)n -1-1]=(2)n -1(3 000-3d )+2d .3由题意,知 a m =4 000,即 2 m -1(3 000-3d )+2d =4 000, 3[(2)m -2] × 1 000 3 m -1 1 000(3m -2m +1)解得 d = 2 = 3m -2m .1 000(3m -2m +1)故该企业每年上缴资金 d 的值为3m -2m时,经过 m (m ≥3)年企业的剩余资金为 4 000 万元.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关所 以 Sn = Sn -1+ 3, 即 Sn - Sn -1= 3,所以{ Sn }是以 3为公差的等差数列.18+…+ 3系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题 的结果.某产品在不做广告宣传且每千克获利 a 元的前提下,可卖出 b 千克.若做广告宣传,广告费为b n (n ∈N *)千元时比广告费为(n -1)千元时多卖出2n 千克.(1) 当广告费分别为 1 千元和 2 千元时,用 b 表示销售量 S ; (2) 试写出销售量 S 与 n 的函数关系式;(3) 当 a =50,b =200 时,要使厂家获利最大,销售量 S 和广告费 n 分别应为多少?b 3b b b 7b解 (1)当广告费为 1 千元时,销售量 S =b +2= 2 .当广告费为 2 千元时,销售量 S =b +2+22= 4 . b(2)设 S n (n ∈N )表示广告费为 n 千元时的销售量,由题意得 S 1-S 0=2,bS 2-S 1=22, …… bS n -S n -1=2n .b b b b以上 n 个等式相加得,S n -S 0=2+22+23+…+2n ,1b [1-( )n +1]2b b b b 1 1即 S =S n =b +2+22+23+…+2n = 1-2 =b (2-2n ).1 10(3)当 a =50,b =200 时,设获利为 T n ,则有 T n =Sa -1 000n =10 000×(2-2n )-1 000n =1 000×(20-2n -n ),1010105设 b n =20-2n -n ,则 b n +1-b n =20-2n +1-n -1-20+2n +n =2n -1, 当 n ≤2 时,b n +1-b n >0;当 n ≥3 时,b n +1-b n <0.所以当 n =3 时,b n 取得最大值,即 T n 取得最大值,此时 S =375, 即该厂家获利最大时,销售量和广告费分别为 375 千克和 3 千元.1. 数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1) a n =Error!.(2) 递推关系形如 a n +1-a n =f (n ),常用累加法求通项.an+1(3)递推关系形如an =f(n),常用累乘法求通项.(4)递推关系形如“a n+1=pa n+q(p、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,则数列{a n+λ}是一个等比数列.(5)递推关系形如“a n+1=pa n+q n(q,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1 转为用迭加法求解.2.数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和.(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解.提醒:运用错位相减法求和时,相减后,要注意右边的n+1 项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3.数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.( )( ) 1-1. 在一个数列中, 如果∀n ∈N *,都有 a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称 k 为这个数列的公积.已知数列{a n }是等积数列,且 a 1=1,a 2=2,公积为 8,则 a 1+a 2+a 3+…+a 12= .答 案 28解析 依题意得数列{a n }是周期为 3 的数列,且 a 1=1,a 2=2,a 3=4, 因此 a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.2. 秋末冬初,流感盛行,特别是甲型 H1N1 流感.某医院近 30 天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且 a n +2-a n =1+(-1)n (n ∈N *),则该医院 30 天入院治疗甲流的人数共有 .答案 255 解析 由于 a n +2-a n =1+(-1)n ,所以 a 1=a 3=…=a 29=1,15 × 14a 2,a 4,…,a 30 构成公差为 2 的等差数列,所以 a 1+a 2+…+a 29+a 30=15+15×2+ 23. 已知公差大于零的等差数列{a n }的前 n 项和 S n ,且满足:a 2·a 4=65,a 1+a 5=18.(1)若 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,求 i 的值;n×2=255.(2)设 b n =(2n +1)Sn ,是否存在一个最小的常数 m 使得 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立,若存在, 求出常数 m ;若不存在,请说明理由.解 (1){a n }为等差数列,∵a 1+a 5=a 2+a 4=18,又 a 2·a 4=65,∴a 2,a 4 是方程 x 2-18x +65=0 的两个根, 又公差 d >0,∴a 2<a 4,∴a 2=5,a 4=13. ∴Error!∴a 1=1,d =4.∴a n =4n -3.由于 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,∴a 1·a 21=a 2i ,即 1·81=(4i -3)2,解得 i =3. n (n -1) 1 1(1 -1)(2)由(1)知,S n =n ·1+ 2 ·4=2n 2-n ,所以 b n =(2n -1)(2n +1)=2 2n -1 2n +1 ,1 1 1 1 1 1 n 1- + - +…+ - b 1+b 2+…+b n =23 3 5 2n -1 2n +1 =2n +1, n 1 1 1 1因为2n +1=2-2(2n +1)<2,所以存在 m =2使 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立.(推荐时间:60 分钟)一、选择题1 1 1 11. 已知数列 12,34,58,716,…,则其前 n 项和 S n 为()1A .n 2+1-2n1B .n 2+2-2n1C .n 2+1-2n -11- 1 ·1 2n 21D .n 2+2-2n -11 1+2n -11 1 答案 A 解析 因为 a n =2n -1+2n ,则 S n =2n +2 =n 2+1-2n .S12 S102.在等差数列{a n}中,a1=-2 013,其前n 项和为S n,若12 -10 =2,则S2013的值等于( ) A.-2 011 B.-2 012 C.-2 010 D.-2 013答案DSn S1 解析根据等差数列的性质,得数列{ n }也是等差数列,根据已知可得这个数列的首项1 =a1=-2 013,S2 013公差d=1,故2 013 =-2 013+(2 013-1)×1=-1,所以S2013=-2 013.3.对于数列{a n},a1=4,a n+1=f(a n),n=1,2,…,则a2013等于( )A.2 B.3 C.4答案C解析由表格可得a1=4,a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=2,a5=f(2)=4,可知其周期为4,∴a2013=a1=4.S1 S2 S154.