FluentUDF中文教程
Fluent中的UDF详细中文教程(9)
第九章本章扼要介绍了FLUENT中用户自定义标量及它们的用法。
•9.1 介绍•9.2 理论•9.3 UDS的定义,求解,后处理9.1 介绍FLUENT可以用求解诸如质量组分之类标量方程的相同方法来求解任意的用户自定义标量 (UDS)。
在某些类型的应用中,如燃烧模拟或是等离子增强表面反应(plasma-enhanced surface reaction)的模拟中,还需引入新的标量输运方程。
用户自定义标量可被用于磁流体动力(MHD)模拟中。
在MHD中,导电流体(conducting fluid)的流体将会产生磁场,此磁场可以用户自定义标量来求解。
磁场造成的对流体的阻尼(a resistance to the flow),可用用户自定义的源项来模拟。
书中4.3.12和4.3.13介绍了用 UDFs来定义标量输运方程的例子。
to customize scalar transport equations.9.2 理论对于一个任意的标量, FLUENT 可求解方程(9.2.1)此处 和 是用户为N 个标量方程中的每一个方程定义的扩散系数和源项。
对于稳态的情况,根据计算对流通量的方法的不同,FLUENT 可求解以下的三种方程之一:•如果对流通量不用计算,则FLUENT 可解方程(9.2.2)此处 和 是用户为N 个标量方程中的每一个方程定义的扩散系数和源项。
•如果以质量流率来计算对流通量,FLUENT可解方程(9.2.3)•如果选择一个用户自定义函数来计算对流通量,FLUENT可解方程(9.2.4)此处 是用户定义的流率。
!! 在FLUENT中,用户自定义函数只可在流体区域内求解,而不能在固体区域内求解。
9.3 UDS的定义,求解,后处理定义,求解,后处理用户自定义标量的步骤概括如下。
注意UDFs 在多相流体和单项流体中应用的重要不同在于,如果是单相的情况(an individual phase), 用户需要提供用户自定义的标量通量函数。
FLUENT UDF 教程
FLUENT UDF 教程第一章. 介绍本章简要地介绍了用户自定义函数(UDF)及其在Fluent中的用法。
在1.1到1.6节中我们会介绍一下什么是UDF;如何使用UDF,以及为什么要使用UDF,在1.7中将一步步的演示一个UDF例子。
1.1 什么是UDF?1.2 为什么要使用UDF?1.3 UDF的局限1.4 Fluent5到Fluent6 UDF的变化1.5 UDF基础1.6 解释和编译UDF的比较1.7一个step-by-stepUDF例子1.1什么是UDF?用户自定义函数,或UDF,是用户自编的程序,它可以动态的连接到Fluent求解器上来提高求解器性能。
用户自定义函数用C语言编写。
使用DEFINE宏来定义。
UDF中可使用标准C 语言的库函数,也可使用Fluent Inc.提供的预定义宏,通过这些预定义宏,可以获得Flu ent求解器得到的数据。
UDF使用时可以被当作解释函数或编译函数。
解释函数在运行时读入并解释。
而编译UDF则在编译时被嵌入共享库中并与Fluent连接。
解释UDF用起来简单,但是有源代码和速度方面的限制不足。
编译UDF执行起来较快,也没有源代码限制,但设置和使用较为麻烦。
1.2为什么要使用UDF?一般说来,任何一种软件都不可能满足每一个人的要求,FLUENT也一样,其标准界面及功能并不能满足每个用户的需要。
UDF正是为解决这种问题而来,使用它我们可以编写FLUEN T代码来满足不同用户的特殊需要。
当然,FLUENT的UDF并不是什么问题都可以解决的,在下面的章节中我们就会具体介绍一下FLUENT UDF的具体功能。
现在先简要介绍一下UDF的一些功能:定制边界条件,定义材料属性,定义表面和体积反应率,定义FLUENT输运方程中的源项,用户自定义标量输运方程(UDS)中的源项扩散率函数等等。
λ在每次迭代的基础上调节计算值λ方案的初始化λ(需要时)UDF的异步执行λ后处理功能的改善λFLUENT模型的改进(例如离散项模型,多项混合物模型,离散发射辐射模型)λ由上可以看出FLUENT UDF并不涉及到各种算法的改善,这不能不说是一个遗憾。
FLUENTUDF官方培训教程(多场合应用)
FLUENTUDF官方培训教程一、引言FLUENTUDF(UserDefinedFunctions)是一种强大的功能,允许用户在FLUENT软件中自定义自己的函数,以满足特定的模拟需求。
为了帮助用户更好地了解和使用UDF功能,FLUENT官方提供了一系列培训教程,本教程将对其中的重点内容进行详细介绍。
二、UDF基础知识1.UDF概述UDF是FLUENT软件中的一种编程接口,允许用户自定义自己的函数,包括自定义物理模型、边界条件、求解器控制等。
UDF功能使得FLUENT软件具有很高的灵活性和扩展性,能够满足各种复杂流动问题的模拟需求。
2.UDF编程语言UDF使用C语言进行编程,因此,用户需要具备一定的C语言基础。
UDF编程遵循C语言的语法规则,但为了与FLUENT软件的求解器进行交互,UDF还提供了一些特定的宏和函数。
3.UDF编译与加载编写完UDF代码后,需要将其编译成动态库(DLL)文件,然后加载到FLUENT软件中。
编译和加载UDF的过程如下:(1)编写UDF代码,保存为.c文件;(2)使用FLUENT软件提供的编译器(如gfortran)将.c文件编译成.dll文件;(3)在FLUENT软件中加载编译好的.dll文件。
