大一-高等数学函数(课堂PPT)

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

第一章函数 《高等数学》课件

第一章函数 《高等数学》课件
基础平台
第一部分 极限初论
机动 目录 上页 下页 返回 结束
极限初论三个内容的关系 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
机动 目录 上页 下页 返回 结束
第一章 函 数
机动 目录 上页 下页 返回 结束
第一章 函 数
§1.1 函数的概念 §1.2 函数的基本性质 §1.3 复合函数与反函数 §1.4 初等函数及其应用 §1.5 常用经济函数
t s
s/km 200
100
0
0
1
2
0
100
200
1
2
t/h
思考:
(1) 在描点时,是怎样确定一个点的位 置的? 哪个变量作为点的横坐标?哪 个变量作为点的纵坐标? (2) 函数的定义域是什么? (3) s 的值能大于 200 吗?能是负值吗? 为什么?函数的值域是什么? (4) 随行驶时间 t 的增大,距离 s有怎样 的变化?
函数的定义
设x和y是两个变量,D 是一个给定的非空数集. 如果对于每个数x∈D,按照一定对应法则总有唯一 确定的数值y和它对应,则称y是x的函数。
D
B
f:对应法则
x.
y.
机动 目录 上页 下页 返回 结束
记作
因变量
自变量
定义域
其中, x 称为自变量,y 称为因变量,数集 D 称
为这个函数的定义域。
在某一自然现象或社会现象中,往往 同时存在多个不断变化的量(变量),这 些变量并不是孤立变化的,而是相互联系 并遵循一定的规律。函数就是描述这种联 系的一个法则。
机动 目录 上页 下页 返回 结束
例如,在自由落体运动中,设物体下落的 时间为t,落下的距离为s。假定开始下落 的时刻为t=0,则变量s与t之间的相依关系 由数学模型

高等数学第一章1.1 函数ppt课件

高等数学第一章1.1 函数ppt课件
22 22 2222 a b 2 a b c d c d
2 2 22 22 (| x | | y |) | x y | 2 a b c d 2 ac 2 b
为证三角不等式只须证明
2 22 2 ac bd a b c d
为证上式,又只须证明


点a叫做这邻域的中心 , 叫做这邻域的半径 .
U ( a ) { x a x a } .

a
a
0
a
x
U a ). 点 a 的去心的 邻域 , 记作 (
U ( a ) { x 0 x a } .

a a ; ab a b ; 运算性质: b b a x a ; x a ( a 0 ) x a 或 x a ; x a ( a 0 )
a , b R , 且 a b .
{ x a x b } 称为开区间,
o a b { x a x b } 称为闭区间, o
记作 ( a ,b )
x 记作 [ a ,b ] x
a
b
{ x a x b } 称为半开区间, { x a x b } 称为半开区间,
(3) 狄利克雷函数
1 当 x 是有理数时 yD (x ) 0 当 x 是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g ( x )} y min{ f ( x ), g ( x )}
y
f (x)
y
f (x)
g(x)
o
x
g(x)
x y x y . 绝对值不等式: 绝对值不等式的两个变形公式:

高一数学ppt课件函数

高一数学ppt课件函数
的。
有界性
函数在其定义域内有最 大值和最小值。
周期性
函数在其定义域内每隔 一定周期重复出现。
对称性
函数图像关于某条直线 对称。
02
函数的分类
一次函数
01
02
03
04
一次函数是函数的一种,其图 像为一条直线。
一次函数的一般形式为 y = ax + b,其中 a 和 b 是常数
,且 a ≠ 0。
一次函数的图像会根据 a 和 b 的值变化,当 a > 0 时,函 数为增函数;当 a < 0 时,
在物理学中,许多基本定律和定 理都是通过函数来表达的,如牛
顿第二定律和万有引力定律。
化学反应的动力学
在化学反应动力学中,反应速率 与反应物浓度的关系通常可以用 函数来表示,如指数函数和双曲
线函数。
生物学的生长模型
在生物学中,许多生物体的生长 和繁殖规律可以用函数来描述, 如指数增长和逻辑斯蒂增长模型
函数为减函数。
一次函数在数学、物理和工程 等领域有广泛应用。
二次函数
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,且 a ≠ 0。
二次函数的图像会根据 a 的值变化, 当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
二次函数的图像是一个抛物线,其顶 点坐标可以通过公式 (-b/2a, cb^2/4a) 计算得出。
三角函数
三角函数包括正弦函数、余弦 函数和正切函数等。
三角函数的图像是周期性的波 形曲线。
三角函数的性质包括周期性、 奇偶性和振幅等,对于不同的 函数表达式有不同的性质。
三角函数在解决实际问题如振 动、波动和交流电等方面有广 泛应用。

