2011河南省中考数学试题及答案
2011河南中考数学试题及答案
2011河南中考数学试题及答案注意:本文仅提供2011年河南省中考数学试题及答案的内容,不包含其他无关信息。
文章按照试题的格式进行整理,以确保信息的准确性和清晰性。
第1题:若a>0,a<1,下列数中最大的是:A. 1 + aB. aC. a^2D. 1/a答案:B. a第2题:若 x + 1 = 5,则 4x - 3 = ?A. 13B. 15C. 17D. 19解析:由题意可得 x = 5 - 1 = 4,代入4x - 3,得 4 * 4 - 3 = 16 - 3 = 13。
答案:A. 13第3题:已知平行四边形ABCD,以AB为底边,E为AB的中点,连接AE 并延长,使AE = EF,如下图所示。
若AB = 13 cm,BC = 4 cm,试求EF的长度。
[图]解析:由于平行四边形的对边相等,也即DC = AB = 13 cm。
又因为EF为AE的延长线,所以EF = AE + AF。
根据题意,AE = EF,所以EF = EF + AF。
两边同时减去EF,则有0 = AF。
因此,EF的长度为0 cm。
答案:0 cm第4题:在四边形ABCD中,∠A = ∠B,∠C = 90°,AD = BC,若∠C = 90°,则下列说法中正确的是:A. AD = BC = AC = BDB. AC + BD = AB + CDC. ∠D = ∠BD. AD // BC解析:由题意可知,∠C是一个直角,所以四边形ABCD为直角梯形。
在直角梯形中,对角线与底边之和等于另一对角线的长度,即AC+ BD = AB。
因此,下列说法中正确的是B. AC + BD = AB + CD。
答案:B. AC + BD = AB + CD第5题:某建筑围墙使用砖块搭建,已知一种墙砖的长是10 cm,宽是5 cm。
若用这种砖块搭建的长方形围墙的周长是70 cm,高是7 cm,求低层砖的个数。
解析:周长等于两倍的长加上两倍的高,即2 * (长 + 高) = 70 cm。
2011河南中考数学试题及答案
2011河南中考数学试题及答案2011年河南省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 根号3D. 0.33333(无限循环)2. 一个数的平方根等于它本身,这个数是:A. 0B. 1C. -1D. 23. 若a > 0,b < 0,且|a| < |b|,则a + b 一定:A. 大于0B. 小于0C. 等于0D. 不确定4. 一个三角形的内角和为:A. 180°B. 360°C. 90°D. 120°5. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (3/2, 0)C. (-3/2, 0)D. (1, 2)6. 一个圆的半径是5,那么它的直径是:A. 10B. 15C. 20D. 257. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a + b + cC. ab + bc + caD. a² + b² + c²8. 一个正数的倒数是:A. 1/xB. x²C. √xD. -x9. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 任意数10. 若a、b互为相反数,c、d互为倒数,m是绝对值最小的有理数,求|a+b|+cd+2m的值是:A. 2B. 1C. 0D. 无法确定二、填空题(每题2分,共20分)11. 一个数的绝对值是其本身的数是______。
12. 一个数的相反数是-5,这个数是______。
13. 若a、b互为相反数,a+b=______。
14. 一个数的平方根是4,这个数是______。
15. 一个数的立方根是2,这个数是______。
16. 一个直角三角形,两直角边分别为3和4,斜边长为______。
17. 若一个长方体的长、宽、高分别是2、3、4,则其表面积为______。
(word完整版)年河南省中考数学试卷(解析版)
2011年河南省中考数学试卷一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)﹣5的绝对值是()A.5 B.﹣5 C. D.﹣【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()A.35°B.145° C.55° D.125°【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.【解答】解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.【点评】此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.3.(3分)下列各式计算正确的是()A. B.C.2a2+4a2=6a4 D.(a2)3=a6【分析】根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.【解答】解:A、(﹣1) 0﹣()﹣1=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;C、2a2+4a2=6a2,故此选项错误;D、(a2)3=a6,故此选项正确.故选D.【点评】此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.4.(3分)不等式的解集在数轴上表示正确的是()A. B.C. D.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙【分析】本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.【解答】解:∵=610千克,=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.7.∴乙的亩产量比较稳定.故选D.【点评】本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本题的关键.6.(3分)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为()A.(3,1)B.(1,3)C.(3,﹣1)D.(1,1)【分析】根据图示可知A点坐标为(﹣3,﹣1),它绕原点O旋转180°后得到的坐标为(3,1),根据平移“上加下减”原则,向下平移2个单位得到的坐标为(3,﹣1).【解答】解:根据图示可知A点坐标为(﹣3,﹣1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,﹣1),故选C.