三、UDF编程实例1.自定义物理模型cinclude"udf.h"DEFINE_TURBULENCE_MODEL(my_k_epsilon_model,d,q){realrho=C_R(d,Q_REYNOLDS_AVERAGE);realmu=C_MU(d,Q_REYNOLDS_AVERAGE);realk=C_K(d,Q_KINETIC_ENERGY);realepsilon=C_EPSILON(d,Q_DISSIPATION_RATE);//自定义湍流模型计算过程}2.自定义边界条件cinclude"udf.h"DEFINE_PROFILE(uniform_velocity_profile,thread,position ){face_tf;realx[ND_ND];begin_f_loop(f,thread){F_CENTROID(x,f,thread);realvelocity_magnitude=10.0;//自定义速度大小realvelocity[ND_ND];velocity[0]=velocity_magnitude;velocity[1]=0.0;velocity[2]=0.0;F_PROFILE(f,thread,position)=velocity_magnitude;}end_f_loop(f,thread)}3.自定义求解器控制cinclude"udf.h"DEFINE_CG_SUBITERATION_BEGIN(my_cg_subiteration_begin,d ,q){realdt=0.01;//自定义时间步长DT(d)=dt;}四、总结本教程对FLUENTUDF官方培训教程进行了简要介绍,包括UDF 基础知识、编程实例等内容。
2024版年度FluentUDF教程详细全面适合初学者
初学者CONTENTS •FluentUDF简介与背景•编程环境与工具准备•UDF基础知识讲解•Fluent中UDF应用实践•性能优化与调试技巧•拓展应用与前沿进展FluentUDF 简介与背景01FluentUDF(User-Defined Function)是用户自定义函数,允许用户扩展和定制Fluent软件的功能。
FluentUDF可以用于定义边界条件、材料属性、源项、输运方程等,以满足特定问题的需求。
通过FluentUDF,用户可以将自己的数学模型和算法集成到Fluent中,实现更高级别的模拟和分析。
010203 FluentUDF定义及作用Fluent计算流体力学基础Fluent是一款基于有限体积法的计算流体力学软件,用于模拟和分析流体流动、传热、化学反应等物理现象。
Fluent提供了丰富的物理模型、数值方法和求解器,可应用于多种领域,如航空、汽车、能源、生物等。
Fluent的计算流程包括前处理、求解和后处理三个阶段,其中前处理用于建立几何模型、划分网格和设置边界条件,求解用于进行数值计算,后处理用于结果可视化和数据分析。
UDF可以扩展Fluent的标准功能,使其能够处理更复杂的物理现象和数学模型。
UDF可以提高模拟的准确性和精度,通过自定义边界条件、源项等,更好地描述实际问题的特性。
UDF还可以加速模拟过程,通过优化算法和并行计算等技术,提高计算效率。
UDF在Fluent中重要性学习FluentUDF可以深入理解Fluent软件的内部机制和计算原理,有助于更好地掌握该软件。
通过学习FluentUDF,可以培养编程思维和解决问题的能力,为未来的科学研究和工程实践打下基础。
FluentUDF是Fluent的高级功能之一,掌握它可以提高求职竞争力,拓宽职业发展道路。
FluentUDF具有很强的实用性和通用性,掌握它可以为解决实际工程问题提供有力工具。
9字9字9字9字初学者为何选择学习FluentUDF编程环境与工具准备02Fluent软件安装与配置要求操作系统兼容性确保操作系统与Fluent软件版本兼容,如Windows、Linux等。
FLUENT_UDF官方培训教程
FLUENT_UDF官方培训教程
必须原创
FLUENT UDF全称为Fluent User Defined Functions,是ANSYS Fluent有限元分析软件的一种高级应用技术,主要用于定制流体、多相流及热传导模拟中的特殊调整元件。
本文介绍如何使用FLUENT-UDF进行实际模拟的培训教程。
一、FLUENTUDF的概念
FLUENT UDF是一种定制的技术,它可以灵活地增强Fluent本身的模拟能力,并让用户能够自定义函数来调整流体、多相流及热传导模拟中的特殊参数。
FLUENT UDF是一种可以定义特殊参数和条件的技术,它可以让Fluent本身的模拟更加强大。
用户可以根据实际的需求自定义这些特殊参数,从而实现更加全面和精确的模拟。
二、FLUENTUDF的步骤
2.编写UDF函数:
UDF函数可以用C或Fortran语言编写,也可以用Fluent自带的UDFEasy编译器编写。
编写UDF函数的基本步骤是:
(1)编写UDF函数的声明,它在编译器的第一行声明,用于定义函数的相关参数;
(2)编写函数代码,用于计算流体及热传导的相关参数;
(3)编写函数的结束部分,使函数返回正确的值并运行成功。
Fluent中的UDF详细中文教程(7)
第七章 UDF的编译与链接编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。
在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。
_ 第 7.1 节: 介绍_ 第 7.2 节: 解释 UDF_ 第 7.3 节: 编译 UDF7.1 介绍解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。
编译后的UDF由C语言系统的编译器编译成本地目标码。