高一函数课件ppt课件ppt课件

高一函数课件ppt课件ppt课件

偶函数
如果对于函数$f(x)$的定 义域内任意$x$,都有$f(x)=f(x)$,则称$f(x)$为偶 函数。
奇偶性的判断
可以通过计算$f(-x)$并与 $f(x)$进行比较,来判断 函数的奇偶性。
函数的单调性
单调递增
单调性的判断
如果对于函数$f(x)$的定义域内的任 意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则称$f(x)$在定义域内单调 递增。
观地了解它们的性质。
02
反函数和对数函数的性质
反函数和对数函数都有其独特的性质,例如反函数的对称性和对数函数
的单调性等。这些性质在解决实际问题中有着广泛的应用。
03
反函数和对数函数的应用
在实际问题中,反函数和对数函数的应用非常广泛,例如在科学计算、
工程技术和金融领域中都有广泛的应用。
06
函数的实际应用
二次函数性质
函数的图像是一个抛物线,开口方 向由a决定(a>0向上,a<0向下 ),对称轴为x=-b/2a。
二次函数的应用
在现实生活中,二次函数的应用也 非常广泛,如物体自由落体运动、 抛射运动等。
一次函数和二次函数的图像和性质
图像绘制
通过描点法或解析法可以绘制出一次函数和二次函数的图像。
性质分析
可以通过计算$f(x_1) - f(x_2)$的值, 并判断其符号,来判断函数的单调性 。
单调递减
如果对于函数$f(x)$的定义域内的任 意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称$f(x)$在定义域内单调 递减。
函数的周期性
周期函数
如果存在一个非零常数$T$,使 得对于函数$f(x)$的定义域内的 任意$x$,都有$f(x+T) = f(x)$ ,则称$f(x)$为周期函数,$T$

函数的概念ppt课件

函数的概念ppt课件

→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以

( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】

(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;

大一-高等数学函数-PPT

大一-高等数学函数-PPT

1 x2

f
(
x)
1 2
0 x1 1 x2
f
(x
3)
1 2
0 x31 1 x32
1 3 x 2
2 2 x 1 故 D f : [3,1]
y
函数的图形:
W
点集C {(x, y) y f (x), x D} y 称为函数y f (x)的图形.
o
(x, y)
x
D
x
分段函数:在自变量的 不同取值范围内,函数 的 解析式也不同的函数 .
例如, y 1 1 x2
D : (1,1)
例1 求函数y 4 x2 1 的定义域. x 1
解 要使数学式子有意义,x必须满足
4 x 2 0, x 1 0,

x x
2, 1,
由此有 1 x 2
因此函数的定义域为(1,2].
例2
设f
(x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
微积分是近代数学发展的里程碑
微积分的建立是人类头脑最伟大的创造之一, 一部微积分发展史,是人类一步一步顽强地认 识客观事物的历史,是人类理性思维的结晶。 它给出的一整套科学方法,开创了科学的新纪 元,并因此加强与加深了数学的作用。 恩格斯说:“在一切理论成就中,未必再有什么像 17世纪下半叶微积分的发现那样被看作人类精神的 最高胜利了。如果在某个地方我们看到人类精 神的纯粹的和惟一的功绩,那就正是在这里。”
子集
设A,B是两个集合,若A的每个元素都是B的元素,
则称A是B的子集,记作A B(或B A ),读作A包
含于B包含(或B包含A ). 若A B,且有元素a∈B ,但a A,则说A是B的真 子集.