【点评】本题主要考查了根据图示判断坐标、图形旋转180°特点以及平移的特点,比较综合,难度适中.二、填空题(每小题3分,共27分)7.(3分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.8.(3分)如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为72°.【分析】由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度.【解答】解:∵AB=AC,CD平分∠ACB,∠A=36°,∴∠B=(180°﹣36°)÷2=72°,∠DCB=36°.∴∠BDC=72°.故答案为:72°.【点评】本题考查了等腰三角形的性质,本题根据三角形内角和等于180度,在△CDB中从而求得∠BDC的角度.9.(3分)已知点P(a,b)在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为﹣2.【分析】本题需先根据已知条件,求出ab的值,再根据点P关于y轴对称并且点P关于y轴对称的点在反比例函数的图象上即可求出点K的值.【解答】解:∵点P(a,b)在反比例函数的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(﹣a,b),∴k=﹣ab=﹣2.故答案为:﹣2.【点评】本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的特征求出k的值是本题的关键.10.(3分)如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为40°.【分析】连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠ABD的度数,然后用同弧所对的圆周角相等,求出∠E的度数.【解答】解:如图:连接BD,∵AB是直径,∴∠ADB=90°,∵BC切⊙O于点B,∴∠ABC=90°,∵∠C=40°,∴∠BAC=50°,∴∠ABD=40°,∴∠E=∠ABD=40°.故答案为:40°.【点评】本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠E的度数.11.(3分)点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1<y2(填“>”、“<”、“=”).【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【解答】解:∵二次函数y=x2﹣2x+1的图象的对称轴是x=1,在对称轴的右面y随x的增大而增大,∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,2<3,∴y1<y2.故答案为:<.【点评】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.12.(3分)现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.【分析】首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率公式求解.【解答】解:画树状图得:∴一共有6种等可能的结果,两球标号恰好相同的有1种情况,∴两球标号恰好相同的概率是.【点评】此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为4.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.。
2011河南中考数学试题及答案
2011河南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b < 0C. a + b < 0D. a - b > 0答案:D3. 圆的半径是5,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C4. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A5. 以下哪个代数式是二次的?A. x + 2B. x^2 + 3x + 1C. x^3 - 2D. x^2 - 1答案:B6. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -8答案:A7. 一个数的绝对值是3,那么这个数可能是?A. 3B. -3C. 3或-3D. 0答案:C8. 一个长方体的长、宽、高分别是2、3和4,那么它的体积是多少?A. 24B. 12C. 6D. 8答案:A9. 一个数列的前三项是2、5、10,那么第四项是多少?A. 15B. 17C. 20D. 21答案:C10. 一个多项式x^3 - 6x^2 + 11x - 6可以分解为多少个一次因式的乘积?A. 1B. 2C. 3D. 4答案:C二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 如果一个角的补角是120°,那么这个角是________。
答案:60°13. 一个分数的分子是7,分母是14,化简后是________。
答案:1/214. 一个三角形的内角和是________。
答案:180°15. 一个正方体的表面积是96,那么它的边长是________。
答案:416. 一个数的立方根是2,那么这个数是________。
2011河南中考数学试题及答案
2011河南中考数学试题及答案一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm、6cm,其体积是多少立方厘米?A. 480B. 240C. 360D. 6003. 一个数的75%是60,那么这个数是多少?A. 80B. 72C. 60D. 1004. 一个数的1/3加上它的1/4等于2,这个数是多少?A. 3B. 4C. 6D. 125. 下列哪个选项不是质数?A. 2B. 3C. 4D. 56. 一个班级有48名学生,其中2/3是男生,那么女生有多少人?A. 16B. 24C. 32D. 407. 一个数的2倍加上3等于这个数的5倍减去5,这个数是多少?A. 5B. 6C. 7D. 88. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 169. 一个数除以3的商是8,余数是1,这个数是多少?A. 25B. 26C. 27D. 2810. 一个数的3/4加上它的1/2等于9,这个数是多少?A. 6B. 4C. 8D. 1211. 一个长方体的长、宽、高分别是12cm、10cm、8cm,它的表面积是多少平方厘米?A. 832B. 760C. 680D. 60012. 一个数的2/5加上它的3/4等于21,这个数是多少?A. 20B. 30C. 40D. 50二、填空题(每题3分,共36分)13. 一个数的1/2与它的1/3的和是10,这个数是_________。