这一过程须在FLUENT运行前完成。
在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。
另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。
这一代码调用时是在内部模拟器或解释器上运行。
与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。
如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。
为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。
解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。
编译UDF的控制面板里有个“Open 按钮”,当点击“Open按钮” 时会“打开”或连接目标代码库运行FLUENT(此时在运行FLUENT之前需要编译好目标码)。
当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。
因此,只要读取case文件,这个库会自动地链接到FLUENT处理过程。
同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。
只要读取这个case文件,这些函数会被自动编译。
注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。
一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。
2024版ansysfluent官方培训教程07udf
选择合适的编程工 具
可以使用任何支持C语言的编程 工具来编写UDF程序,如 Microsoft Visual Studio、 Code:Blocks等。根据实际需求 选择合适的编程工具进行安装和 配置。
03
编写简单的UDF程 序
在了解基本语法和编程规范后, 可以尝试编写一个简单的UDF程 序,如计算流场中某点的速度大 小。在编写过程中,需要注意代 码的规范性和可读性。
2024/1/26
3
UDF定义及作用
01
UDF(User-Defined Function) 是用户自定义函数,允许用户在 ANSYS Fluent中编写自己的代 码来解决特定问题。
02
UDF可以用于定义边界条件、物 性参数、源项、控制方程等,扩 展了ANSYS Fluent的功能和灵 活性。
03
switch-case等,用于实现条 件判断。
循环结构包括for循环、while 循环和do-while循环,用于实 现重复执行某段代码的功能。
2024/1/26
在使用控制语句和循环结构时, 需要注意语法格式和正确使用 大括号({})来定义代码块。
13
UDF常用函数库介绍
数学函数库包含了常见的数学运算函数,如sin、 cos、sqrt等。
2024/1/26
不收敛问题
调整求解器设置、改进网格质量或调整边界条件,以提高求解收敛性。
21
性能优化建议
优化算法
选择更高效的算法和数据结构,减少计算量 和内存占用。
并行计算
利用ANSYS Fluent的并行功能,加速UDF 的计算过程。
2024/1/26
减少I/O操作
减少不必要的文件读写操作,以提高程序运 行效率。
Fluent_UDF_中文教程
Fluent_UDF_中文教程Fluent_UDF是Fluent中的用户定义函数,能够定制化模拟中的物理过程和边界条件。
通过Fluent_UDF,用户可自由地编写自己的程序,以扩展Fluent的功能。
Fluent_UDF具有灵活性和可移植性,可以用C语言或Fortran语言编写。
下面我们将介绍Fluent_UDF的使用方法和编写过程。
1. Fluent_UDF的基本概念在Fluent中运行的模拟,都是由CFD模型和相应的物理模型组成。
CFD模型负责离散化解决流动方程,在CFD模型的基础上,物理模型定义了流体在不同条件下的行为,例如燃烧过程、湍流模型、多相流模型等。
而Fluent_UDF则是一套可以编写自定义的物理模型或者边界条件的库,可以与Fluent中的各类模型进行整合工作。
用户可以通过编写Fluent_UDF来与Fluent交互,其中可以定义用户自定义的边界条件,定义新的物性模型、初始或边界条件以及仿真的物理过程等。
2. Fluent_UDF编译器Fluent_UDF需要使用自带的编译器来编译用户自定义函数,这个编译器名为Fluent_Compiler。
Windows系统下,Fluent_Compiler可在Fluent程序安装目录内找到。
在运行Fluent程序之前,用户需要确保其系统环境变量中设置了编译器路径的系统变量。
Linux系统下,Fluent_Compiler亦随Fluent程序安装,其使用方法与Windows类似。
3. Fluent_UDF文件夹的创建在Fluent安装目录下,用户必须创建一个名为udf的文件夹,以存储用户自定义的函数。
用户可以在命令行中进入Fluent 安装目录下的udf文件夹中,输入以下命令创建文件:mkdir myudf其中myudf是用户自定义的函数文件夹名称。
4. Fluent_UDF函数编写Fluent_UDF支持两种编程语言:C语言和Fortran语言。
Fluent UDF 中文教程3
UDF 第3章写UDF本章主要概述了如何在FLUENT写UDF。