在等差数列{a n}中,其前n 项和是S n,若S15>0,S16<0,则在a1,a2,…,a15中最大的是( )S1 S8 S9 S15A.a1答案BB.a8C.a9D.a1515(a1+a15)16(a1+a16)解析由于S15= 2 =15a8>0,S16= 2 =8(a8+a9)<0,可得a8>0,a9<0.S1 S2 S8 S9 S10 S15这样a1>0,a2>0,…,a8>0,a9<0,a10<0,…,a15<0,而S1<S2<…<S8,a1>a2>…>a8,S1 S2 S15 S8所以在a1,a2,…,a15中最大的是a8.故选B.1 1 1 15.数列{a n}满足a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,则a1+a2+a3+…+a2 012等于( )4 024A.2 013 答案A4 018B.2 0122 010C.2 0112 009D.2 010解析令m=1 得a n+1=a n+n+1,即a n+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,a n-a n-1=n,上述n-1 个式子相加得a n-a1=2+3+…+n,n(n+1) 1 2 1-1 )所以a n=1+2+3+…+n= 2 ,因此an=n(n+1)=2 n n+1 ,() ()(1 1 1 11 1 1 1 11 4 0241- + - +…+- 1-所以a 1+a 2+a 3+…+a 2 012=22 23 2 012 2 013=22 013 =2 013.6. 已知函数 f (n )=Error!且 a n =f (n )+f (n +1),则 a 1+a 2+a 3+…+a 2 012 等于()A .-2 012B .-2 011C .2 012D .2 011答 案 C解析 当 n 为奇数时,a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1); 当 n 为偶数时,a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1.所以 a 1+a 2+a 3+…+a 2 012=2(-1+2-3+4+…-2 011+2 012)=2 012. 二、填空题7. 数列{a n }中,已知对任意 n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则 a 2+a 2+a 3+…+a n =.1答 案 2(9n -1)解析 ∵a 1+a 2+a 3+…+a n =3n -1,∴a 1+a 2+a 3+…+a n -1=3n -1-1(n ≥2). 则 n ≥2 时,两式相减得,a n =2·3n -1. 当 n =1 时,a 1=3-1=2,适合上式,∴a n =2·3n -1(n ∈N *).∴a n =4·9n -1,4(1-9n ) 1则数列{a 2}是首项为 4,公比为 9 的等比数列.∴a 2+a 2+a 2+…+a n = 1-9 =2(9n -1).8. 设数列{a n }的前 n 项和为 S n ,且 a n 为复数 isin 答 案 1n π2 +cos n π2 (n ∈N *)的虚部,则 S 2 013=.解析 由已知得:a n =sin n π2 (n ∈N *),∴a 1=1,a 2=0,a 3=-1,a 4=0, 故{a n }是以 4 为周期的周期数列,∴S 2 013=S 503×4+1=S 1=a 1=1.19.已知数列{a n }满足 3a n +1+a n =4(n ≥1)且 a 1=9,其前 n 项之和为 S n ,则满足不等式|S n -n -6|<125的最小整数 n 是 .答 案 71解析 由递推式变形得 3(a n +1-1)=-(a n -1),∴{a n -1}是公比为-3的等比数列. 11则 a n -1=8·(-3)n -1,即 a n =8·(-3)n -1+1.18[1-(- )n ]3 1 1 1 1-(- )于是 S n = 3 +n =6[1-(-3)n ]+n =6-6·(-3)n +n1 1 1因此|S n-n-6|=|6×(-3)n|=6×(3)n<125,3n-1>250,∴满足条件的最小n=7.10.气象学院用3.2 万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n+4910 (n∈N*)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了天.答案8001解析由题意得,每天的维修保养费是以5 为首项,10为公差的等差数列.设一共使用了n 天,则使用n 天的平(5+n+49)n 103.2 ×104+ 2 n 99993.2 × 104均耗资为n3.2 × 104 n=n +20+20≥20,当且仅当n =20时取得最小值,此时n=800.三、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n 项和S n.解(1)设数列{a n}的公差为d,则由a5=9,a2+a6=14,得Error!,解得Error!.所以数列{a n}的通项公式为a n=2n-1.(2)由a n=2n-1 得b n=2n-1+q2n-1.当q>0 且q≠1 时,S n=[1+3+5+…+(2n-1)]+(q1+q3+q5+…+q2n-1)=n2+当q=1 时,b n=2n,则S n=n(n+1).所以数列{b n}的前n 项和S n=Error!. q(1-q2n) 1-q2 ;12.将函数f(x)=sin(n∈N*).14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n 项和为T n,求T n的表达式.1 1 1 1 π解(1)化简f(x)=sin 4x·sin 4(x+2π)·sin 2(x+3π)=-4sin x,其极值点为x=kπ+2(k∈Z),πππ它在(0,+∞)内的全部极值点构成以2为首项,π为公差的等差数列,故a n=2+(n-1)π=nπ-2.π(2)b n=2n a n=2(2n-1)·2n,π∴T n=2[1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n],π则2T n=2[1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1]两式相减,得π∴-T n=2[1·2+2·22+2·23+…+2·2n-(2n-1)·2n+1],∴T n=π[(2n-3)·2n+3].1 113.在等比数列{a n}中,a2=4,a3·a6=512.设b n=log2a22·log2a n+2 12,T n为数列{b n}的前n 项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n 恒成立,求实数λ的取值范围.1 1 1解(1)设{a n}的公比为q,由a3a6=a2·q5=16q5=512得q=2,1∴a n=a2·q n-2=(2)n.1 1 1 1 1 1b n=log2a n2·log2a n+2 12=log(2)2n-12·log(2)2n+12=(2n-1)(2n+1)=2(2n-1-2n+1),1 1 1 1 1 1 1 1 n∴T n=2(1-3+3-5+…+2n-1-2n+1)=2(1-2n+1)=2n+1.(n-2)(2n+1) 2 2(2)①当n 为偶数时,由λT n<n-2 恒成立得,λ< n2 2=2n-n-3 恒成立,即λ<(2n-n-3)min,而2n-n-3 随n 的增大而增大,∴n=2 时(2n-n-3)min=0,∴λ<0.(n+2)(2n+1) 2②当n 为奇数时,由λT n<n+2 恒成立得,λ< n =2n+n+5 恒成立,2 2即λ<(2n+n+5)min而2n+n+5≥25=9,当且仅当2n=n,即n=1 时等号成立,∴λ<9.综上,实数λ 的取值范围为(-∞,0).“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列1.等比数列{}n a 中,已知142,16a a ==(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