大学高数第一章函数和极限ppt课件

大学高数第一章函数和极限ppt课件

lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
解:由于函数表达式中带有| x | ,
y
所以要分别求函数的左右极限。
因为: lim | x | lim x 1,
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
变量 u 称为中间变量。
如:y sin3 x 可视为 y u3,u sin x 复合而成的 复合函数。 类似地,可以定义多于两重复合关系的复合函数。
11
例 已知 y arcsin[ln(x 1)]
(1)分析 y 的复合结构;(2)求 y 的定义域.
解:(1) y arcsinu , u ln v , v x 1
常见的周期函数有:sin x 、cos x 、tan x ,cot x
前两者周期为 2 ,后两者周期为 。
9
5.函数的有界性
若存在某个正数 M ,使得不等式 f (x) M
对于函数 f (x) 的定义域 D 内的一切 x 值都成立,则称函数 f (x) 在定义域内是有界函数; 如果这样的正数 M 不存在,则称函数 f (x) 在定义域 D 内是

大学高等数学-函数ppt

大学高等数学-函数ppt
高等数学Ⅲ
微积分
自我介绍
姓 名:张智勇 地 点:四教西305室 E-mail : zzy@
课程介绍
课程名称:微积分 学 分:4 学分 学 时:64 学时(1周-16周) 课程内容:1. 函数、极限与连续
2. 导数与微分 3. 中值定理与导数应用 4. 不定积分 5. 定积分及其应用
考核及要求
1. 期末总评成绩的计算
期末考试成绩占70%,平时成绩占30%。
平时成绩:期中测验成绩,作业成绩,考勤。
2. 考勤
不许旷课、迟到、早退,自觉维护课堂纪律。
3. 作业
要求认真完成作业,按时交作业。严禁抄作业。字迹
潦草、表达混乱、乱划乱改的作业返回重做,甚至取
消该次成绩。
4. 答疑
时间:
地点:四教西305
y 14
3
y = [x] = n, n ≤ x < n + 1, n = 0, ±1,± 2, … 其定义域为D( f )=(-∞,+∞),
2
-4 -3 -2 -1 o-11 2 3 4 5 x -2 -3 -4
值域为Z( f )=Z.
阶梯曲线
可以证明:对于任何实数x, 有不等式 [x] ≤x < [x] + 1.
y f (x)
因变量
自变量
定义域:数集D叫做这个函数的定义域, 记作 D( f )
值 域:函数值全体组成的数集, 即 {y | y f (x), x D( f )},记作Z或者Z( f ).
(1)、函数的定义域
1.数学角度:定义域是自变量所能取的使算式 有意义的一切实数值, 这种定义域称为函 数的自然定义域.
oa
b

函数的概念及表示法PPT课件

函数的概念及表示法PPT课件

4
5
6
y(元)
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (2)以上表中的x值为横坐标,对应的y值为纵坐标,在直角 坐标系中依次作出点(1 , 0.12)、(2 , 0.24)、(3 , 0.36)、 (4,0.48)、(5,0.6)、(6,0.72),则函数的图像法表示如图所示.
巩固知识 典型例题
例2 设 f x 2x 1 ,求 f 0 , f 2 , f 5 , f b .
3
分析 本题是求自变量x=x0时对应的函数值,方法是将x0代入 到函数表达式中求值.
解 f 0 20 1
3
f 5 2 5 1
3
, f 2 2 2 1
3
, f b 2b 1
3
, .
巩固知识 典型例题
动 脑思考 探索新 知
作函数图像的一般方法——描点法
.
巩固知识 典型例题
例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅 笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示 这个函数.
解 (3)关系式y=0.12 x就是函数的解析式, 故函数的解析法表示为 y=0. .12 x, x ∈{1,2,3,4,5,6}
总结演示
判断下列对应能否表示y是x的函数
(1)能(2)不能(3) 能 (4)不能
应用知识 强化练习
教材练习3.1.1
1.求下列函数的定义域:
(1) f x 2 ;(2) f x x2 6x 5 .
x4
2.已知 f x 3x 2 ,求 f 0 , f 1 , f a .

高等数学第一章函数极限(共41张PPT)

高等数学第一章函数极限(共41张PPT)
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
右极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
注 :{ x 0 意 x x 0 } { x 0 x x 0 } { x x x 0 0 }
0 取 mx 0 i,n x 0 {}
当 0 |xx0|时恒有
| x x0||xxx 00|
例4 证明 lim a x 1 (a 1) x0 证 0 (不妨设ε<1)
要|使 ax1|
只 1 须 a x 1
又 la o ( 1 只 ) g x l须 a o ( 1 ) g
令 mia n 1 1 { ,llo o a(1 g g )}
x
问题: 如何用精确的数学数学语言刻划函数“无限 接近”.
f(x )A 表f(示 x )A 任;意小
xX表x示 的过 . 程
1. 定义 :
定义1 如果对于任意给定的正数 (不论它多么小), 总存在着正数X,使得对于适合不等式x X的一切 x,所对应的函数值f (x)都满足不等式f (x) A , 那末常数A就叫函数f (x)当x 时的极限,记作 limf(x) A 或 f(x)A(当x)
1. 定义:
定义2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切x ,对应的函数值f (x) 都 满足不等式 f (x) A ,那末常数A 就叫函数
f (x)当x x0时的极限,记作
lim f (x) A 或
xx0
f (x) A(当x x0)
f ( xn )

大学高等数学函数ppt

大学高等数学函数ppt

有界性
若函数在某点的极限存在,则该函数在该 点的值是有界的。
局部四则运算性质
若两个函数的极限都存在,则它们的和、 差、积、商的极限也存在,且分别等于它 们各自极限的和、差、积、商。
无穷小量与无穷大量
无穷小量
在自变量趋近某一值时,函数值无限趋近于0。
无穷大量
在自变量趋近某一值时,函数值无限增大。
无穷小量与无穷大量的关系
定积分的概念
定积分定义
定积分是积分的一种,是函数在 区间上积分和的极限。定积分实 际上是一个数,而不像不定积分 那样是一种函数。
几何意义
定积分的值可以看作是曲线与x轴 所夹的面积,即“以直代曲”的 思想。
计算方法
通过微积分基本定理,可以将定 积分转化为求解原函数在区间端 点处的值之差。
定积分的性质
根据函数的定义域,函数可以分为实数函数、复数函数、离散函数等;根据函数的值域,函数可以分为常数函数、 一次函数、二次函数等;根据函数的特性,函数可以分为连续函数、可导函数、有界函数等。
02
函数的极限
极限的定义
极限的描述性定义
当自变量趋近某一值时,函数值无限接 近于某一常数,称该常数为函数的极限 。
两者之间可以相互转化。例如,当$x to infty$时,$frac{1}{x}$由无穷小量转化为无穷大量;当$x to 0^+$时,$x^2$由无穷小量转化为无穷大量。
03
导数与微分
导数的定义
总结词
导数是描述函数在某一点附近的变化率的重要概念。
详细描述
导数定义为函数在某一点处的切线的斜率,表示函数在该点附近的小变化所引起的函数 值的大小的变化率。导数的计算公式为lim(x→0) [f(x+Δx)-f(x)]/Δx,其中Δx是自变量

函数及其图像(课堂PPT)

函数及其图像(课堂PPT)
aM, aM, A {a1 , a2 , , an } 有限集(列举表示) M { x x所具有的特征} 无限集(命题式表示)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2

高等数学 函数课件

高等数学   函数课件
定积分的性质
定积分具有一些重要的性质,如线性性质、可加性、区间可加性、比较性质等。这些性 质在解决定积分问题时非常有用。
定积分的计算方法
直接法
直接法是计算定积分的基本方法,它基于牛顿-莱布尼茨公式,通过不定积分来计算定积分。
换元法
换元法是一种常用的计算定积分的方法,它通过改变变量的形式来简化积分计算。这种方法的关键是选择合适的换元 ,使积分变得容易计算。
二重积分的计算
通常采用直角坐标系或极坐标系进行计算。对于矩形区域,可以采用“先积分子,再积分母”的方法 ;对于非矩形区域,需要先进行坐标变换,化简为矩形区域再进行计算。
THANKS
感谢观看
极限的数学定义
采用ε-δ语言,严格定义了函数在某点 的极限,为研究函数的性质提供了基 础。
极限的性质
唯一性
01
一个函数在某点的极限是唯一的,即不同的函数值变化趋势最
终只能收敛于一个确定的数值。
有界性
02
函数的极限值是有界的,即函数在某点的极限不会是无穷大或
无穷小。
局部有界性
03
函数在某点的极限值只与该点附近的函数值有关,而与远离该
反函数的性质
反函数具有其原函数的性质,如单调性、奇偶性等。
反函数的求导法则
反函数的求导法则包括链式法则和反函数的导数等于原函数导数的倒数等。
反函数的实际应用
反函数在实际问题中有着广泛的应用,如解方程、优化问题等。CHAPΒιβλιοθήκη ER03函数的极限
极限的定义
极限的数轴表示法
通过数轴上的趋近过程,直观地理解 函数值随自变量变化而变化的趋势。
点的函数值无关。
无穷小与无穷大
无穷小的定义
无穷小是趋于0的变量,但其变化速 度可能比任何有限小的数都要快。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_
记为 A或Ac.
n
定 A 义 i A 1 A 2 A n
i 1
n
A iA 1 A 2 A n
i 1
A iA 1 A 2 A n
i 1
A iA 1 A 2 A n
i 1
返回 上页 下页
.
16
集合运算的基本规律:
(1) A∪B =B∪ A , A∩B = B∩A ; (交换律)
(2) (A∪B)∪C= A∪(B∪C),
返回 上页 下页
.
3
要想学好高等数学,至少要做到以下四点:
首先,理解概念。数学中有很多概念。概念反映的 是事物的本质,弄清楚了它是如何定义的、有什么性质, 才能真正地理解一个概念。
其次,掌握定理。定理是一个正确的命题,分为条 件和结论两部分。对于定理除了要掌握它的条件和结 论以外,还要搞清它的适用范围,做到有的放矢。
一般,用N表示自然数集,用Z表示整数集,用Q表示 有理数集,用R表示实数集.
返回 上页合,若A的每个元素都是B的元素,
则称A是B的子集,记作A B(或B A ),读作A包
含于B包含(或B包含A ).
若AB,且有元素a∈B ,但a A,则说A是B的真
子集.
规定: A.
初等数学研究的是常量,高等数学研究的是变量。 高等数学有其固有的特点:高度的抽象性、严密的逻辑 性和广泛的应用性。 抽象性是数学最基本、最显著的特点—有了高度抽象和 统一,我们才能深入地揭示其本质规律,才能使之得到更 广泛的应用。 严密的逻辑性是指在数学理论的归纳和整理中,无论是 概念和表述,还是判断和推理,都要运用逻辑的规则, 遵循思维的规律。
返回 上页 下页
.
9
第一节 函数的概念及其基本性质 第二节 初等函数 第三节 经济学中常见的函数
第一节 函数的概念及其基本性质
一.集合及其运算
集合:具有某种确定性质的对象的全体,简称集。 集合的元素:组成集合的各个对象。
用大写的英文字母A、B、C……表示集合,用小写的 英文字母a、b、c……表示集合的元素。
返回 上页 下页
.
4
第三,在弄懂例题的基础上做适量的习题。要特别提醒的 是,课本上的例题都是很典型的,有助于理解概念和掌握 定理,要注意不同例题的特点和解法,在理解例题的基础 上做适量的习题。做题时要善于总结 ---- 不仅总结方法,也要总结错误。这样,做完之后才会 有所收获,才能举一反三。
返回 上页 下页
AB
由属于A但不属于B的元素组成的集称 为A与B的差集,记作A–B 或A\ B 即
A B {x |x A 但 x B }
AB
返回 上页 下页
.
15
全集 :又所研究的全 成部 的事 集物 合构 称 . 为
积为 I或U. 若研究某一问题 考时 虑将 对所 象的全体 集看 ,作全
记为 I,则对于任意 A集I,I合 A(即I \ A)称为 A的补集,
(A∩B)∩C= A∩(B∩C);
(结合律)
(3) (A∪B)∩C=(A∩C)∪(B∩C),
(A∩B)∪C=(A∪C)∩(B∪C),
(A - B)∩C=(A∩C)-(B∩C); (分配律)
(4) ________ __
ABAB(或A ( B)cACBc).
______ __ __ __ ___
ABAB(或A ( B)cAcBc)德 . 摩根 . 律
返回 上页 下页
.
17
二.区间与邻域
设a和b都是实数,将满足不等式a<x<b的所有实数组 成的数集称为开区间,记作(a,b)即
(a,b) ={x|a<x<b}, a和b称为开区间(a,b)的端点,这里a (a,b)且b (a,b). 数集 [a,b]={x|a≤x≤b}为闭区间,a和b也称为闭区间[a,b]的
若a属于集合A的元素,则称a属于A,记作 aA ;否则 称a不属于A ,记作 aA(或aA )。
含有限元素的集合称为有限集,不含任何元素的集合称
为空集;用表示空集。 不是有限集也不是空集的集合 称为无限集。
返回 上页 下页
.
12
表示集合的方法: (1)列举法 将集合的元素一一列举出来,写在一个花括号内; (2)描述法 在花括号内指明集合元素所具有的性质。
什么是高等数学?
广义地说,初等数学之外的数学都是高等数学. 通常大学里非数学专业开设的高等数学课程包括微 积分学,概率论与数理统计,线性代数等。 另外,我们这里也把微积分称为高等数学(B).
微积分是近代数学中最伟大的成就,对它的重 要性无论做怎样的估计都不会过分.
返回 上页 下页
.
1
初等数学与高等数学(广义)的区别
返回 上页 下页
.
2
所以说,数学也是一种思想方法,学习数学的过程就是思 维训练的过程。
另外,人类社会的进步,与数学这门科学的广泛应用 是分不开的。尤其是到了现代,电子计算机的出现和普 及使得数学的应用领域更加拓宽,现代数学正成为科技 发展的强大动力,同时也广泛和深入地渗透到了社会科 学领域。因此,学好高等数学对我们来说相当重要。
返回 上页 下页
.
7
返回 上页 下页
.
8
微积分是建立在实数、函数和极限的基础上的。
函数是微积分研究的 对象,所以我们的讨论将从函数开 始。
极限的思想是微积分的基础,学习微积分学,首要的
一步就是要理解到“极限”引入的必要性:
极限思想贯穿整个微积分的始终,极限思想的把握关系 到对微积分思想的确立,微积分理论的掌握和运用,以及 数学思维的建立 。
相等
若AB ,且B A,则称A与B相等,记作A=B.
返回 上页 下页
.
14
并集
由属于A或属于B的所有元素组成的集合 A B 称为A与B的并集记作A∪ B ,即
交集 A∪B ={x|x∈A或x∈B}
由同时属于A与B的元素组成的集称为A与B的交集,记
作A∩B ,即A∩B ={x|x∈A且x∈B} 差集
.
5
第四,理清脉络。对所学的知识要有一个整体的把 握,及时总结知识体系,这样不仅可以加深对知识的 理解,还会对进一步的学习有所帮助。
返回 上页 下页
.
6
微积分是近代数学发展的里程碑
微积分的建立是人类头脑最伟大的创造之一, 一部微积分发展史,是人类一步一步顽强地认 识客观事物的历史,是人类理性思维的结晶。 它给出的一整套科学方法,开创了科学的新纪 元,并因此加强与加深了数学的作用。 恩格斯说:“在一切理论成就中,未必再有什么像 17世纪下半叶微积分的发现那样被看作人类精神的 最高胜利了。如果在某个地方我们看到人类精 神的纯粹的和惟一的功绩,那就正是在这里。”
相关文档
最新文档