3.1 概述3.2写解释式UDF的限制3.3 FLUENT中UDF求解过程的顺序3.4 FLUENT网格拓扑3.5 FLUENT数据类型3.6 使用DEFINE Macros定义你的UDF3.7在你的UDF源文件中包含udf.h文件3.8 定义你的函数中的变量3.9函数体3.10 UDF 任务3.11 为多相流应用写UDF3.12在并行中使用你的UDF3.1概述(Introduction)UDF是用来增强FLUENT代码的标准功能的,在写UDF之前,我们要明确以下几个基本的要求。
首先,必须用C语言编写UDF。
必须使用FLUENT提供的DEFINE宏来定义UDF。
UDF必须含有包含于源代码开始指示的udf.h文件;它允许为DEFINE macros和包含在编译过程的其它FLUENT提供的函数定义。
UDF只使用预先确定的宏和函数从FLUENT求解器访问数据。
通过UDF传递到求解器的任何值或从求解器返回到UDF的值,都指定为国际(SI)单位。
总之,当写UDF时,你必须记住下面的FLUENT要求。
UDF:1.采用C语言编写。
2.必须为udf.h文件有一个包含声明。
3.使用Fluent.Inc提供的DEFINE macros来定义。
4.使用Fluent.Inc提供的预定义宏和函数来访问FLUENT求解器数据。
5.必须使返回到FLUENT求解器的所有值指定为国际单位。
3.2写解释式UDF的限制(Restriction on Writing Interpreted UDF)无论UDF在FLUENT中以解释还是编译方式执行,用户定义C函数(说明在Section 3.1中)的基本要求是相同的,但还是有一些影响解释式UDF的重大编程限制。
FLUENT解释程序不支持所有的C语言编程原理。
解释式UDF不能包含以下C语言编程原理的任何一个:1.goto 语句。
FLUENT udf中文资料ch2
第二章.UDF的C语言基础2.1引言本章介绍了C语言的一些基本信息,这些信息对处理FLUENT的UDF很有帮助。
本章首先假定你有一些编程经验而不是C语言的初级介绍。
本章不会介绍诸如while-do循环,联合,递归,结构以及读写文件的基础知识。
如果你对C语言不熟悉可以参阅C语言的相关书籍。
2.2注释你的C代码熟悉C语言的人都知道,注释在编写程序和调试程序等处理中是很重要的。
注释的每一行以“/*”开始,后面的是注释的文本行,然后是“*/”结尾如:/* This is how I put a comment in my C program */2.3FLUENT的C数据类型FLUENT的UDF解释程序支持下面的C数据类型:Int:整型Long:长整型Real:实数Float:浮点型Double:双精度Char:字符型注意:UDF解释函数在单精度算法中定义real类型为float型,在双精度算法宏定义real为double型。
因为解释函数自动作如此分配,所以使用在UDF中声明所有的float和double数据变量时使用real数据类型是很好的编程习惯。
2.4常数常数是表达式中所使用的绝对值,在C程序中用语句#define来定义。
最简单的常数是十进制整数(如:0,1,2)包含小数点或者包含字母e的十进制数被看成浮点常数。
按惯例,常数的声明一般都使用大写字母。
例如,你可以设定区域的ID或者定义YMIN和YMAX如下:#define WALL_ID 5#define YMIN 0.0#define YMAX 0.40642.5变量变量或者对象保存在可以存储数值的内存中。
每一个变量都有类型、名字和值。
变量在使用之前必须在C程序中声明。
这样,计算机才会提前知道应该如何分配给相应变量的存储类型。
2.5.1声明变量变量声明的结构如下:首先是数据类型,然后是具有相应类型的一个或多个变量的名字。
变量声明时可以给定初值,最后面用分号结尾。
Fluent UDF 中文教程UDF第7章 编译与链接
第七章UDF的编译与链接编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。
在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。
_ 第 7.1 节: 介绍_ 第 7.2 节: 解释 UDF_ 第 7.3 节: 编译 UDF7.1 介绍解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。
编译后的UDF由C语言系统的编译器编译成本地目标码。
这一过程须在FLUENT运行前完成。
在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。
另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。
这一代码调用时是在内部模拟器或解释器上运行。
与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。
如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。
为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。
解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。
编译UDF的控制面板里有个“Open 按钮”,当点击“Open按钮”时会“打开”或连接目标代码库运行FLUENT(此时在运行FLUENT之前需要编译好目标码)。
当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。
因此,只要读取case文件,这个库会自动地链接到FLUENT处理过程。