2.已知等差数列{}n a 的前n 项和为n S ,且满足:3576,24a a a =+=.(1)求等差数列{}n a 的通项公式;(2)求数列1{}nS 的前n 项和n T .3.已知数列{}n a 和{}n b 满足112,1a b ==,()12N n n a a n *+=∈,()12311111N 23n n b b b b b n n *+++++=-∈ .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .4.已知等差数列{}n a 满足36a =,前7项和为749S =.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()33n n n b a =-⋅,求{}n b 的前n 项和n T .5.已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列.(1)求数列{}n a 的通项公式;(2)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .6.已知公差不为0的等差数列{}n a 的前3项和39S =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式.(2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证12n T <.7.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.8.设数列{}n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列{}n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.答案以及解析1.答案:(1)设{}n a 的公比为q ,由已知得3162q =,解得2q =,∴112.n n n a a q -==(2)由(1)得358,32a a ==,则358,32b b ==,设{}n b 的公差为d ,则有1128432b d b d +=⎧⎨+=⎩解得11612b d =-⎧⎨=⎩∴1612112)2(8n b n n =+--=-,∴数列{}n b 的前n 项和2(161228)6222n n n S n n -+-==-.2.答案:(1设等差数列{}n a 的首项为1a 、公差为d ,3576,24a a a =+= ,()()111264624a d a d a d +=⎧∴⎨+++=⎩,解得:122d a =⎧⎨=⎩,(2122)n a n n ∴=+-⨯=;(2由(1)得:()1(22)(1)22n n n a a n n S n n ++===+,所以1211111111 11223(1)(1)n n n T S S S S n n n n =++++=++++-⨯⨯-+ 11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.3.答案:(1)由112,2n n a a a +==,知0n a ≠,故12n n a a +=,即{}n a 是以2为首项,2为公比的等比数列,得()2N n n a n *=∈.由题意知,当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n +=-,整理得11n n b b n n +=+,所以n b n ⎧⎫⎨⎬⎩⎭是以1为首项,1为公比的等比数列,即1n b n =,所以()N n b n n *=∈.(2)由(1)知2n n n a b n =⋅.因此231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,①23412222322n n T n +=+⋅+⋅+⋅⋅⋅+⋅,②①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅.故()()1122N n n T n n +*=-+∈.4.答案:(1)由()177477492a a S a ⨯+===,得47a =,因为36a =,所以11.4d a ==,故3n a n =+.(2)()333n n n n b a n =-⋅=⋅,所以1231323333n n T n =⨯+⨯+⨯+⋯+⨯①23131323(1)33n n n T n n +=⨯+⨯+⋯+-⨯+⨯②由①-②得1231133233333313n n n n n T n n +++--=++++-⨯=-⨯- ,所以1(21)334n n n T +-⨯+=.5.答案:(1)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320q q -+=,解得2q =或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(2)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭ ,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.()()13113232212431114122221n n n n n n n ⎛⎫=-+ ⎪++⎝⎭+⎛⎫=--=- ⎪++++⎝⎭.6.答案:(1)由3S 9=得13a d +=①;125,,,a a a 成等比数列得:()()21114a a d a d +=+②;联立①②得11,2a d ==;故21n a n =-.(2)111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭ 11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭.7.答案:(1)由1142,a b a b ==,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =;(2)(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为()()1212n n a a a b b b +++++++ ()2(3521)333n n =++++++++ ()()313331(321)(2)2132n n n n n n --++=+=++-8.答案:(1)()12,*n n a S n N +=+∈,①当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,②由①-②可得11n n n n a a S S +--=-,即12n n a a +=,∴2222,2n n n a a n -=⨯=≥当1n =时,1122a ==,满足上式,∴()2n n a n N *=∈(2)由(1)得1112111()(21)(21)22121n n n n n n b -++==-----∴1111111111(1)(1)23372121221n n n n T ++=-+-++-=---- ∴12n T <。
高考数列必考知识点总结
高考数列必考知识点总结数列是高中数学中的一个重要概念,也是高考考试中必考的知识点之一。
合理的掌握和应用数列的知识,不仅可以在高考中获得高分,还有助于培养我们的数学思维和解决实际问题的能力。
本文将从数列的基本概念、常见性质以及解题方法等方面进行总结,希望能够对同学们备考高考有所帮助。
1. 数列的基本概念数列可以简单地理解为按照一定规律排列的一组数。
其中,首项是数列中排在第一位的数字,通常用a1表示;公差是数列中相邻两项之间的差值,通常用d表示。
对于等差数列,我们还需要了解公差为常数的特点;对于等比数列,我们需要了解公比为常数的特点。
2. 数列的常见性质首先,数列的通项公式是数列中任意一项的表示式,通常用an表示。
对于等差数列,其通项公式可以表示为an=a1+(n-1)d;对于等比数列,其通项公式可以表示为an=a1*q^(n-1),其中q为公比。
其次,数列的前n项和是指数列中前n项的和,通常用Sn表示。
对于等差数列,其前n项和可以表示为Sn=(a1+an)*n/2;对于等比数列,其前n项和可以表示为Sn=a1*(q^n-1)/(q-1)。
此外,数列中如果存在一项与它后面的项之和等于前一项的情况,称这样的数列为斐波那契数列。
斐波那契数列的特点是前两项的和等于第三项,通常表示为Fn=Fn-1+Fn-2。
斐波那契数列有许多有趣的性质和应用,在高考中经常出现。
3. 数列的解题方法在高考中,求解数列题主要有两种方法:直接法和递推法。
直接法是指通过数列的通项公式或前n项和公式,直接计算所要求的项或和。
这种方法适用于已知数列的公式,并且数据量较小的情况。
递推法是指通过列举出数列的前几项,利用数列的性质找出数列的规律,然后推算出所要求的项或和。
这种方法适用于已知数列的规律,但是无法直接用公式求解的情况。
除了以上两种方法外,还有一些特殊的解题技巧可以帮助我们更好地解决数列题。