14. 一个数的3/4加上12等于这个数本身,这个数是_________。
15. 一个长方体的长是15cm,宽是10cm,高是8cm,它的体积是_________立方厘米。
16. 一个数的75%是24,那么这个数的40%是_________。
17. 一个班级有36名学生,其中3/4是女生,那么男生有_________人。
2011年河南省中考数学试题(含答案)
2011年河南省中考数学试题(满分120分,考试时间100分钟)一、选择题(每小题3分,共18分) 1. -5的绝对值是( )A .5B .-5C .15D .15-2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠1=35°,则∠2的大小为( )A .35°B .145°C .55°D .125°c21ba3. 下列各式计算正确的是( )A .101(1)()32---=-B= C .224246a a a +=D .236()a a =4. 不等式组2012x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )A .B .C .D .5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是610x =甲千克,608x =乙千克,亩产量的方差分别是229.6S =甲,2 2.7S =乙,则关于两种小麦推广种植的合理决策是( ) A .甲的平均亩产量较高,应推广甲 B .甲、乙的平均亩产量相差不多,均可推广C .甲的平均亩产量较高,且亩产量比较稳定,应推广甲D .甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A′的坐标为( ) A .(3,1)B .(1,3)C .(3,-1)D .(1,1)二、填空题(每小题3分,共27分) 7. 27的立方根是_______.8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为________.DCBA第8题图第10题图9. 已知点P (a ,b )在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为_______. 10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D ,且AB 为⊙O 的直径,点E 是ABD ︵上异于点A ,D 的一点.若∠C =40°,则∠E 的度数为________.11. 点A (2,y 1),B (3,y 2)是二次函数221y x x =-+的图象上两点,则y 1与y 2的大小关系为y 1____y 2(填“>”,“<”或“=”).12. 现有两个不透明的袋子,其中一个装有标号分别为1,2的两个小球,另一个装有标号分别为2,3,4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_________. 13. 如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.PDCBA14. 如图,是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为________.左视图俯视图主视图G FEDCBA第14题图第15题图15. 如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,∠C =60°,BC =2ADE 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为__________. 三,解答题(本大题8个小题,满分75分)16. (8分)先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.17. (9分)如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M . (1)求证:△AMD ≌△BME ;(2)若N 是CD 的中点,且MN =5,BE =2,求BC 的长.NMEDCBA18. (9分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选). 克服酒驾——你认为哪一种方法更好? A .司机酒驾,乘客有责,让乘客帮助监督 B .在汽车上张贴“请勿酒驾”的提醒标志 C .签订“永不酒驾”保证书 D .希望交警加大检查力度E .查出酒驾,追究就餐饭店的连带责任在随机调查了本市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:调查结果的扇形统计图23%m %A B CDE调查结果的条形统计图根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =_________. (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”提醒标志,则支持该选项的司机小李被选中的概率是多少? 19. (9分)如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO ,并求出计算结果与实际塔高388米之间的误差.(参考数据:3 1.7322 1.414≈≈,.结果精确到0.1米)βαOF GED C BA20. (9分)如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点A (4,m )和点B (-8,-2),与y 轴交于点C . (1)k 1=__________,k 1=________;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是____________; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =3:1,求点P 的坐标.yxPODC BA21. (10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人) 908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人.22.(10分)如图,在Rt△ABC中,∠B=90°,BC=C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF.(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,△DEF 为直角三角形?请说明理由.23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.。