同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。
只要读取这个case文件,这些函数会被自动编译。
注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。
一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。
FLUENT udf中文资料ch10
第10章应用举例10.1 边界条件10.2源项10.3物理属性10.4反应速率(Reacting Rates)10.5 用户定义标量(User_Defined Scalars)10.1边界条件这部分包含了边界条件UDFs的两个应用。
两个在FLUENT中都是作为解释式UDFs被执行的。
10.1.1涡轮叶片的抛物线速度入口分布要考虑的涡轮叶片显示在Figure 10.1.1中。
非结构化网格用于模拟叶片周围的流场。
区域从底部周期性边界延伸到顶部周期性边界,左边是速度入口,右边是压力出口。
Figure 10.1.1: The Grid for the Turbine Vane Example常数x速度应用于入口的流场与抛物线x速度应用于入口的流场作了比较。
当采用分段线性分布的型线的应用是有效的对边界型线选择,多项式的详细说明只能通过用户定义函数来完成。
常数速度应用于流场入口的结果显示在Figure 10.1.2和Figure 10.1.3中。
当流动移动到涡轮叶片周围时初始常速度场被扭曲。
Figure 10.1.2: Velocity Magnitude Contours for a Constant Inlet x VelocityFigure 10.1.3: Velocity Vectors for a Constant Inlet x Velocity现在入口x速度将用以下型线描述:这里变量y在人口中心是0.0,在顶部和底部其值分别延伸到0745。
这样x速.0度在入口中心为20m/sec,在边缘为0。
UDF用于传入入口上的这个抛物线分布。
C源代码(vprofile.c)显示如下。
函数使用了Section 5.3中描述的Fluent提供的求解器函数。
/***********************************************************************//* vprofile.c *//* UDF for specifying steady-state velocity profile boundary condition *//***********************************************************************/#include "udf.h"DEFINE_PROFILE(inlet_x_velocity, thread, position){real x[ND_ND]; /* this will hold the position vector */real y;face_t f;begin_f_loop(f, thread){F_CENTROID(x,f,thread);y = x[1];F_PROFILE(f, thread, position) = 20. - y*y/(.0745*.0745)*20.;}end_f_loop(f, thread)}函数,被命名为inlet_x_velocity,使用了DEFINE_PROFILE定义并且有两个自变量:thread 和position。
Fluent_170_UDF_中文教程_第一章_UDF概述
前言首先说说为什么要翻译Fluent的UDF。
其实在读研期间时间还是比较充裕的。
有些时候,不给自己下一个目标,时间就在看看电视剧,看看舍友吃吃鸡中过去了,我自己的专业是与流动和燃烧相关,Fluent是必学的软件。
可是网上关于UDF的中文例子又很少。
当然,软件本身英文帮助是一种很好的学习材料,但无论我们英语多好,它毕竟不是我们的母语,我们理解起来还是有一定的困难的。
因此,一方面为了加深自己的理解,另一方面也好给自己,给别人留个参考资料,所以我决定写下中文翻译版。
在翻译的时候,也参考了一些网上的资料,比如网上本来就有的中文版UDF讲解,只是其版本比较旧,而且排版有点不是很舒服,有的地方翻译还有点变扭。
所以决定给自己一个挑战,看看我自己能不能改善,或者是更新一下这个中文版的翻译。
在翻译的过程中,我真正感受到Fluent的强大,其考虑到的内容实在是很宽很广。
难道真的是核心科技都掌握在美国人手上么?我们中国人什么时候也能做出这样庞大的商业软件?或许有这种抱负的中国人不在少数,但是很多科研年轻人迫于生活,默默的顺从了它,找了份安定的工作,然后慢慢磨没了最初的理想。
当然,这并不怪我们,也不该怪国家,怪社会。
改革开放近40年来,我国已经取得了举世瞩目的成就,人民的生活水平得到了进一步提高,科技迅猛发展。
但是我的同邻人他们,或者我们,还并没有不用考虑未来,还要想明天饭到那吃,工资到哪领,女朋友怎么找,房车怎么买。
这样,就很难潜心做自己喜欢的事,我希望,我们的下一代,可以做自己喜欢的事,希望他们能够将自己喜欢的事情做到世界之最。
但是很显然,我们这一代大多数人还不具备这样的条件。
还有,现在我也没有全部翻译完,反正慢慢翻译吧,后年3月应该能翻译完了。
Fluent 17.0中将UDF的一个八章加三个附录,我会一章一章发。
翻译后我也没有仔细校对。
校对工作就靠大家了。
希望与大家一同进步。