例如,根据数列的对称性质,我们可以利用数列的前n 项和与后n项和之间的关系快速求解;根据数列的差分性质,我们可以通过计算前项与后项之间的差值,找出数列的规律等等。
高考数学二轮复习考点知识与解题方法讲解07 数列综合问题
高考数学二轮复习考点知识与解题方法讲解考点07 数列综合问题数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.1.数列的应用,解题的关键是通过找到图形之间的关系,得到等比数列,求数列通项公式常用的方法:(1)由n a 与n S 的关系求通项公式;(2)累加法;(3)累乘法;(4)两边取到数,构造新数列法.2.等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.3.数列与函数常常以函数的解析式为载体,转化为数列问题,常用的数学思想方法有“函数与方程”“等价转化”等.4.数列与不等式问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.5."新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型.它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.6.数列与函数、不等式综合问题的求解策略:1、已知数列的条件,解决函数问题,解决此类问题一把要利用数列的通项公式,前n项和公式,求和方法等对于式子化简变形,注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性;2、解决数列与不等式的综合问题时,若是证明题中,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等,若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.数列的综合应用一、单选题1.(2023·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26【答案】C【分析】根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解. 【详解】由题意知:这个人原来持金为a 斤, 第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =,又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.2.(2021·广东佛山·二模)科技创新离不开科研经费的支撑,在一定程度上,研发投入被视为衡量“创新力”的重要指标.“十三五”时期我国科技实力和创新能力大幅提升,2020年我国全社会研发经费投入达到了24426亿元,总量稳居世界第二,其中基础研究经费投入占研发经费投入的比重是6.16%.“十四五”规划《纲要草案》提出,全社会研发经费投入年均增长要大于7%,到2025年基础研究经费占比要达到8%以上,请估计2025年我国基础研究经费为( )A .1500亿元左右B .1800亿元左右C .2200亿元左右D .2800亿元左右 【答案】D【分析】由题意可知,2025年我国全社会研发经费投入不得低于524426(17%)⨯+, 再根据2025年基础研究经费占比要达到8%以上,即可求出2025年我国基础研究经费的最低值,从而选出正确选项.【详解】由题意可知,2025年我国全社会研发经费投入不得低于524426(17%)34258.7⨯+≈亿元,又因为2025年基础研究经费占比要达到8%以上, 所以2025年我国基础研究经费不得低于 34258.78%2740.7⨯≈亿元 故选:D3.(2023·湖南·一模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A .35B .42C .49D .56【答案】B【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染, 则每轮新增感染人数为0n R ,经过n 轮传染,总共感染人数为:1200000111n nR R R R R +-++++=-,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n , 由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天, 故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 4.(2023·陕西西安·一模(理))2020年底,国务院扶贫办确定的贫困县全部脱贫摘帽脱贫攻坚取得重大胜利!为进步巩固脱贫攻坚成果,接续实施乡村振兴战略,某企业响应政府号召,积极参与帮扶活动.该企业2021年初有资金500万元,资金年平均增长率可达到20%.每年年底扣除下一年必须的消费资金后,剩余资金全部投入再生产为了实现5年后投入再生产的资金达到800万元的目标,每年应扣除的消费资金至多为( )(单位:万元,结果精确到万元)(参考数据:41.2 2.07≈,51.2 2.49≈) A .83 B .60 C .50 D .44【答案】B【分析】由题可知5年后投入再生产的资金为:5432500(120%)(120%)(120%)(120%)(120%)800x x x x x+-+-+-+-+-=,即求. 【详解】设每年应扣除的消费资金为x万元,则1年后投入再生产的资金为:500(120%)x+-,2年后投入再生产的资金为:2[500(120%)](120%)500(120%)(120%)x x x x+-+-=+-+-,L5年后投入再生产的资金为:5432500(120%)(120%)(120%)(120%)(120%)800x x x x x+-+-+-+-+-=∴551.21500 1.2800 1.21x-=⨯--,∴60x≈.故选:B二、双空题5.(2023·湖北·一模)2023年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程若第1个图中的三角形的周长为1,则第n 个图形的周长为___________;若第1个图中的三角形的面积为1,则第n 个图形的面积为___________.【答案】 143n -⎛⎫⎪⎝⎭1834559n -⎛⎫-⨯ ⎪⎝⎭【分析】由图形之间的边长的关系,得到周长是等比数列,再按照等比数列通项公式可得解;由图形之间的面积关系及累加法,结合等比数列求和可得解.【详解】记第n 个图形为n P ,三角形边长为n a ,边数n b ,周长为n L ,面积为n S1P 有1b 条边,边长1a ;2P 有214b b =条边,边长2113=a a ;3P 有2314b b =条边,边长23113a a ⎛⎫= ⎪⎝⎭;L分析可知113n n a a -=,即113nn a a ⎛⎫= ⎪⎝⎭;14n n b b -=,即114n n b b -=⋅当第1个图中的三角形的周长为1时,即11a =,13b =所以11143433nn n n n n L a b --⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭由图形可知n P 是在1n P -每条边上生成一个小三角形,即211n n n n S S b --+=即211n n n n S S a b ---⋅,21212n n n n S S a b -----=⋅,L ,22121S S a b ⋅-利用累加法可得)222111122n n n n n S S a b a b a b ---=-⋅+⋅++⋅数列{}n a 是以13为公比的等比数列,数列{}n b 是以4为公比的等比数列,故{}21n n a b -⋅是以49为公比的等比数列,当第1个图中的三角形的面积为1时,11S =,211=,此时21a =22a =,1P有13b =条边,则11222222111124499451191n n n n n n a b a b a b a b -----⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⋅⋅+⋅++⋅⎝⎭⎝⎭⎝=⎭=- 所以1131459n n S S -⎛⎫⎛⎫-⨯- ⎪ ⎪ ⎝⎭⎝⎭=⎪, 所以1834559n n S -⎛⎫=-⨯ ⎪⎝⎭ 故答案为:143n -⎛⎫⎪⎝⎭,1834559n -⎛⎫-⨯ ⎪⎝⎭【点睛】关键点睛:本题考查数列的应用,解题的关键是通过找到图形之间的关系,得到等比数列,求数列通项公式常用的方法:(1)由n a 与n S 的关系求通项公式;(2)累加法;(3)累乘法;(4)两边取到数,构造新数列法. 