2011年河南省招生考试答案
2011年河南省初中学业水平暨高级中等学校招生考试数学试题参考答案及评分标准说明:1.如果考生的解答与与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)题号 1 2 3 4 5 6 答案 A B DB D C二、填空题(每小题3分,共27分)题号 7 8 9 10 11 1213 14 15 答案372-240<16490π3+3(注:若第8题填为72°,第10题填为40°,不扣分) 三、解答题(本大题共8个小题,满分75分 ) 16.原式=22(1)(1)1(2)x x x x x -+-∙--…………………………………………………………3分=12x x +-.……………………………………………………………………………5分 x 满足-2≤x ≤2且为整数,若使分式有意义,x 只能取0,-2.……………………7分 当x =0时,原式=12-(或:当x =-2时,原式=14). …………………………8分17.(1)∵AD ∥BC ,∴∠A =MBE ,∠ADM =∠E . …………………………………2分 在△AMD 和△BME 中,(2)∵△AMD ≌△BME ,∴MD =ME . 又ND =NC ,∴MN =12EC . ……………………………………………………………7分 ∴EC =2MN =2×5=10.∴BC =EC -EB =10-2=8. …………………………………………………………9分 18.(1)(C 选项的频数为90,正确补全条形统计图);……………………………2分 20.………………………………………………………………………………………4分∠A =∠MBE ,AD =BE ,∠ADM =E ,∴△AMD ≌△BME . ……………………………………5分(2)支持选项B 的人数大约为:5000×23%=1150.……………………………………6分 (3)小李被选中的概率是:1002115023.=………………………………………………9分 19. ∵DE ∥BO ,α=45°, ∴∠DBF =α=45°.∴Rt △DBF 中,BF =DF =268.…………………………………………………………2分 ∵BC =50,∴CF =BF -BC =268-50=218. 由题意知四边形DFOG 是矩形, ∴FO =DG =10.∴CO =CF +FO =218+10=228.……………………………………………………………5分 在Rt △ACO 中,β=60°,∴AO =CO ·tan60°≈228×1.732=394.896……………………………………………7分 ∴误差为394.896-388=6.896≈6.9(米).即计算结果与实际高度的误差约为6.9米.…………………………………………9分 20. (1)12,16;………………………………………………………………2分 (2)-8<x <0或x >4;…………………………………………………………4分 (3)由(1)知,121162,.2y x y x=+= ∴m =4,点C 的坐标是(0,2)点A 的坐标是(4,4).∴CO =2,AD =OD =4.………………………………………………………………5分 ∴24412.22ODAC CO AD S OD ++=⨯=⨯=梯形 ∵:3:1,ODE ODACSS = 梯形∴1112433ODE ODACS S =⨯=⨯= 梯形……………………………………………7分 即12OD ·DE =4,∴DE =2. ∴点E 的坐标为(4,2).又点E 在直线OP 上,∴直线OP 的解析式是12y x =. ∴直线OP 与216y x=的图象在第一象限内的交点P 的坐标为(42,22). …………………………………………………………………………………………9分 21.(1)设两校人数之和为a. 若a >200,则a =18 000÷75=240. 若100<a ≤200,则13180008521117a =÷=,不合题意. 所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.……3分 (2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则 ①当100<x ≤200时,得240,859020800.x y x y +=⎧⎨+=⎩解得160,80.x y =⎧⎨=⎩………………………………………………………………………………6分②当x >200时,得240,759020800.x y x y +=⎧⎨+=⎩解得153,32186.3x y ⎧=⎪⎪⎨⎪=⎪⎩此解不合题意,舍去.∴甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.………………………………………………………………………………………………10分 22.(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t .又∵AE=t ,∴AE=DF.…………………………………………………………………………2分 (2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.…………………………………………………3分 ∵AB =BC ·tan30°=3535,210.3AC AB ⨯=∴== 102.AD AC DC t ∴=-=-若使AEFD 为菱形,则需10.102,.3AE AD t t t ==-=即 即当103t =时,四边形AEFD 为菱形.……………………………………………………5分 (3)①∠EDF =90°时,四边形EBFD 为矩形.在Rt △AED 中,∠ADE =∠C =30°,∴AD =2AE .即10-2t =2t ,52t =.………………7分 ②∠DEF=90°时,由(2)知EF ∥AD ,∴∠ADE =∠DEF =90°. ∵∠A =90°-∠C =60°,∴AD =AE ·cos60°. 即1102, 4.2t t t -==…………………………………………………………………………9分 ③∠EFD =90°时,此种情况不存在.综上所述,当52t =或4时,△DEF 为直角三角形.