如果大家有什么建议或者与意见的话我的邮箱:tang_jiyong@唐继勇2017年09月18日于南京航空航天大学10号楼319第一章 UDF概述1.1 什么是UDFUDF(User Defined Function,用户自定义函数),可以用于被ANSYS FLUENT求解器动态加载以增强其标准功能的C语言程序。
Fluent中的UDF详细中文教程(8)
Fluent中的UDF详细中文教程(8)第八章在FLUENT中激活你的UDF一旦你已经编译(并连接)了你的UDF,如第7章所述,你已经为在你的FLUENT模型中使用它做好了准备。
根据你所使用的UDF,遵照以下各节中的指导。
z8.1节激活通用求解器UDFz8.2节激活模型明确UDFz8.3节激活多相UDFz8.4节激活DPM UDF8.1 激活通用求解器UDF本节包括激活使用4.2节中宏的UDF的方法。
8.1.1 已计算值的调整一旦你已经使用7.2节和7.3节中概括的方法之一编译(并连接)了调整已计算值UDF,这一UDF在FLUENT中将成为可见的和可选择的。
你将需要在User-Defined Function Hooks面板的Adjust Function下拉菜单(图8.1.1)中选择它。
调整函数(以DEFINE_ADJUST宏定义)在速度、压力及其它数量求解开始之前的一次迭代开始的时候调用。
例如,它可以用于在一个区域内积分一个标量值,并根据这一结果调整边界条件。
有关DEFINE_ADJUST宏的更多内容将4.2.1节。
调整函数在什么地方适合求解器求解过程方面的信息见3.3节。
8.1.2 求解初始化一旦你已经使用7.2节和7.3节中概括的方法之一编译(并连接)了求解初始化UDF,这一UDF在FLUENT中将成为可见的和可选择的。
你将需要在User-Defined Function Hooks面板的Initialization Function下拉菜单(图8.1.1)中选择它。
求解初始化UDF使用DEFINE_INIT宏定义。
细节见4.2.2节。
8.1.3 用命令执行UDF一旦你已经使用7.2节和7.3节中概括的方法之一编译(并连接)了你的UDF,你可以在Execute UDF On Demand面板中选择它(图8.1.2),以在某个特定的时间执行这个UDF,而不是让FLUENT在整个计算中执行它。
Fluent_UDF_中文教程
Example
extern Domain *domain;
DEFINE_ON_DEMAND(my_udf) { ... }
is to be replaced by
DEFINE_ON_DEMAND(my_udf) { Domain *domain; domain = Get_Domain(1); ... }
(1.5.1)
此处, 是描述普通输运数量的变量(a general transportable quantity),根据所求解的输运 方程它可取不同的值。下面是在输运方程中可求解的 的子集。
Transport Equation
Variable for
Fluent UDF 中文教程
第一章.介绍本章简要地介绍了用户自定义函数(UDF)及其在Fluent中的用法。
在1.1到1.6节中我们会介绍一下什么是UDF;如何使用UDF,以及为什么要使用UDF,在1.7中将一步步的演示一个UDF例子。
1.1 什么是UDF?1.2 为什么要使用UDF?1.3 UDF的局限1.4 Fluent5到Fluent6 UDF的变化1.5 UDF基础1.6 解释和编译UDF的比较1.7一个step-by-stepUDF例子1.1什么是UDF?用户自定义函数,或UDF,是用户自编的程序,它可以动态的连接到Fluent求解器上来提高求解器性能。
用户自定义函数用C语言编写。
使用DEFINE宏来定义。
UDF中可使用标准C语言的库函数,也可使用Fluent Inc.提供的预定义宏,通过这些预定义宏,可以获得Fluent求解器得到的数据。
UDF使用时可以被当作解释函数或编译函数。
解释函数在运行时读入并解释。
而编译UDF则在编译时被嵌入共享库中并与Fluent连接。
解释UDF用起来简单,但是有源代码和速度方面的限制不足。
编译UDF执行起来较快,也没有源代码限制,但设置和使用较为麻烦。
1.2为什么要使用UDF?一般说来,任何一种软件都不可能满足每一个人的要求,FLUENT也一样,其标准界面及功能并不能满足每个用户的需要。
UDF正是为解决这种问题而来,使用它我们可以编写FLUENT代码来满足不同用户的特殊需要。
当然,FLUENT的UDF并不是什么问题都可以解决的,在下面的章节中我们就会具体介绍一下FLUENT UDF的具体功能。
现在先简要介绍一下UDF的一些功能:z定制边界条件,定义材料属性,定义表面和体积反应率,定义FLUENT输运方程中的源项,用户自定义标量输运方程(UDS)中的源项扩散率函数等等。
z在每次迭代的基础上调节计算值z方案的初始化z(需要时)UDF的异步执行z后处理功能的改善z FLUENT模型的改进(例如离散项模型,多项混合物模型,离散发射辐射模型)由上可以看出FLUENT UDF并不涉及到各种算法的改善,这不能不说是一个遗憾。
Fluent流体UDF中文教程.word板
第四章DEFINE宏本章介绍了Fluent公司所提供的预定义宏,我们需要用这些预定义宏来定义UDF。
在这里这些宏就是指DEFINE宏。
本章由如下几节组成:• 4.1 概述• 4.2 通用解算器DEFINE宏• 4.3 模型指定DEFINE宏• 4.4 多相DEFINE宏• 4.5 离散相模型DEFINE宏4.1 概述DEFINE宏一般分为如下四类:•通用解算器•模型指定•多相•离散相模型(DPM)对于本章所列出的每一个DEFINE宏,本章都提供了使用该宏的源代码的例子。