三、填空题6.(2021·辽宁铁岭·一模)赵先生准备通过某银行贷款5000元,然后通过分期付款的方式还款.银行与赵先生约定:每个月还款一次,分12次还清所有欠款,且每个月还款的钱数都相等,贷款的月利率为0.5%,则赵先生每个月所要还款的钱数为______元.(精确到0.01元,参考数据()()121210.517.21310.51+≈+-%%) 【答案】430.33【分析】本题首先可设每一期所还款数为x 元,然后结合题意列出每期所还款本金,并根据贷款5000元列出方程,最后借助等比数列前n 项和公式进行计算即可得出结果. 【详解】设每一期所还款数为x 元, 因为贷款的月利率为0.5%,所以每期所还款本金依次为10.5x+%、()210.5x +%、()310.5x +%、L 、()1210.5x +%,则()()()2312500010.510.510.510.5x x x x++++=++++%%%L , 即()()()23121111500010.510.510.510.5x %%%⎡⎤++++=⎢⎥++++⎢⎥⎣⎦L , ()()()()11101210.510.510.51500010.5x %%%%⎡⎤+++++++=⎢⎥+⎢⎥⎣⎦, ()()121210.5150000.510.5x %%%⎡⎤+-=⎢⎥+⎢⎥⎣⎦, ()()121210.50000.5430.33105.51x ⨯=≈-++⨯%%%,小明每个月所要还款约430.33元,故答案为:430.33. 四、解答题7.(2020·河南·一模(理))市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:2401.004 2.61≈.【答案】(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解析】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n 项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为x 元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为{}n a ,n S 表示数列{}n a 的前n 项和,则14900a =,2402510a =,则()()1240240240120490025108892002a a S +==⨯+=, 故小张该笔贷款的总利息为889200600000289200-=元.(2)设小张每月还款额为x 元,采取等额本息的还款方式,每月还款额为一等比数列, 则()()()()223924010.00410.00410.00460000010.004x x x x +++++++=⨯+,所以2402401 1.004600000 1.0041 1.004x ⎛⎫-=⨯ ⎪-⎝⎭,即240240600000 1.0040.004600000 2.610.00438911.0041 2.611x ⨯⨯⨯⨯=≈≈--, 因为138911000050002<⨯=, 所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利息为:3891240600000933840600000333840⨯-=-=,因为333840289200>,所以从经济利益的角度来考虑,小张应选择等额本金还款方式.【点睛】本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.8.(2023·全国·模拟预测)在一个传染病流行的群体中,通常有3类人群:n n n 中第1天1540S =,160I =,10R =.为了简化模型,我们约定各类人群每天转化的比例参数恒定:(1)已知对于传染病A 有15α=,6β=,0γ=.求2I ,n R ; (2)已知对于传染病B 有15α=,110β=,160γ=.(Ⅰ)证明:存在常数p ,q ,使得{}n n pS I q +-是等比数列;(Ⅱ)已知防止传染病大规模传播的关键途径至少包含:①控制感染人数;②保护易感人群.请选择一项,通过相关计算说明:实际生活中,相较于传染病A 需要投入更大力量防控传染病B .【答案】(1)286I =;11514600300()900()615n n n R --=+⨯-⨯;【分析】(1)根据条件可得111415,,60015156n n n n n n n n S S I S I R S I ++==+=--,进而可得2I ,再通过构造数列114{360()}15n n I --⨯,可得11145360()300()156n n n I --=⨯-⨯,即求;(2)由题可得114119[(600)]560510n n n n n n n pS I q p S S I S I q +++-=+--++-,进而可得4712,5460060.54p p p p q q p +⎧=⎪-+⎪⎨-+⎪=⎪-+⎩,即得;再结合传染病A 和传染病B 的n I 及传染病A 和传染病B 的n S 分析即得结论. (1)由题可知111415,,60015156n n n n n n n n S S I S I R S I ++==+=--, 所以2111586156I S I =+=, ∵11415n n S S +=,1540S =, ∴{}n S 是以540为首项,以1415为公比的等比数列, ∴114540()15n n S -=⨯,所以111551436()156615n n n n n I S I I -+=+=+⨯,配凑得到1114514360()[360()]15615n n n n I I -+-⨯=-⨯,又160I =, 所以114{360()}15n n I --⨯是首项为300-,公比为56的等比数列, ∴11145360()300()156n n n I ---⨯=-⨯,即11145360()300()156n n n I --=⨯-⨯,所以11514600600300()900()615n n n n n R S I --=--=+⨯-⨯.(2)(Ⅰ)由题可知,141560n n n S S R +=+,119510n n n I S I +=+,600n n n R S I =--, 所以114119[(600)]560510n n n n n n n pS I q p S S I S I q +++-=+--++-1[(4712)(54)(60060)]60n n p S p I p q =++-+--+, 对比系数得到4712,5460060.54p p p p q q p +⎧=⎪-+⎪⎨-+⎪=⎪-+⎩解得3,200,p q =⎧⎨=⎩或4,240.p q =⎧⎨=⎩因此我们有:{3200}n n S I +-是首项为1480,公比为1720的等比数列; {4240}n n S I +-是首项为1980,公比为56的等比数列.原命题得证.(Ⅱ)由上可知11732001480()20n n n S I -+=+⨯,1542401980()6n n n S I -+=+⨯,解得11517401980()1480()620n n n S --=+⨯-⨯,11175805920()5940()206n n n I --=+⨯-⨯, 选择①:对比传染病A 和传染病B 的n I 可知,当时间足够长时传染病A 的I 类人群将趋向于0,传染病B 的I 类人群将趋向于80.为了控制感染人数,相较于传染病A 需要投入更大力量防控传染病B .选择②:对比传染病A 和传染病B 的n S 可知,当时间足够长时传染病A 的S 类人群将趋向于0,传染病B 的S 类人群将趋向于40.为了保护易感人群,相较于传染病A 需要投入更大力量防控传染病B .【点睛】关键点点睛:本题第一问的关键是构造数列114{360()}15n n I --⨯,进而可得11145360()300()156n n n I --=⨯-⨯;第二问中关键是通过114119[(600)]560510n n n n n n n pS I q p S S I S I q +++-=+--++-对比系数找出关系式,即得.等差数列、等比数列的综合1.(2021黑龙江省大庆第一中学高三第三次模拟)在各项不为零的等差数列{}n a 中,2201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则()220172019log b b ⋅的值为()A .1B .2C .4D .8 【答案】C【分析】根据等差数列的性质可知2017201920182a a a +=,代入方程可求出2018a ,再根据等比数列的性质2201720192018=b b a ⋅即可代入()220172019log b b ⋅求解.