……………………………………10分 23.(1)对于3342y x =-,当y =0,x =2.当x =-8时,y =-152∴A 点坐标为(2,0),B 点坐标为15(8,).2--…………………………………………1分由抛物线214y x bx c =-++经过A 、B 两点,得012,15168.2b c b c =-++⎧⎪⎨-=--+⎪⎩ 解得235135..42442b c y x x =-=∴=--+,…………………………………………3分 (2)①设直线3342y x =-与y 轴交于点M当x =0时,y =32-. ∴OM =32.∵点A 的坐标为(2,0),∴OA =2.∴AM =225.2OA OM +=……………………4分∵OM :OA :AM =3∶4:5.由题意得,∠PDE =∠OMA ,∠AOM =∠PED =90°,∴△AOM ~△PED .∴DE :PE :PD =3∶4:5.…………………………………………………………………5分 ∵点P 是直线AB 上方的抛物线上一动点, ∴PD =y P -y D213533()()44242x x x =--+--=213444x x --+.………………………………………………………………………6分∴21213(4)542l x x =--+231848.555x x =--+…………………………………………………………………7分23(3)15.315.5l x x l ∴=-++∴=-=最大时,……………………………………8分②满足题意的点P 有三个,分别是12317317(,2),(,2),22P P -+-- 3789789(,).22P -+-+……………………………………………………………11分 【解法提示】当点G 落在y 轴上时,由△ACP ≌△GOA 得PC =AO =2,即21352442x x --+=,解得3172x -±=,所以12317317(,2),(,2).22P P -+-- 当点F 落在y 轴上时,同法可得3789789(,)22P -+-+,4789789(,)22P ----(舍去).。
2011年河南省中考数学试题(A4版)
2011年河南省中考数学试题(满分120分,考试时间100分钟)一、选择题(每小题3分,共18分) 1. -5的绝对值是( )A .5B .-5C .15D .15-2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠1=35°,则∠2的大小为( )A .35°B .145°C .55°D .125°c21ba3. 下列各式计算正确的是( )A .101(1)()32---=-B .235+=C .224246a a a +=D .236()a a =4. 不等式组2012x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )30-230-2A .B .30-2 30-2C .D .5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是610x =甲千克,608x =乙千克,亩产量的方差分别是229.6S =甲,2 2.7S =乙,则关于两种小麦推广种植的合理决策是( ) A .甲的平均亩产量较高,应推广甲 B .甲、乙的平均亩产量相差不多,均可推广C .甲的平均亩产量较高,且亩产量比较稳定,应推广甲D .甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A′的坐标为( ) A .(3,1)B .(1,3)C .(3,-1)D .(1,1)A乙甲y xO11二、填空题(每小题3分,共27分) 7. 27的立方根是_______.8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为________.DCBAO EDCBA第8题图第10题图9. 已知点P (a ,b )在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为_______. 10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D ,且AB 为⊙O 的直径,点E 是ABD︵上异于点A ,D 的一点.若∠C =40°,则∠E 的度数为________.11. 点A (2,y 1),B (3,y 2)是二次函数221y x x =-+的图象上两点,则y 1与y 2的大小关系为y 1____y 2(填“>”,“<”或“=”).12. 现有两个不透明的袋子,其中一个装有标号分别为1,2的两个小球,另一个装有标号分别为2,3,4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_________.13. 如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.PDCBA14. 如图,是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为________.左视图俯视图主视图1210G FEDCBA第14题图第15题图15. 如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,∠C =60°,BC =2AD =23,点E 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为__________.三,解答题(本大题8个小题,满分75分)16. (8分)先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.17. (9分)如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M . (1)求证:△AMD ≌△BME ;(2)若N 是CD 的中点,且MN =5,BE =2,求BC 的长.NMEDCBA18. (9分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选). 克服酒驾——你认为哪一种方法更好? A .司机酒驾,乘客有责,让乘客帮助监督 B .在汽车上张贴“请勿酒驾”的提醒标志 C .签订“永不酒驾”保证书 D .希望交警加大检查力度E .查出酒驾,追究就餐饭店的连带责任在随机调查了本市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:调查结果的扇形统计图23%m %A BCDE调查结果的条形统计图45366960人数选项100806040200EDCBA根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =_________. (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”提醒标志,则支持该选项的司机小李被选中的概率是多少?19. (9分)如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO ,并求出计算结果与实际塔高388米之间的误差.(参考数据:3 1.7322 1.414≈≈,.结果精确到0.1米)βαOF GED C BA20. (9分)如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点A (4,m )和点B (-8,-2),与y 轴交于点C . (1)k 1=__________,k 1=________;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是____________; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =3:1,求点P 的坐标.yxPODC BA21.(10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100 100<m≤200 m>200 收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人.22. (10分)如图,在Rt △ABC 中,∠B =90°,BC =53,∠C =30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF .(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,△DEF 为直角三角形?请说明理由.FED CBA23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值;②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.y xP OGF E D C BAyxBA。
2011年河南中考数学答案
第二部分:毕业实习作业实习结束后,每个学生应完成以下实习作业:一、必答题(一)概念题1、什么叫“三一”砌筑法?如何操作?2、什么是施工缝?如何留置?3、砼的一般标准有哪些?砼为什么要振捣?4、用什么工具检查墙面垂直度?平整度?怎么检查?5、抹灰工程中质量通病有那些?6、手工弯制钢筋有那些设备、工具?7、模板的基本作用是什么?(二)、编制一份与自己实习的实习工地的施工方案。
1、抗震柱与构造柱的区别。
2、施工项目的主要经济指标。
3、普通粘土砖的标准尺寸是多少?砌筑常用砂浆的标号?4、脚手架的材质有哪几种?常用的是什么类型的脚手架?5、普通硅酸盐水泥的主要成分是什么?常见水泥的标号?6、水平缝灰浆饱满度用什么方法测量?达到多少为合格?7、普通砼主要有哪几种材料组成,那些是粗骨料,那些是细骨料?塌落度是什么意思。
8、水泥砂浆抹灰的工艺流程?9、一般墙裙、踢脚线,楼梯踏步的尺寸是多少?10、试说明施工现场,常用的一级钢筋,二级钢筋及表示方法。
11、什么是砼的自然养护,自然养护有那些方法?12、钢筋为什么要留保护层,一般现浇梁、板、柱的保护层是多少?(三)、讨论题:根据你所实习的工地情况编制一份基础或主体等方面的施工方案。
二、本专业毕业设计(论文)学生可结合实习所在企业的具体工作情况,在下列命名的课题任选或自选一题进行毕业设计(论文),实习结束后根据选择的题目进行答辩。
(一)题目的要求:(1)、内容涉及本专业。
(2)、结合实习所在单位的工作安排或具体工作。
(3)、论述应全面覆盖本课题。
(4)、内容新颖、可行、实践操作性强,能较全面论述该内容的现状、发展前景等。
参考题目(可供学生根据实习单位情况自行选择其一完成)。
1、基础工程施工工艺论述,制定基础工程施工方案;基础形式的选择、特点、施工方案2、砌体工程的施工技术论述,制定一个砌体施工方案;砌体材料的选择、特点,与其他砌体材料的比较常见形式的组砌、质量检查3、钢筋工程的施工技术论述,制定一个钢筋工程施工方案;下料、绑扎、焊接、质量检查4、混凝土工程的施工技术论述,制定一个混凝土施工方案;搅拌、浇筑、养护、施工缝的留设、模板拆除时间5、模板工程施工技术论述,制定一个支撑方案及计算书;模板的选择、特点,支撑方案的选择、计算书安装、拆除、质量检查、技术资料6、屋面工程施工技术论述;7、装修工程施工技术论述;装修工程包括哪些分项工程,论述各自特点8、抹灰工程施工工艺论述;一般墙面抹灰工艺、操作方法、饰面砖镶贴、涂料施工工艺9、编写各工种班组技术交底;10、工程质量通病或事故分析及防治措施;11、主体阶段的施工组织设计;以钢筋、模板、混凝土、砌体为主,画进度网络图12、建筑安全技术论述,如何在各个施工环节保证安全生产;13、编制各分部分项工程技术交底(资料)14、各种工程技术资料填写方法(附表格)15、ISO9001质量体系、IS94001安全环境卫生职业体系认证等在本工程的应用;(三)、其他1、毕业设计(论文)指导教师:实习期间的毕业设计(论文)指导教师原则上学生聘请实习所在单位技术人员担任,现场工程技术人员既为实习指导教师又为毕业设计(论文)辅导教师。
2011年河南省中考数学试题精选
2011年河南省中考数学试题精选
2. 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为
【
】(A )35°(B )145°(C )55°(D )125°
4.不等式
5. 某农科所对甲、乙两种小麦各选用
10块面积相同的试验田进行种植试验,它们的平均亩产量分别是
x 甲=610千克,x 乙=608千克,亩产量的方差分别是2
S 甲=29. 6,2
S 乙=2. 7. 则关于两种小麦推广种植的合理决策是
【】
(A )甲的平均亩产量较高,应推广甲
(B )甲、乙的平均亩产量相差不多,均可推广
(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲
(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙
6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移
2个单位长到丙位置,则小花顶点A 在丙位置中的对应点
A ′的坐标为【】[来源学§科§网Z §X §X §K](A )(3,1)
(B )(1,3)(C )(3,-1)(D )(1,1)x+2>0,x -1≤2 的解集在数轴上表示正确的是【】。