很多例子广泛的使用了其它章节讨论的宏,如解算器读取(第五章)和utilities (Chapter 6)。
需要注意的是,并不是本章所有的例子都是可以在FLUENT中执行的完整的函数。
这些例子只是演示一下如何使用宏。
除了离散相模型DEFINE宏之外的所有宏的定义都包含在udf.h文件中。
离散相模型DEFINE宏的定义包含在dpm.h文件中。
为了方便大家,所有的定义都列于附录A中。
其实udf.h头文件已经包含了dpm.h文件,所以在你的UDF 源代码中就不必包含dpm.h文件了。
注意:在你的源代码中,DEFINE宏的所有参变量必须在同一行,如果将DEFINE声明分为几行就会导致编译错误。
4.2 通用解算器DEFINE宏本节所介绍的DEFINE宏执行了FLUENT中模型相关的通用解算器函数。
表4.2.1提供了FLUENT中DEFINE宏,以及这些宏定义的功能和激活这些宏的面板的快速参考向导。
每一个DEFINE宏的定义都在udf.h头文件中,具体可以参考附录A。
•DEFINE_ADJUST (4.2.1节)•DEFINE_INIT (4.2.2节)•DEFINE_ON_DEMAND (4.2.3节)•DEFINE_RW_FILE (4.2.4节)• 4.2.1 DEFINE_ADJUST• 4.2.2 DEFINE_INIT• 4.2.3 DEFINE_ON_DEMAND• 4.2.4 DEFINE_RW_FILE4.2.1 DEFINE_ADJUST功能和使用方法的介绍DEFINE_ADJUST是一个用于调节和修改FLUENT变量的通用宏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 Fluent5 到 Fluent6UDF 的变化
如果你有 FLUENT5 的 UDF 编程经验,请注意在 FLUENT6 种的下列变化:
• FLUENT6 中加入了大量的通用多相模型。When one of these general multiphase models is enabled, storage must be set aside for the mixture as well as the individual phases. This functionality is manifested in the code through the use of additional thread and domain data structures. Consequently, some predefined macros have been added that allow access to data contained within mixture-level and phase-level domain and thread structures. See Section 3.11 for details on writing UDF for multiphase applications.
Example
extern Domain *domain;
DEFINE_ON_DEMAND(my_udf) {E_ON_DEMAND(my_udf) { Domain *domain; domain = Get_Domain(1); ... }
• For compiled UDF, the makefile called Makefile.udf that was provided in previous FLUENT releases has been renamed to makefile.udf2. See Section 7.3.2 for more details.
1.5.3 操作
多数的 UDF 任务需要在一个线的所有单元和面上重复执行。比如,定义一个自定义轮 廓函数(a custom profile function)则会对一个面线上(in a face thread)的所有单元和面进 行循环。 为了用户方便, Fluent Inc.向用户提供了一些循环宏工具(looping macro utilities) 来执行对单元,面,节点(nodes)和线(threads)的重复操作。例如,单元循环宏(Cell-looping macros )可以对给定单元线上的所有单元进行循环操作(loop over cells in a given cell thread allowing access to all of the cells)。 而面循环宏(Face-looping macros)则可调用所有给定 面线(a given face thread)的面。Fluent 提供的循环工具请见 Chapter 6。
If you have a FLUENT 5 UDF with an external domain declaration that you want to use in FLUENT 6, then the extern statement must be replaced by a call to the Get_Domain utility and assignment to a Domain pointer as shown below. The Fluent-provided utility, Get_Domain(1), returns the pointer to the mixture-level domain. See Section 6.5.1 for more details on Get_Domain.