【详解】因为等差数列{}n a 中2017201920182a a a +=,所以2220172018201920182018224=0a a a a a -+=-, 因为各项不为零,所以2018=4a ,因为数列{}n b 是等比数列,所以2201720192018==16b b a ⋅所以()2201720192log =log 16=4b b ⋅,故选C .2.(2020贵州省遵义航天高级中学高三(最后一卷))已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =() A. 2 B. 2或32C. 2或-32D. -1【答案】B【分析】根据等差数列与等比数列的通项公式及性质,列出方程可得q 的值,可得5a 的值.【详解】解:设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或, 故选B.【点睛】本题主要考查等差数列和等比数列的定义及性质,熟悉其性质是解题的关键.数列与函数1.(2019河南省八市重点高中联盟“领军考试”高三压轴)已知函数有两个不同的零点,,-2和,三个数适当排序后既可成为等差数列,也可成为等比数列,则函数的解析式为()A .B .C .D .【答案】C【分析】由函数零点的定义和韦达定理,得,再由和,三个数适当排序后既可成为等差数列,也可成为等比数列,得,,解得,,进而可求解得值,得出函数的解析式.【详解】由题意,函数有两个不同的零点,,可得,则,,又由和,三个数适当排序后既可成为等差数列,也可成为等比数列,不妨设,则,,解得,,所以,,所以,故选C .2.(2020上海市建平中学高三月考)已知数列{}n a 满足()2*110,n n n a a a a ta n N +=>=-+∈,若存在实数t ,使{}n a 单调递增,则a 的取值范围是 A. ()0,1 B. ()1,2C. ()2,3D. ()3,4【答案】A【分析】由{}n a 单调递增,可得1n n a a +>恒成立,则1n t a >+*()n N ∈,分析11t a >+和21t a >+可排除错误选项.【详解】由{}n a 单调递增,可得21n n n n a a ta a +=-+>,由10a a =>,可得0n a >,所以1n t a >+*()n N ∈.1n =时,可得1t a >+.①2n =时,可得21t a ta >-++,即()()()111a t a a -<+-.② 若1a =,②式不成立,不合题意;若1a >,②式等价为1t a <+,与①式矛盾,不合题意.排除B,C,D,故选A.【点睛】本题考查数列的性质,结合不等式的性质求解.数列不等式1.(2020山西重点中学协作体高三暑期联考)已知数列的各项排成如图所示的三角形数阵,数阵中每一行的第一个数构成等差数列,是的前项和,且,.(1)若数阵中从第3行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知,求的值;(2)设,当时,对任意,不等式恒成立,求的取值范围.【答案】(1)160;(2)或.试题分析:(I)由等差数列{b n}满足b1=a1=1,S5=15.求出数列公差后,可得数列的通项公式,结合数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,a9=16,可求出公比,进而求出a50的值;(Ⅱ)由(1)求出S n的表达式,利用裂项相消法求出T n的表达式,进而将不等式恒成立问题,转化为最值问题,利用导数法,可得答案.试题解析:(1)设等差数列的公差为,∵,,∴,.∴,设从第3行起,每行的公比都是,且,,,.,故是数阵中第10行的第5个数.故.(2)∵,∴;令,则当时,,在上为减函数,∴为递减数列,的最大值为.∴不等式变为恒成立,设,,则,即,解得或.2.(2023河南省创新发展联盟高三联考)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是()A. 919,24⎛⎫⎪⎝⎭B. 9,2⎛⎫+∞ ⎪⎝⎭C. ()5,+∞D. (]1,4【答案】A【分析】根据递增数列可得关于t 的不等式组,从而可求其取值范围.【详解】由题意可得()210,9,261525,t t t t ->⎧⎪⎪>⎨⎪->-+⨯⎪⎩解得91924t <<.故选:A.数列新定义1.(2020广东省广州、深圳市学调联盟高三下学期第二次调研)对于实数x ,[x ]表示不超过x 的最大整数,已知正数列{a n }满足S n =(a n),n ∈N *,其中S n 为数列{a n }的前n 项的和,则[]=______.【答案】20 【分析】先由数列的关系求出,再利用放缩法和裂项相消求得前n 项和S 的值,可得答案. 【详解】由题可知,当时,化简可得,当所以数列是以首项和公差都是1等差数列,即又时,记一方面另一方面所以即故答案为202.(2023辽宁省六校高三上学期期初联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A. 68a = B. 954S =C. 135********a a a a a ++++=D.22212201920202019a a a a a +++= 【答案】ACD【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案.【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=L ,故C 正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018aa a a a =-,可得22212201920202019201920202019a a a a a a a a+++==L ,故D 正确; 故选:ACD.【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.1.(2021年全国高考乙卷)设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nnb =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++, 012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n ,⑧则1231111012112222Γ33333-----=++++n nn .⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯nn n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313nn n S ⨯-==--,211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n nT =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭nn b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n n x x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭nn n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.一、单选题1.(2023·重庆八中模拟预测)如图,将钢琴上的12个键依次记为1a ,2a ,⋯,12a .设112i j k <<剟.若3k j -=且4j i -=,则i a ,j a ,ka 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之差为( )A .5B .5-C .0D .10【答案】C【分析】按照题目中的定义依次列举出来,计算差即可. 【详解】若3k j -=且4j i -=,则i a ,j a ,k a 为原位大三和弦,即有1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =,共5个;若4k j -=且3j i -=,则i a ,j a ,k a 为原位小三和弦,可得1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =,共5个,个数差为0. 故选:C.2.(2021·陕西咸阳·模拟预测)某城镇为改善当地生态环境,2016年初投入资金120万元,以后每年投入资金比上一年增加10万元,从2020年初开始每年投入资金比上一年增加10%,到2025年底该城镇生态环境建设共投资大约为( ) A .1600万元 B .1660万元 C .1700万元 D .1810万元【答案】D【解析】设2016年到2025年每年投入资金分别为1a ,2a ,3a ,4a ,1b ,2b ,⋅⋅⋅,6b ,由题意知分别为等差数列、等比数列,分别求数列和,即可求解.【详解】设2016年到2025年每年投入资金分别为1a ,2a ,3a ,4a ,1b ,2b ,⋅⋅⋅,6b , 由已知1a ,2a ,3a ,4a 为等差数列,1120a =,4150a =, 其和为11234540S a a a a =+++=.1b ,2b ,⋅⋅⋅,6b 为等比数列,1150 1.1b =⨯,公比 1.1q =,其和为()()662126150 1.11 1.116501.111 1.1S b b b ⨯-=++⋅⋅⋅+==--,又6122336661.110.10.10.1 1.77C C C ≈+++≈,21270S ≈. 共投入资金大约为1810万元. 故选:D. 【点睛】关键点点睛:实际问题中,关键要读懂题意,抽象出数列,并判断数列为等差还是等比数列,利用数列的通项公式、求和公式解决实际问题.3.(2023·四川凉山·二模(文))在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开设的土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元.余款作为资金全部用于再进货,如此继续.设第n月月底小王手中有现款为n a ,则下列结论正确的是( )(参考数据:111.27.5≈,121.29≈) ①112000a = ②1 1.21000n n a a +=-③2020年小王的年利润约为40000元 ④两年后,小王手中现款约达41万 A .②③④ B .②④ C .①②④ D .②③【答案】A【分析】由题可知,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +之间的递推关系为1 1.21000n n a a +=-,111000a =,进而根据递推关系求出通项公式即可得答案. 【详解】对于①选项,()1120%10000100011000a =+⨯-=元,故①错误;对于②选项,第n 月月底小王手中有现款为n a ,则第1n +月月底小王手中有现款为1n a +,由题意1 1.21000,n n a a +=-故②正确;对于③选项,由1 1.21000,n n a a +=-得()15000 1.25000,n n a a +-=- 所以数列{}5000n a -是首项为6000,公比为1.2的等比数列,所以111250006000 1.2a -=⨯,即11126000 1.2500050000a =⨯+=所以2020年小王的年利润为500001000040000-=元,故③正确; 对于④选项,两年后,小王手中现款为2312112450006000 1.250006000 1.2 1.2410000a =+⨯=+⨯⨯=元,即41万,故④正确.故选:A. 二、多选题4.(2023·重庆·一模)已知数列{}n a ,{}n b 均为递增数列,它们的前n 项和分别为n S ,n T ,且满足12n n a a n ++=,12n n n b b +⋅=,则下列结论正确的是( ) A .101a << B .2232n S n n =+- C.11b <D .22n n S T <【答案】ACD【分析】利用代入法求出前几项的关系即可判断出1a 与1b 的取值范围,再分别求出数列{}n a 与{}n b 的前2n 项和的表达式即可判断大小关系.【详解】由{}n a 是递增数列,得123a a a <<;又12n n a a n ++=,所以122324a a a a +=⎧⎨+=⎩,所以12123212244a a a a a a a >>+⎧⎨+=-⎩,所以101a <<,故选项A 正确;221234212()()()26102(21)2n n n S a a a a a a n n -∴=++++++=++++-=,故B 不正确;由{}n b 是递增数列,得123b b b <<,又12n n n b b +=,所以122324b b b b =⎧⎨=⎩, 所以2132b b b b >⎧⎨>⎩,所以11b <<,故选项C 正确;所以21321242()()nn n Tb b b b b b -=+++++++1212(12)(12)()(21)1212n n n b b b b --=+=+---,所以21)1)n nn T ≥-=-,又12b b ≠,所以21)n n T >-,而221)22n n n n --=-, 当5n ≥时,220n n ->;当14n <≤时,可验证220n n ->, 所以对于任意的*n N ∈,22n n S T <,故选项D 正确. 故选:ACD .【点睛】关键点点睛:解决本题的第一个关键是根据数列的单调性建立不等式,从而判断选项A 、C ,第二个关键是在求和时采用分组求和,第三个关键是比较大小.5.(2023·全国·模拟预测)对于给定数列{}n c ,如果存在实数t ,m ,对于任意的*N n ∈均有1n n c tc m +=+成立,那么我们称数列{}n c 为“M 数列”,则下列说法正确的是( ) A .数列{}21n +是“M 数列”B .数列{}21n+不是“M 数列”C .若数列{}n a 为“M 数列”,则数列{}1n n a a ++是“M 数列”D .若数列{}n b 满足11b =,123n n n b b p ++=⨯,则数列{}n b 是“M 数列” 【答案】ACD【分析】根据“M 数列”定义,依次判断四个答案,验证t ,m 的存在性,进而判断答案.【详解】对于选项A ,由“M 数列”定义,得()()21121n t n m ++=++,即()2130n t t m -+--=,存在1t =,2m =对于任意的*N n ∈都成立,故选项A 正确; 对于选项B ,由“M 数列”定义,得()12121n n t m ++=++,即()2210n t t m -++-=,存在2t =,1m =-对于任意的*N n ∈都成立,故选项B 错误;对于选项C ,若数列{}n a 为“M 数列”,则1n n a ta m +=+,21n n a ta m ++=+所以()1212n n n n a a t a a m ++++=++,存在m=0成立所以数列{}1n n a a ++是“M 数列”,故选项C 正确;对于选项D ,若数列{}n b 是“M 数列”,则1n n b tb m +=+,可得()1212n n n n b b t b b m ++++=++,即123232n np t p m +⨯=⨯⨯+,故()23320n p t m -+=,对于任意的*N n ∈都成立,则()230,20,p t m ⎧-=⎨=⎩所以3t =,0m =或0p m ==.当3t =,0m =时,13n n b b +=,此时数列{}n b 是“M 数列”;当0p m ==时,1n n b b +=-,此时数列{}n b 是“M 数列”,故选项D 正确.。
高考数学二轮复习 专题七 数列 第2讲 数列问题的综合 理
[解] (1)方程 x2-5x+6=0 的两根为 2,3,
由题意得 a2=2,a4=3. 设数列{an}的公差为 d,则 a4-a2=2d, 故 d=1,
2 从而 a1=32. 所以{an}的通项公式为 an=12n+1. (2)设2ann 的前 n 项和为 Sn.
由 (1)知2ann= n2+n+ 12,则 Sn=232+243+…+n+2n 1+n2+n+12,
= (2n- 1)(2n+ 1),
1= 1 × 1 bn 2n-1 2n+1
=12(2n1- 1-2n1+ 1),
1 + 1 + 1 +…+ 1
b1 b2 b3
bn
=12[(1-13)+ (13-15)+…+(2n1- 1-2n1+ 1)]
=12(1-2n1+
)<1. 12
2.已知数列{bn}满足 bn+1=12bn+14,且 b1=72,Tn 为{bn}的前 n 项和. (1)求证 :数列{bn-12}是等比数列,并求 {bn}的通项公式; (2)如果对任意 n∈N,k>0,不等式2Tn+3×22-n-10≤n2+4n
(1-q)Sn=a1b1+d(b2+b3+…+bn)-qanbn.③ 化简③求出Sn即得.
已知等差数列{an}的公差 d>0,前 n 项和为 Sn,a2,a4 是方程
Байду номын сангаас
x2-10x+21=0 的两根.
(1)求证: 1 + 1 +…+ 1 <1;
S2 S3
Sn
(2)求数列{2-nan}的前 n 项和 Tn.
+1 2 2×
+… 3
+ (
1 n-
1)
n
=11-12+12-13+…+n-1 1-1n=1-1n<1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北黄岗中学高考数学二轮复习考点解析7:数列的综合考查数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
(文科考查以基础为主,有可能是压轴题)一、知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 二、方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
(2)通项公式法: ①若 =+(n-1)d=+(n-k )d ,则{}n a 为等差数列;②若,则{}n a 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当1a >0,d<0时,满足10m m a a +≥⎧⎨≤⎩的项数m 使得m S 取最大值.(2)当1a <0,d>0时,满足10m m a a +≤⎧⎨≥⎩的项数m 使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、注意事项1.证明数列{}n a 是等差或等比数列常用定义,即通过证明11-+-=-n n n n a a a a 或11-+=n n n n a aa a 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意n s 与n a 之间关系的转化。
如:n a =1100nn S S S -≤⎧⎨-≥⎩ 21≥=n n , n a =∑=--+nk k k a a a 211)(.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路. 5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略. 四.典型考例【问题1】等差、等比数列的项与和特征问题P 49 例1 3。
P 50 例2 P 56 例1 P 59 T 6. 【注1】文中所列例题如末给题目原文均为广州市二轮复习资料上例题例(四川卷)数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T本小题主要考察等差数列、等比数列的基础知识,以及推理能力与运算能力。
满分12分。
解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=(Ⅱ)设{}n b 的公比为d 由315T =得,可得12315b b b ++=,可得故可设135,5b d b d =-=+ 又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+ 解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴()213222n n n T n n n-=+⨯=+1.设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n . (Ⅰ)若a 11=0,S 14=98,求数列{a n }的通项公式;(Ⅱ)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式2.(上海卷)设数列{}n a 的前n 项和为n S ,且对任意正整数n ,4096n n a S +=。
(1)求数列{}n a 的通项公式?(2)设数列2{log }n a 的前n 项和为n T ,对数列{}n T ,从第几项起509n T <-?.解(1) ∵a n + S n =4096, ∴a 1+ S 1=4096, a 1 =.当n ≥2时, a n = S n -S n -1=(4096-a n )-(4096-a n -1)= a n -1-a n ∴1-n n a a =21 a n =(21)n-1.(2) ∵log 2a n =log 2[(21)n -1]=12-n, ∴T n =21(-n 2+23n ). 25b =由T n <-509,解得n>2460123+,而n 是正整数,于是,n ≥46. ∴从第46项起T n <-509.3. (全国卷Ⅰ) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项;(Ⅱ)求{}n nS 的前n 项和n T 。
解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=-即,)(220121*********a a a a a a +++=+++可得.)(220121*********10a a a a a a q +++=+++⋅因为0>n a ,所以 ,121010=q 解得21=q ,因而 .,2,1,2111 ===-n q a a n n n (Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故 .2,211211)211(21n n n n n n n nS S -=-=--= 则数列}{n nS 的前n 项和 ),22221()21(2n n n n T +++-+++= ).2212221()21(212132++-+++-+++=n n n nn n T 前两式相减,得122)212121()21(212+++++-+++=n n n nn T 12211)211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n nn n n T 【问题2】等差、等比数列的判定问题.P 53 T 7 例P 54 T 9[例]P 54 T 9(上海卷)已知有穷数列{n a }共有2k 项(整数k ≥2),首项1a =2.设该数列的前n 项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1. (1)求证:数列{n a }是等比数列;(2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式;(3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23|≤4,求k 的值.(1) [证明] 当n=1时,a 2=2a,则12a a =a ; 2≤n≤2k -1时, a n+1=(a -1) S n +2, a n =(a -1) S n -1+2, a n+1-a n =(a -1) a n , ∴nn a a 1+=a, ∴数列{a n }是等比数列. (2) 解:由(1) 得a n =2a1-n , ∴a 1a 2…a n =2n a )1(21-+++n =2n a2)1(-n n =212)1(--+k n n n ,b n =1121]12)1([1+--=--+k n k n n n n(n=1,2,…,2k).(3)设b n ≤23,解得n≤k+21,又n 是正整数,于是当n≤k 时, b n <23;当n≥k+1时, b n >23.原式=(23-b 1)+(23-b 2)+…+(23-b k )+(b k+1-23)+…+(b 2k -23)=(b k+1+…+b 2k )-(b 1+…+b k )=]12)10(21[]12)12(21[k k kk k k k k k +--+-+--+=122-k k . 当122-k k ≤4,得k 2-8k+4≤0, 4-23≤k≤4+23,又k≥2,∴当k=2,3,4,5,6,7时,原不等式成立.4.[例],已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。
分析:由于{b n }和{c n }中的项都和{a n }中的项有关,{a n }中又有S 1n +=4a n +2,可由S 2n +-S1n +作切入点探索解题的途径.【注2】本题立意与高考题文科20题结构相似.解:(1)由S 1n +=4a 2n +,S 2n +=4a 1n ++2,两式相减,得S 2n +-S 1n +=4(a 1n +-a n ),即a 2n +=4a 1n +-4a n .(根据b n 的构造,如何把该式表示成b 1n +与b n 的关系是证明的关键,注意加强恒等变形能力的训练)a 2n +-2a 1n +=2(a 1n +-2a n ),又b n =a 1n +-2a n ,所以b 1n +=2b n ① 已知S 2=4a 1+2,a 1=1,a 1+a 2=4a 1+2,解得a 2=5,b 1=a 2-2a 1=3 ② 由①和②得,数列{b n }是首项为3,公比为2的等比数列,故b n =3·21n -.当n ≥2时,S n =4a 1n -+2=21n -(3n-4)+2;当n=1时,S 1=a 1=1也适合上式.综上可知,所求的求和公式为S n =21n -(3n-4)+2.说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n 项和。