The macro C_VOF accesses volume fraction values from the FLUENT solver. C_VOF(c, pt[i]) has two arguments, c and pt[i]. c is the cell identifier. pt[i] is the pointer to the corresponding phase-level thread for the ith phase, where i is the phase_domain_index. For example, C_VOF(c,pt[i]) can be used to return the volume fraction of the ith phase fluid at cell c. The pointer pt[i] can also be retrieved using THREAD_SUB_THREAD, discussed in Section 6.5.4, using i as an argument.
• DEFINE_PROPERTY is to be used to define UDF for particle or droplet diameter for the mixture model, previously the Algebraic Slip Mixture Model (ASMM), instead of the DEFINE_DRIFT_DIAM macro.
用户自定义函数,或 UDF,是用户自编的程序,它可以动态的连接到 Fluent 求解器上 来提高求解器性能。用户自定义函数用 C 语言编写。使用 DEFINE 宏来定义。UDF 中可使 用标准 C 语言的库函数,也可使用 Fluent Inc.提供的预定义宏,通过这些预定义宏,可以获 得 Fluent 求解器得到的数据。
一般说来,任何一种软件都不可能满足每一个人的要求,FLUENT 也一样,其标准界 面及功能并不能满足每个用户的需要。UDF 正是为解决这种问题而来,使用它我们可以编 写 FLUENT 代码来满足不同用户的特殊需要。当然,FLUENT 的 UDF 并不是什么问题都可 以解决的,在下面的章节中我们就会具体介绍一下 FLUENT UDF 的具体功能。现在先简要 介绍一下 UDF 的一些功能:
第一章. 介绍
本章简要地介绍了用户自定义函数(UDF)及其在 Fluent 中的用法。在 1.1 到 1.6 节中我 们会介绍一下什么是 UDF;如何使用 UDF,以及为什么要使用 UDF,在 1.7 中将一步步的 演示一个 UDF 例子。 1.1 什么是 UDF? 1.2 为什么要使用 UDF? 1.3 UDF 的局限 1.4 Fluent5 到 Fluent6 UDF 的变化 1.5 UDF 基础 1.6 解释和编译 UDF 的比较 1.7 一个 step-by-stepUDF 例子 1.1 什么是 UDF?
1.3 UDF 的局限
尽管 UDF 在 FLUENT 中有着广泛的用途,但是并非所有的情况都可以使用 UDF。UDF 并不能访问所有的变量和 FLUENT 模型。例如,它不能调节比热值;调节该值需要使用求 解器的其它功能。如果您不知道是否可以用 UDF 解决某个特定的问题,您可以求助您的技 术支持。
(1.5.1)
此处, 是描述普通输运数量的变量(a general transportable quantity),根据所求解的输运 方程它可取不同的值。下面是在输运方程中可求解的 的子集。
Transport Equation
Variable for
continuity
1
x momentum
velocity ( u)
守恒与否需要知道通过单元边界的通量。因此,需计算出单元和面上的属性值(properties)。
1.5.2 单元(Cells),面,区域(Zones)和线(Threads)
单元和单元面被组合为一些区域(zones),这些区域规定了计算域(例如,入口,出 口,壁面)的物理组成(physical components)。当用户使用 FLUENT 中的 UDF 时,用户 的 UDF 可调用流体区域或是边界区域的计算变量(solution variables)。UDF 需要获得适 当的变量,比如说是区域参考(a zone reference)和单元 ID,以便标定各个单元。
y momentum
velocity ( v)
z momentum
velocity ( w)
energy
enthalpy ( h)
turbulent kinetic energy k
turbulent dissipation rate
species transport
mass fraction of species ( Y i)
1.5 UDF 基础
• 1.5.1 输运方程 • 1.5.2 单元(Cells),面,区域(Zones)和线(Threads) • 1.5.3 操作 • 1.5.4 求解器数据 • 1.5.5 运行
1.5.1 输运方程
FLUENT 求解器建立在有限容积法的基础上,这种方法将计算域离散为有限数目的控 制体或是单元。网格单元是 FLUENT 中基本的计算单元,这些单元的守恒特性必须保证。 也就是说普通输运方程,例如质量,动量,能量方程的积分形式可以应用到每个单元: