最新大坝变形监测

合集下载

如何进行坝体变形监测和大坝安全评估

如何进行坝体变形监测和大坝安全评估

如何进行坝体变形监测和大坝安全评估在现代社会的基础设施中,大坝被广泛应用于水利、发电等领域。

然而,大坝的安全问题一直备受关注。

为了确保大坝的长期稳定运行,坝体变形监测和大坝安全评估变得尤为重要。

本文将介绍如何进行坝体变形监测和大坝安全评估的方法与技术。

首先,我们来谈谈坝体变形监测。

大坝的变形主要包括垂直和水平方向的位移。

常用的监测方法包括仪器监测和遥感监测。

仪器监测,指的是通过在大坝表面安装传感器来实时监测变形情况。

常见的传感器包括测斜仪、全站仪、应变计等。

测斜仪主要用于测量垂直变形,它通过测量在大坝不同部位的倾斜角度来确定变形情况。

全站仪则可以同时测量垂直和水平的位移。

而应变计用于测量大坝内部的应力分布情况。

这些传感器通过无线传输数据,可以实时监测大坝的变形情况。

遥感监测,是指利用遥感技术对大坝进行变形监测。

遥感技术可以通过卫星、无人机等载体获取大坝的高分辨率影像,然后利用影像处理算法来提取出大坝的变形信息。

这种方法的优势在于无需人工安装传感器,大大减少了工作量和成本。

同时,遥感监测还可以进行大范围、全面的变形监测,更容易发现潜在的安全隐患。

接下来,我们将讨论大坝安全评估方法。

大坝的安全评估可以分为静态评估和动态评估两个方面。

静态评估主要是通过对大坝的结构进行分析,来评估其抗震、抗滑、抗渗等能力。

这需要依靠专业的结构力学和地质力学知识。

在进行静态评估时,需要考虑大坝的设计标准、建设工艺、材料选择等因素。

同时,还需要结合实际情况,考虑大坝所在地的地质条件、水文气象条件、工程用途等因素,制定合理的评估方法和指标。

动态评估主要是对大坝的实际运行情况进行监测和分析。

这需要通过实时数据监测和模拟计算来评估大坝的稳定性和安全性。

实时数据监测可以利用上文提到的坝体变形监测方法,获取大坝的变形、应力、振动等信息。

模拟计算则是依据结构力学和水文力学理论,使用计算机模型对大坝进行数字仿真。

通过对监测数据和模拟结果的对比,可以评估大坝的实际运行情况和安全状况。

水利工程施工中的大坝变形监测测量技术与误差控制方法实例

水利工程施工中的大坝变形监测测量技术与误差控制方法实例

水利工程施工中的大坝变形监测测量技术与误差控制方法实例近年来,水利工程的建设越来越受到人们的关注。

而大坝作为水利工程中重要的构筑物,其安全性与稳定性的问题备受关注。

在大坝施工过程中,变形监测测量技术的应用和误差控制成为关键,它们对保证大坝的安全运行起着重要的作用。

一、大坝变形监测测量技术1. 银河测距法银河测距法是一种传统的大坝变形监测测量技术,它基于恒星光的位置变化来测定大地表面的变形。

这种方法精度高,适用于长周期变形的监测,但需要在夜间进行,时间成本较高。

2. 全站仪测量法全站仪测量法是使用全站仪对大坝各个关键点进行测量,通过计算坐标的变化来判断变形情况。

该方法操作简单,准确度较高,但需要现场工作人员手动进行操作,对施工进程会有一定的影响。

3. GNSS测量法GNSS即全球导航卫星系统,它是一种通过卫星信号测量位置、速度和时间的方法。

GNSS测量法可以实时监测大坝的变形情况,精度较高,对施工过程影响较小,但需要基站和移动站之间有一定的距离。

二、误差控制方法1. 校正器的使用为了减小测量误差,可以在测量过程中使用校正器对设备进行校正。

校正器可以通过标定数据与实际观测数据之间的差异,来对仪器误差进行校正。

这样可以提高测量的准确性。

2. 数据处理与分析在大坝的变形监测中,数据处理与分析起着重要的作用。

通过对原始数据进行滤波、插值等操作,可以提高数据的可信度,在分析结果时能够更加准确地判断出变形情况。

3. 参考文献比对在误差控制的过程中,可以借助参考文献对测量结果进行比对。

通过与已有的研究成果对比,可以找出潜在的误差来源,并进行修正。

这有助于提高测量的精度。

三、实例:某水利工程大坝变形监测为了验证以上所述的变形监测测量技术与误差控制方法,我们在某水利工程的大坝上进行了实验。

我们选取了三个关键点进行测量,分别使用银河测距法、全站仪测量法和GNSS测量法进行监测。

同时,我们使用了校正器对设备进行了校正,对测量数据进行了滤波处理,并与参考文献进行了比对。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

水利工程变形监测

水利工程变形监测


2/14/2024
12
第十四章 水利工程变形监测




与 数
§3 监测系统设计



2/14/2024
13
3
监测断面布置(土石坝)
〔1〕观测横断面。布置在最大坝高、原河床处、合龙段、 第 地形突变处、地质条件复杂处、坝内埋管或运行可能发生
节 异常反响处。一般不少于2~3个。
监 测 系
〔2〕观测纵断面。在坝顶的上游或下游侧布设1~2个,在 上游坝坡正常蓄水位以上1个,正常蓄水位以下可视需要设 临时断面,下游坝坡2~5个。
节 地形地质条件及观测精度要求等综合考虑,原那么上要求这
种类型的点能长期稳定,且变形值点的形式可采用土基标、地表岩石标、深埋钢管标、 双金属管标等,具体形式可根据实际情况确定。
统 一般分别在坝顶及坝基处各布设一排沉降监测标点,在高混
设 凝土坝中间高程廊道内和高土石坝的下游马道上,也应适当
2
工作状态划分
应定期对监测结果进行分析研究,并按以下类型对大坝的 第 工作状态作出评估:
节 〔1〕正常状态,指大坝〔或监测的对象〕到达设计要
求的功能,不存在影响正常使用的缺陷,且各主要监测量
监 测 工
的变化处于正常情况下的状态。 〔2〕异常状态,指大坝〔或监测的对象〕的某项功能
程 已不能完全满足设计要求,或主要监测量出现某些异常,
主要内容
第 十 四
概述 监测工程及要求

监测系统设计
小浪底大坝平安监控系统设计
水 利
大坝平安评判专家系统设计






2/14/2024

变形观测(大坝外观部分)

变形观测(大坝外观部分)

变形监测(外观部分)1 一般规定1.1变形观测是针对工业与民用建筑物、构筑物、建筑场地、地基基础、大(中、小)型水坝等进行观测,评价风险,保证安全。

1.2 大型或重要工程建筑物、构筑物,在工程设计时,应对变形监测统筹安排。

施工开始时,即应进行变形监测。

1.3 变形监测首先建立变形监测控制网,其具有高精度性和相对独立性的特点。

其作用在于依靠控制网提供的基准点的准确数据,利用观测值计算出变形观测点的坐标、高程;并验证工作基点相关数据的准确性和可靠性,如工作基点发生损毁或位移时,可依据变形监测控制网补建或纠正工作基点。

当变形监测控制点损毁或发生位移亦可通过其他稳固的网内控制点进行修复。

变形监测控制网是变形观测的基础,它为监测工作提供可靠的观测起算数据,并验证和检测工作基点的可靠性。

使不同时期的观测数据建立在一个相同的观测基础上,从而具有可比性。

同时,变形监测控制网是各工作基点修正、恢复的依据,保障变形观测系统的可靠安全运行。

1.4变形监测点,宜分为基准点、工作基点和变形观测点。

其布设应符合下列要求:一、每个工程至少应有3个稳固可靠的点作为基准点;二、工作基点应选在比较稳定的位置。

对通视条件较好或观测项目较少的工程,可不设立工作基点,在基准点上直接测定变形观测点;三、变形观测点应设立在变形体上能反映变形特征的位置。

1.5 变形测量的等级划分及精度要求,应符合表1.4的规定。

坡监测等注:①变形点的高程中误差和点位中误差,系相对于最近基准点而言;②当水平位移变形测量用坐标向量表示时,向量中误差为表中相应等级点位中误差的1/;③垂直位移的测量,可视需要按变形点的高程中误差或相邻变形点高差中误差确定测量等级。

1.6变形测量的观测周期,应根据建筑物、构筑物的特征、变形速率、观测精度要求和工程地质条件等因素综合考虑。

观测过程中,根据变形量的变化情况,应适当调整。

1.7 每次变形观测时,宜符合下列要求:一、采用相同的图形(观测路线)和观测方法;二、使用同一仪器和设备;三、固定观测人员;四、在基本相同的环境和条件下工作。

大坝变形监测方案

大坝变形监测方案

大坝变形监测方案1. 简介大坝是人类工程中保护水源、调节水量的重要设施之一。

由于大坝长期承受水压和地质运动的力量,随着时间的推移,大坝可能会发生变形。

为了保障大坝的安全性,需要进行定期的变形监测。

本文档将介绍一种大坝变形监测方案,帮助工程师进行科学有效的大坝变形监测。

2. 监测目标大坝变形监测的主要目标是提前发现大坝的变形情况,以防止严重事故的发生。

监测的主要内容包括以下几个方面:•大坝的水平位移变形:主要指大坝在水平方向上的位移情况,通过测量水平位移来判断大坝是否存在下滑或滑坡的风险。

•大坝的竖向位移变形:主要指大坝在垂直方向上的位移情况,通过测量垂直位移来判断大坝是否存在沉降的风险。

•大坝表面的裂缝情况:通过监测大坝表面的裂缝情况,可以了解大坝是否存在结构破裂或渗漏的风险。

3. 监测方法3.1 测量仪器选择为了进行大坝变形的定量测量,需要选择合适的测量仪器。

以下是一些常见的大坝变形监测仪器:•GPS测量仪:可用于测量大坝的水平位移变形,具有高精度、实时性强的特点。

•倾斜仪:可用于测量大坝的竖向位移变形,一般采用水平方向和垂直方向两个方向的倾斜角度进行测量。

•应变计:可用于测量大坝表面的应变情况,一般通过电阻、电容或光纤等方式进行测量。

3.2 监测方案设计根据大坝的具体情况,制定相应的监测方案。

以下是一个常见的大坝变形监测方案设计示例:1.确定监测点位:根据大坝的结构和地质条件,确定监测点位,包括水平位移监测点和竖向位移监测点。

2.布设测量仪器:根据监测点位,布设相应的测量仪器。

GPS测量仪可以布设在大坝上不同位置进行水平位移监测,倾斜仪可以布设在大坝表面进行竖向位移监测,应变计可以布设在大坝表面的关键部位进行应变监测。

3.数据采集与处理:定期采集测量仪器的数据,并进行数据处理。

可以使用专业的监测设备自带的软件对数据进行分析和展示,也可以使用MATLAB或Excel等软件进行数据处理。

4.结果分析与报告:对监测数据进行分析,判断大坝的变形情况,并及时生成监测报告。

大坝位移监测实施方案

大坝位移监测实施方案

大坝位移监测实施方案一、背景介绍。

大坝是水利工程中重要的构筑物,其安全稳定对周边地区的人民生命财产安全具有重要意义。

大坝位移监测是保障大坝安全的重要手段之一,通过对大坝位移进行实时监测,可以及时发现大坝变形情况,为大坝安全运行提供数据支持。

二、监测目的。

1. 及时发现大坝变形情况,预警可能存在的安全隐患;2. 为大坝结构设计和维护提供数据支持;3. 为大坝运行管理提供科学依据。

三、监测内容。

1. 大坝水平位移监测,通过设置水平位移监测点,实时监测大坝在水平方向上的位移情况;2. 大坝竖向位移监测,设置竖向位移监测点,对大坝在竖向上的位移进行实时监测;3. 大坝倾斜监测,通过设置倾斜监测点,对大坝的倾斜情况进行实时监测;4. 大坝温度监测,设置温度监测点,对大坝温度变化进行实时监测。

四、监测方案。

1. 监测设备选择,选择高精度、高稳定性的位移监测仪器,确保监测数据的准确性和可靠性;2. 监测点设置,根据大坝的具体情况,合理设置监测点,覆盖大坝的各个部位;3. 监测频率,根据大坝的重要性和特殊情况,确定监测频率,一般情况下,对于重要大坝,监测频率不低于每日一次;4. 数据处理,对监测数据进行及时处理和分析,建立监测数据库,形成监测报表;5. 预警机制,建立大坝位移监测预警机制,确定预警数值,一旦监测数据超出预警数值,立即启动应急预案。

五、监测管理。

1. 监测责任人,明确大坝位移监测的责任人,建立监测管理团队;2. 监测记录,建立完整的监测记录,包括监测数据、分析报告、维护记录等;3. 监测维护,定期对监测设备进行维护和校准,确保监测设备的正常运行;4. 监测评估,定期对大坝位移监测方案进行评估,不断改进和完善监测方案。

六、总结。

大坝位移监测是大坝安全管理的重要组成部分,合理实施位移监测方案,可以及时发现大坝变形情况,为大坝安全运行提供数据支持。

希望各相关单位能够重视大坝位移监测工作,确保大坝安全稳定运行。

大坝安全监测变形观测

大坝安全监测变形观测
促进水利事业发展:大坝安全监测是水利事业发展的重要组成部分,通过监测大坝变形,可以促 进水利事业的发展,提高水利工程的整体水平。
为大坝维护和修复提供依据
监测大坝变形情况,及时发现潜在问题 为大坝维护和修复提供科学依据 确保大坝安全运行,避免事故发生 提高大坝使用寿命,节约维护成本
03 大坝变形观测的方法
数据分析:对观 测数据进行整理 和分析,及时发 现异常变形,为 大坝安全监测提 供科学依据。
渗流渗压观测
观测方法:设置渗压计,测 量大坝内部渗压变化
观测目的:监测大坝渗流情 况,判断大坝稳定性
观测数据:记录渗压数据, 分析大坝渗流规律
数据分析:对观测数据进行 处理,评估大坝安全性
04
大坝变形观测的仪器和 设备
观测时间和频率
观测时间:在施工期、蓄水期、运行期等不同阶段进行观测 观测频率:根据大坝安全等级、结构类型、环境因素等确定观测频次 观测周期:一般按月、季、年进行观测,特殊情况可适当调整 观测方法:采用水准测量、三角高程测量、全站仪测量等方法进行观测
观测数据的记录和保存
观测数据的记录方 式:采用手工或自 动化方式进行记录, 确保数据的准确性 和完整性
渗压计
定义:渗压计是一种用于测量坝体或坝基渗压的仪器 工作原理:通过测量坝体或坝基中的水压力来推断渗流情况 类型:分为振弦式和差动式两种 应用:主要用于大坝变形观测,帮助判断大坝的安全状况
05
大坝变形观测的数据处 理和分析
数据预处理
数据清洗:去除异常值、缺失值和重复值 数据转换:将原始数据转换为适合分析的格式或模型 数据标准化:将数据进行标准化处理,消除量纲和单位的影响 数据平滑:对数据进行平滑处理,减少噪声和波动
表面变形观测

三江口水利枢纽工程大坝边坡变形监测方案

三江口水利枢纽工程大坝边坡变形监测方案

大坝边坡变形监测方案1、编制依据1、三江口水利枢纽工程右坝肩施工图设计文件2、《水利水电工程施工测量规范》(SL52-93)3、《工程测量规范》(GB50026-2003)4、《国家三角测量规范》(GB/T17942-2000)5、《国家三、四等水准测量规范》(GB12898-2009)6、三江口水利枢纽工程坝肩地形地质调查资料2、工程概况2.1工程基本情况三江口水利枢纽工程位于重庆市彭水县青平乡境内的普子河下游,距彭水县城35km,是普子河流域规划的第四个阶梯级电站。

三江口水利枢纽工程是一水利综合利用工程,工程的开发任务为发电、灌溉、场镇供水和农村人、畜饮水。

根据《防洪标准》(GB50201-94),三江口水利枢纽工程属Ⅲ等中型工程。

水库为不完全年调节水库,正常蓄水位306.0m,总库容6813万m3,灌溉面积 5.231万亩,向乡镇及人畜年供水量1325万m3,电站总装机3.0万kw。

枢纽建筑物主要由拦河大坝、溢流表孔、电站进水口、发电引水系统及电站厂房、灌溉干渠及大型渠系交叉建筑物等组成。

拦河大坝为混凝土双曲拱坝,在其右岸非溢流坝段设置取水建筑物,泄水建筑物包括溢流表孔、大坝底孔。

大坝基础高程为236.00m,坝顶高程309.50m,最大坝高73.5m,坝顶长度201.06m,中部偏左岸布置5孔表孔泄洪;坝顶宽5m,底宽18m;压力引水隧洞全长603m,圆型洞身开挖断面6.3m。

2.2工程地质2.2.1气象普子河流域属亚热带湿润气候区,气候温和,雨量弃沛,四季分明。

多年平均气温17.6℃,极端最高气温44.1℃,极端最低气温~3.8℃,多速0.9m/s,最大风速15.0m/s,多年平均相对湿度78%。

2.2.2区域地质概况工程区在大地构造上隶属杨子准地台上杨子台坳的川东南陷褶束中的黔江凹褶束内。

出露的地层岩性由老至新有:(1)震旦系上统灯影组(Z2dn),(2)寒武系(ε),(3)奥陶系(0),(4)志留系(S),(5)泥盆系上统水车坪组(D3S),(6)石炭系中统黄龙组(C2h),(7),二叠系(P),(8)三叠系(T),(9)第四系(Q)。

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析水利工程中的大坝是对水资源的调节和利用起到至关重要的作用。

但随着大坝龄的增加,其结构会产生各种变形,进而影响大坝的功能和安全。

因此,大坝的变形监测和维护变得至关重要。

本文将从大坝变形监测和维护要点两个方面进行分析。

一、大坝变形监测要点大坝结构的变形包括弯曲、扭曲、沉降、位移等。

监测大坝的变形对于及早发现问题、及时对问题进行修复和预防大问题的发生非常重要。

下面介绍几个大坝变形监测的要点:1.测量范围大坝结构通常非常复杂,不同部分的变形情况也不同。

因此,测量大坝变形应覆盖整个大坝结构,并对关键部位进行重点监测。

这些关键部位包括大坝顶部、坝体及坝址、河床、坝体支承、水闸等。

2. 监测频率大坝变形的监测频率应根据实际情况来定。

通常,均匀分布在大坝结构上的变形量需要每季度或每半年进行监测,而关键部位需要更加频繁地监测,可以考虑每月或每周进行监测。

3.监测技术大坝变形监测技术与监测仪器的选择应根据实际情况选用。

常见监测仪器包括全站仪、测量车、倾斜仪等。

此外,根据大坝结构的不同,还可以考虑使用应变计、位移传感器、压力计等。

4.数据处理大坝变形监测需要记录大量的数据。

数据的处理非常重要,可通过使用数据可视化工具或处理软件进行。

同时,应使用相关的数据处理算法来分析大量数据,了解变形的过程和特点,及时发现异常数据,并进行相应的工作。

二、大坝维护要点大坝维护是对大坝进行维修和保养,以保障其功能安全。

下面介绍几个大坝维护要点:1. 定期检查大坝是长期采用的工程,经常会出现各种问题。

因此,定期检查大坝非常重要。

这些检查内容包括大坝涵洞内部的检查,与坝体相连接的隧道内部的检查以及增强材料的检查等。

2. 及时修复大坝受到的自然和人为因素之间的影响以及老化,都会逐渐损害其结构的完整性。

因此,及时的修复和加固非常必要。

应对于定期检查出的问题进行修复,例如缝合开口、修复超温预防极点等。

3. 安全预警大坝的维护要考虑预防未来可能的灾害。

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析随着经济的发展和城市化进程的加速,水资源的需求日益增加。

大坝作为水利工程中的重要设施,承担着调控水流、储存水资源、防洪排涝等重要功能。

随着大坝使用年限的增加和水库水位的不断波动,大坝的变形和病害问题也日益凸显。

为了确保大坝的安全运行,对大坝的变形进行监测和维护工作显得尤为重要。

本文将对水利工程中的大坝变形监测与维护要点进行深入分析。

一、大坝变形监测技术1. 定位监测技术:大坝的变形是一个复杂的多参数、多尺度、多变量、不连续的过程。

为了全面准确地掌握大坝的变形情况,需要采用先进的定位监测技术。

通过GPS(全球定位系统)和GNSS(全球导航卫星系统)技术,可以实现对大坝的动态变形监测,准确记录大坝的变形情况,为后续的维护工作提供科学依据。

2. 遥感监测技术:利用遥感卫星和无人机等高新技术手段,可以对大坝进行高精度、全方位的监测。

遥感技术能够无缝地获取大坝的变形数据,实现对大坝的在线监测,提高了监测效率和准确性。

3. 监测仪器技术:通过安装各种监测仪器,如倾斜仪、应变计、位移仪等,可以实时监测大坝的倾斜、应力及位移等参数,及时掌握大坝的变形情况,为大坝的维护提供及时的数据支持。

二、大坝变形维护要点1. 加强巡视检查:定期对大坝进行巡视检查,特别是对大坝上部的渗水、鼓包、滑塌以及下部的渗水、冲刷等情况进行仔细观察。

及时发现问题,及时处理,以防止问题的扩大和加重。

2. 加固加固:对于发现的大坝变形、渗水等问题,要采取及时有效的加固措施。

可以采用灌浆加固、钢筋混凝土加固等方法,加强大坝的承载能力,保证大坝的安全运行。

3. 强化水土保护:加强大坝周围的水土保护工作,保证水库水质的安全和清洁。

对大坝周围的水土进行固化处理,减轻水土流失,防止大坝周围的水土松动和滑坡等情况。

4. 大坝变形治理:在监测中发现大坝的变形情况严重时,需要进行大坝的变形治理。

可以采用爆破、挤压、扩展等方法,改变大坝的内部结构,减缓大坝的变形速度,保证大坝的安全运行。

混凝土大坝安全监测变形监测规定

混凝土大坝安全监测变形监测规定

混凝土大坝安全监测变形监测规定
一、土体上的观测点可埋设预制混凝土标石。

根据观测精度要求,顶部的标志可采用具有强制对中装置的活动标志或嵌入加工成半球状的钢筋标志。

标石埋深不宜小于lm,在冻土地区应埋至当地冻土线以下0.5m。

标石顶部应露出地面20~30cm;
二、岩体上的观测点可采用砂浆现场浇固的钢筋标志。

凿孔深度不宜小于10cm。

标志埋好后,其顶部应露出岩体面5cm;
三、必要的临时性或过渡性观测点以及观测周期短、次数少的小型滑坡观测点,可埋设硬质大木桩,但顶部应安置照准标志,底部应埋至当地冻土线以下;
四、滑坡体深部位移观测钻孔应穿过潜在滑动面进入稳定的基岩面以下不小于lm。

观测钻孔应铅直,孔径应不小于110mm。

测斜管与孔壁之间的孔隙应按规范回填。

1。

大坝变形监测及变形预测方法研究

大坝变形监测及变形预测方法研究

大坝变形监测及变形预测方法研究随着社会的发展和人口的增加,对于水资源的需求也在不断增加。

因此,大坝的建设变得越来越重要,大坝承载着人们的安全和生活质量。

大坝的变形监测及变形预测是大坝安全运行的基础保障。

本文将重点探讨大坝变形监测及变形预测的方法,并通过研究提出了一些有效的解决方案。

一、大坝变形监测方法1. 视觉监测方法:利用摄像机等设备对大坝进行实时拍摄和监测,通过图像处理技术来分析和识别大坝的变形。

这种监测方法具有成本低、实时性强等特点,但对环境光线等因素有一定的要求。

2. 位移监测方法:利用位移传感器等设备对大坝的变形进行实时监测和记录。

这种监测方法能够准确地测量大坝的变形情况,并提供详细的数据分析,但设备成本较高。

3. 振动监测方法:通过振动传感器等设备对大坝的振动情况进行实时监测,通过振动数据来分析大坝的变形情况。

这种监测方法可以较为准确地反映大坝变形的情况,但对设备的稳定性和可靠性要求较高。

二、大坝变形预测方法1. 数学模型方法:通过建立大坝的数学模型,利用数学计算和模拟分析方法来预测大坝的变形情况。

这种方法可以充分考虑大坝的结构和特性,通过模型的计算得出较为准确的预测结果。

但建立数学模型需要充分的大坝数据和专业知识的支持。

2. 统计学方法:通过对历史数据的统计分析,得出大坝变形与一些影响因素的关系,通过分析预测模型来预测大坝的变形情况。

这种方法具有简单、快速的优势,但需要充分的历史数据支持。

3. 人工智能方法:利用人工智能算法,通过对大量数据的学习和分析,建立预测模型来预测大坝的变形情况。

这种方法可以自动学习和适应新的数据,具有较高的预测准确性和灵活性。

三、有效解决方案1. 综合监测方法:结合多种监测方法,如视觉监测、位移监测和振动监测等,综合分析大坝的变形情况,以提高监测的准确性和可靠性。

2. 监测数据的实时分析:通过实时监测设备和数据分析系统,及时对大坝的变形情况进行分析判断,并提供预警和反馈。

水利工程水库大坝安全监测方案

水利工程水库大坝安全监测方案

水利工程水库大坝安全监测方案清晨的阳光透过窗帘,斜射在书桌上,我泡了杯咖啡,开始构思这个水利工程水库大坝安全监测方案。

这个方案需要考虑到大坝的结构安全、水库的水位监测、以及周边环境的稳定性等多方面因素。

我们需要建立一个完善的大坝安全监测系统。

这个系统应该包括大坝本体监测、水库水位监测和周边环境监测三个部分。

一、大坝本体监测大坝本体监测主要包括大坝的变形监测、应力监测、裂缝监测和渗流监测。

1.变形监测变形监测是通过对大坝本体进行定期测量,了解大坝在各种荷载作用下的变形情况。

我们可以采用全球定位系统(GPS)和电子水准仪进行监测,这样可以实时掌握大坝的变形情况。

2.应力监测应力监测主要是了解大坝内部的应力分布情况。

我们可以在大坝内部埋设应力计,实时监测大坝的应力变化。

3.裂缝监测裂缝监测是了解大坝本体是否存在裂缝,以及裂缝的发展情况。

我们可以采用裂缝计进行监测,一旦发现裂缝,立即采取加固措施。

4.渗流监测渗流监测是了解大坝本体是否存在渗透问题。

我们可以在大坝内部埋设渗流计,实时监测大坝的渗透情况。

二、水库水位监测水库水位监测主要包括水位监测和水质监测。

1.水位监测水位监测是了解水库的水位变化情况。

我们可以采用雷达水位计和电子水位计进行监测,实时掌握水库的水位变化。

2.水质监测水质监测是了解水库水质是否达到国家标准。

我们可以采用水质分析仪进行监测,定期检测水库水质。

三、周边环境监测周边环境监测主要包括地形地貌监测、地质监测和气候监测。

1.地形地貌监测地形地貌监测是了解大坝周边地形地貌变化情况。

我们可以采用无人机航拍和地面测量相结合的方式进行监测。

2.地质监测地质监测是了解大坝周边地质情况。

我们可以采用地质雷达和钻探方式进行监测,发现地质隐患及时处理。

3.气候监测气候监测是了解大坝周边气候变化情况。

我们可以采用气象站进行监测,实时掌握气候信息。

这个方案的实施需要我们投入大量的人力和物力,但为了保障大坝的安全,这是值得的。

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析随着工程建设的不断推进,水利工程建设也日趋完善,大坝作为水利工程建设中的重要部分,在保障水资源安全、防洪抗灾等方面发挥着重要作用。

而对大坝的变形监测与维护工作,也显得尤为重要。

大坝的变形是一个逐渐发展的过程。

在重要关口和重难点的时刻监测,使变形及时得到检测,预处理和补救,防止变形状况加剧,并能发现新的环境遭受变形的征兆,及时进行维护,以保证大坝的稳定性和安全性。

变形监测的要点:1.变形监测内容大坝变形监测需要覆盖大坝全局,在不同时间段对大坝不同位置的变形情况进行监测。

主要包括大坝体的整体变形,如位移、变形量、沉降等。

还要特别关注局部变形,如大坝壳体、护坡、乃至边坡内的裂缝、变形等情况。

同时,对坝体周围的水文变化、草木覆盖变化等也需要进行关注。

2.监测手段一般情况下,大坝变形监测采用了多种技术手段,包括导线测量技术、GNSS技术、遥感技术、摆式测角、多通道综合技术等。

导线测量以及GNSS技术主要用于大坝的全局变形监测,可获得位移变形量以及大坝的沉降量等数据。

而遥感技术适用于大坝的局部变形监测,对大坝壳体、边坡、护坡及周边环境等进行定性分析和精密测量。

3.监测周期对于变形监测而言,监测数据的精度、可靠性和准确性都与监测周期有关。

为了建立更加精确、科学和可靠的监测体系,监测周期需要根据大坝的特点、所需精度等进行科学合理的设定。

一般而言,对于坝体的周围环境变化,需要每年至少进行一次的监测。

1.定期检修大坝建成之后,需要定期对大坝进行检修、维护,以保障大坝的稳定性和安全性。

检修主要包括了大坝的巡视、排除坝底积水等情况。

维护主要是对边坡、水面浮体等进行检查和维护,同时对大坝内部的设备设施也要加强维护和修缮。

2.加固处理对于出现局部变形、沉降等情况的大坝,需要进行加固处理。

加固处理较为复杂,应该根据坝体的特点、变形情况、变形原因和环境条件等科学设计方案,采取合适、经济和可行的加固方式进行处理。

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析随着社会的发展,水利工程在人们的生活中起着越来越重要的作用。

而大坝作为水利工程的重要组成部分,其安全性和稳定性对于防洪、供水以及发电等方面至关重要。

大坝的变形监测与维护显得尤为重要。

本文将从大坝变形的监测手段和维护要点两个方面进行分析,以期为水利工程中的大坝变形监测和维护提供一定的参考和帮助。

一、大坝变形的监测手段大坝变形监测是保障大坝安全的一项重要工作。

对于大坝的变形监测,可以采用多种手段和技术来进行监测,其中比较常用的包括灰差法、全站仪法、GNSS技术以及遥感技术等。

1. 灰差法灰差法是一种简单、直观的监测方法,利用固定点与测量点之间的视线交会观测来获取被测点的位置坐标。

通过测量点在一定时间内的变化,可以判断大坝的变形情况。

灰差法的优点在于测量精度高、成本低,但由于需要人工进行操作,数据采集周期长,对于大坝变形情况的实时监测存在一定的局限性。

2. 全站仪法全站仪法是一种利用全站仪对大坝各部位进行定点测量,再通过计算得到变形情况的监测方法。

它的优点在于测量精度高,数据采集快速,可以实现对大坝变形情况的实时监测。

不过全站仪的安装和调试需要一定的技术和人力,成本较高,而且受环境因素和设备稳定性的影响。

3. GNSS技术GNSS技术即全球导航卫星系统技术,可以实现对大坝的变形情况进行实时监测,并且在无需设置控制点的情况下,可以对大坝进行较为准确的变形测量。

不过由于GNSS技术对地物遮挡敏感,对信号的干扰大,因此在大坝周围环境复杂的情况下,其监测效果可能会受到一定的影响。

4. 遥感技术遥感技术是一种将大坝周围的地物、植被等进行图像识别,通过图像变化来判断大坝的变形情况的监测手段。

遥感技术的优点在于监测范围大、成本低,而且可以实现对大坝的远程监测,但由于图像识别的精度和准确性需要一定的技术和设备支持,因此其监测结果可能会受到一定的误差影响。

二、大坝变形的维护要点大坝的变形不同于一般的建筑物,其具有较大的体量和复杂的结构,因此对于大坝的维护必须进行科学合理的规划和实施。

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析

水利工程中的大坝变形监测与维护要点分析水利工程中的大坝变形监测与维护是确保大坝安全运行的重要措施。

本文将从监测要点和维护要点两个方面进行分析。

一、大坝变形监测要点1. 应力应变监测:通过安装应变计和应力计等仪器,监测大坝的应力和应变情况。

可以及时发现结构变形的异常情况,采取相应的措施。

2. 地表沉降监测:通过地表沉降测量仪器,对大坝周围的地表沉降进行监测。

及时发现地表沉降的情况,避免地基不稳引起的大坝变形。

3. 倾斜度监测:通过倾斜计等仪器,对大坝的倾斜度进行监测。

特别是对于高坝而言,倾斜度的变化可能会引起结构的不稳定,监测倾斜度可以及时采取措施进行修复。

5. 水位监测:通过水位计等仪器,对大坝周围水位进行监测。

水位的变化可能导致大坝的应力分布发生改变,影响大坝的稳定性。

及时监测水位可以采取防洪和排涝措施。

1. 定期巡检:定期对大坝进行巡检,发现大坝的异常情况,如裂缝、变形等,及时进行修复。

巡检频率应根据大坝的情况而定,一般建议每年至少进行一次巡检。

2. 维护修复:对于发现的大坝异常情况,应及时进行维护修复。

修复方法包括加固、填补裂缝、补充土壤等。

修复方案应根据实际情况制定,确保大坝的结构安全。

3. 渗漏处理:对于发现的大坝渗漏情况,应及时处理。

可以采用注浆、封堵等方法进行止渗处理,确保大坝的稳定性。

4. 防洪排涝:及时进行大坝的防洪和排涝工作,保证大坝周围没有过度积水和倒灌情况,防止水压过大导致大坝的破坏。

5. 定期维护:除了定期的巡检外,还应定期进行维护工作。

如清理大坝周围的杂草、维护排涝设施等,确保大坝周围环境的良好状况。

大坝变形监测与维护要点包括应力应变监测、地表沉降监测、倾斜度监测、渗流监测和水位监测等。

还需要定期巡检、维护修复、渗漏处理、防洪排涝和定期维护等。

这些措施可以帮助确保大坝的安全运行。

大坝变形监测实施方案

大坝变形监测实施方案

大坝变形监测实施方案目录一、前言 (3)1.1 编制目的 (3)1.2 编制依据 (4)1.3 大坝变形监测的重要性与意义 (5)二、监测目标与要求 (6)2.1 监测目标 (7)2.2 监测范围 (8)2.3 监测内容与精度要求 (9)2.4 数据处理与成果要求 (10)三、监测方案设计 (11)3.1 监测站布设 (12)3.1.1 布设原则 (13)3.1.2 监测站类型 (14)3.1.3 监测站设置要求 (16)3.2 监测设备选择 (17)3.2.1 传感器选型 (18)3.2.2 设备性能要求 (19)3.2.3 设备安装与调试 (20)3.3 数据采集与传输系统 (21)3.3.1 数据采集方式 (22)3.3.2 数据传输方式 (23)3.3.3 数据处理系统 (24)3.4 系统集成与试运行 (26)3.4.1 系统集成内容 (27)3.4.2 系统试运行方案 (28)3.4.3 系统试运行要求 (29)四、施工组织与实施计划 (30)4.1 施工组织结构 (31)4.2 施工进度计划 (32)4.3 施工人员及物资准备 (33)4.4 施工安全与质量保证措施 (34)4.5 施工过程中的环境保护措施 (36)五、监测数据分析与成果应用 (37)5.1 数据分析方法 (38)5.2 数据处理流程 (39)5.3 变形监测成果展示与应用 (40)5.4 预警与应急响应机制 (41)六、项目验收与后期维护 (42)6.1 项目验收标准与方法 (43)6.2 项目验收程序 (45)6.3 后期维护与升级改造 (46)6.4 数据存储与管理方案 (47)一、前言随着我国水利、能源和交通等基础设施建设的不断发展,大坝作为这些工程的重要组成部分,其安全稳定运行对于国家经济社会发展具有重要意义。

大坝在长期使用过程中,由于自然因素、地质条件、施工质量等多种原因,可能导致大坝结构变形,从而影响大坝的安全性和稳定性。

大坝变形监测实施方案

大坝变形监测实施方案

大坝变形监测实施方案一、背景介绍。

随着我国经济的快速发展,大坝建设已成为重要的基础设施建设项目。

然而,随之而来的大坝变形监测问题也日益凸显。

大坝的变形监测是确保大坝安全稳定运行的重要手段,因此,制定科学合理的大坝变形监测实施方案显得尤为重要。

二、监测目标。

1.准确监测大坝的变形情况,包括但不限于位移、应变、裂缝等情况。

2.及时发现大坝变形异常情况,预警并采取相应措施,确保大坝安全稳定。

3.为大坝的维护、修复提供科学依据。

三、监测内容。

1.位移监测,采用全站仪、GPS等设备对大坝的位移进行实时监测,确保数据准确性和可靠性。

2.应变监测,通过应变计等装置对大坝的应变情况进行监测,及时掌握大坝的受力情况。

3.裂缝监测,使用裂缝计等设备对大坝的裂缝情况进行监测,及时发现裂缝扩展情况。

四、监测方案。

1.确定监测点位,根据大坝的具体情况,确定合理的监测点位,确保监测数据的全面性和代表性。

2.选择监测设备,根据监测内容,选择合适的监测设备,并进行设备的校准和调试,确保监测数据的准确性。

3.建立监测网络,搭建大坝变形监测网络,确保监测数据的实时传输和存储。

4.制定监测方案,根据监测内容和监测要求,制定详细的监测方案和操作流程,确保监测工作的科学性和规范性。

五、监测周期。

1.常规监测,对大坝进行常规监测,包括日常、季度、年度等周期性监测。

2.特殊监测,对大坝进行特殊情况下的监测,如大雨、地震等自然灾害发生时的紧急监测。

六、监测数据处理。

1.监测数据采集,对监测设备采集的数据进行及时、准确的采集和记录。

2.数据分析与评估,对监测数据进行分析和评估,及时发现异常情况并作出相应处理。

3.数据报告,定期编制监测数据报告,对监测数据进行总结和分析,为大坝的安全稳定提供科学依据。

七、监测结果应用。

1.监测预警,根据监测数据,及时发现大坝变形异常情况,进行预警并采取相应措施。

2.维护修复,根据监测数据报告,制定大坝的维护和修复计划,确保大坝的安全稳定。

水利工程大坝变形监测

水利工程大坝变形监测

水利工程大坝变形监测1. 引言水利工程的大坝在使用过程中都会经历各种因素的作用,如地震、水压、地质和环境等,这些都会导致大坝的变形,给大坝的安全带来威胁。

因此,及时有效的对水利工程大坝进行变形监测显得特别必要。

本篇文档将介绍水利工程大坝变形监测的意义、主要监测内容和技术手段,通过本文档,希望读者能够更好的了解水利工程大坝变形监测的相关知识。

2. 监测意义水利工程大坝变形监测的主要作用是及时预警并处理大坝的变形,保障大坝安全稳定。

一旦出现变形,就说明大坝可能存在破坏的隐患,如果不及时处理,就可能引发灾难性的后果。

因此,对水利工程大坝进行及时、精准的变形监测是十分必要的。

3. 监测内容水利工程大坝的变形监测内容主要包括:3.1 测点及布设监测前需要对大坝进行分析,并根据大坝的特点,合理确定测点及其布设方案。

通常大坝的测点设置包括顶部、坝体和坝底等位置。

3.2 变形量测通过安装测量设备测量大坝的变形量,判断大坝变形的方向和程度。

变形量的测量包括垂直变形量和水平变形量,可以通过改变测点的相对位置和距离来得到不同方向上的变形量数据。

3.3 告警监测在进行大坝变形监测时,监测设备还需具有实时告警监测的功能,及时将变形数据传输到监测中心,对于监测数据偏大或偏小等异常情况,及时发出告警信号。

4. 技术手段水利工程大坝变形监测技术手段主要包括传统的测量手段和现代化的监测技术,下面将介绍几种常见的监测技术手段:4.1 雷达测量雷达测量是一种非接触式的测量方式,它可以通过微波信号扫描大坝表面,获取大坝表面的变形信息。

雷达测量具有高精度、高效率、无需人工采样等优点,因此被广泛应用于水利工程大坝变形监测中。

4.2 光纤测量光纤传感技术是一种新型的测量技术,它利用光纤的传输特性对大坝变形进行精确的监测。

光纤测量具有高精度、高灵敏度、不受干扰等优点,已成为大坝变形监测的重要手段。

4.3 振动式传感器振动式传感器是一种基于振动测量的监测手段,它在大坝表面贴数个振动传感器,通过测量传感器的振动值来判断大坝是否存在变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽建筑大学毕业设计 (论文)专业测绘工程班级 2班学生姓名翟凯学号 11201050235课题基于GPS大坝变形监测指导教师施贵刚2015年月日摘要大坝安全监测,着重于变形监测,是保证大坝运营安全,防止大坝灾难性事故发生的重要手段。

本文基于GPS测量的基本原理,通过大坝变形监测网的布设,处理采集到的前后两期观测数据,通过比较监测点分别在WGS—84坐标系和1954北京坐标系下的坐标差值,得出的结果符合大坝变形的精度要求,从而得出某大坝尚未发生明显变形这一结论。

不足之处在于标志点在WGS—84坐标系中向1954北京坐标系的投影过程中产生了误差,使得控制点的两期坐标不等。

由此可知,各坐标之间转换的时候,投影误差不可以忽略,精度分析的时候,为减小误差,最好统一在WGS—84坐标系下进行解算、分析。

关键词;GPS ;变形监测;精度ABSTRACTThe dam safety monitoring, focuses on the deformation monitoring, it is to ensure the safety of dam operation, prevent the catastrophic accidents. In this paper, based on the basic principle of GPS measurement, through the dam deformation monitoring network layout, processing, both before and after the period of observation data collected by comparing the monitoring points in the WGS - 84 coordinate system and 1954 Beijing coordinates the coordinates of the difference, the results conform to the requirements of the precision of the dam deformation, thus a dam has not yet occurred obvious deformation of the conclusion. Shortcoming in the landmark in the WGS - 84 coordinate system to the 1954 Beijing coordinate system produced in the process ofprojection error, making the control points of the two coordinates. Therefore, the coordinate transformation between, projection error can not be ignored,Precision analysis, to reduce the error, it is better to unify the WGS - 84 coordinates calculating and analysis.Key words; GPS,deformation monitoring,precision目录N o t a b l e o f c o n t e n t s e n t r i e s found.Introduction ……………………………………………………………………1Chapter 1 (2)conclusion (7)reference (11)postscript or compliment (13)resume of tutor (11)一绪论由于大型建筑物(如大坝)在国民经济建设中的重要性,其安全问题受到普遍关注。

一旦因为某种原因引起工程灾害,其后果将不堪设想。

因此,准确地掌握各类工程建筑物的变形状态,实现预测和防治工程灾害的目的,显得十分必要。

本文通过对某大坝实施变形监测,主要的目的在于:1分析和评价大坝的安全状态,2验证设计原理,反馈施工质量,3研究变形规律,对大坝变形合理预报。

鉴于当前的GPS 测量精度已经达到毫米级,利用GPS进行水平位移观测可获得小于±2mm精度的位移矢量,高程的测量误差也能获得不大于±10mm的精度。

因此,本文在详细总结了GPS技术应用于变形监测方案设计的基础上,对某大坝建立变形监测网,根据监测网的数据处理方法以及变形分析的方法,比较监测点在前后两期的坐标差值,对输出成果进行分析和预测,从而得出大坝的变形现状。

通过GPS技术在某大坝变形监测的应用实例,充分说明了GPS定位技术是一种应用前景广阔的变形监测方法。

1.1大坝变形监测的意义由于混凝土坝建成蓄水后,在水压力、泥沙压力、浪压力、扬压力及温度变化等因素作用下,往往会产生变形,影响大坝的正常使用,严重时会危及大坝的安全,引起坍塌,滑坡,沉陷,倾斜,裂缝等灾难性的后果,给社会和人民的生活带来巨大的损失。

如法国67m高的马尔巴塞拱坝1959年垮坝,美国93m高的提唐土坝1976年溃决,财产经济损失严重。

而我国隔河岩大坝外观变形GPS自动化监测系统在1998年长江抗洪错峰中发挥了巨大作用,确保了安全防汛,避免了荆江大堤溃塌。

因此,对大坝进行安全评估的变形监测工作显得尤为重要,1.2 GPS应用于变形监测现状经过近十年的迅速发展,GPS观测边长相对精度已经能够达到10-9m,比传统大地测量精度提高了3个量级。

所以,GPS技术在变形监测方面有着广泛的运用。

首先,利用GPS技术解决了常规观测中需要多种观测的问题,观测结果能充分反映滑坡的全方位活动性,是监测滑坡变形、掌握滑坡发育规律的切实可行的技术;其次,该技术可对大型建筑物位移实时监测,具有受外界影响小、自动化程度高、速度快、精度较高等优点,可以全天候测量被测物体各测点的三维位移变化情况,找出被测物体三维位移的特性规律,为大型建筑物的安全、养护维修提供重要的参数和指导;第三,GPS精密定位技术不仅可以满足水库大坝外观变形监测工作的精度要求,而且有助于实现监测工作的自动化。

另外,GPS技术还应用于地面、海上勘探平台及高层建筑物等的沉陷观测中。

1.3 研究内容本文基于GPS测量工作原理,通过建立GPS测量控制网,对某大坝实施变形监测,通过得到的数据成果,对大坝变形情况进行评估和预测。

本文依据GPS测量技术设计,采用GPS连续性静态相对定位,依照GPS网的精度标准与分类,采用边点混合连接式,通过前期对测区踏勘与地形图的资料收集(交通状况、水系分布情况、控制点分布情况等)。

对外业观测计划进行拟定;(GPS网的规模大小、点位精度要求、GPS卫星星座几何图形强度、参加作业的接收机数量、交通,通信等的后勤保障)。

布网方案,GPS网点的图形及基本连接方法,GPS网结构特征的测算,点位布设图的绘制等。

编写技术设计说明书,选点与埋标(GPS点位的基本要求、点位标志的选用及埋设方法、点位的编号等)。

投影带的选取,经过外业观测(编制GPS卫星的可见性预报图、选择卫星的几何图形强度、选择最佳的观察时段、观察区域的设计与划分、编制作业调度表等)。

得到相关的数据后,利用计算机进行数据处理。

通过对成果数据的分析,了解大坝变形的情况。

最后对本文所采用的方法进行总结,对未来GPS技术发展的趋势进行展望。

二基于GPS技术大坝变形监测的方法2.1控制网布设GPS网的精度设计主要取决于网的用途,其精度标准一般用GPS边长的固定误差a和比例误差b表示。

由于GPS同步观测不要求点间通视,故GPS网形设计具有较大的灵活性。

GPS网的基准包括位置基准,方位基准和尺度基准。

GPS网的网形布设通常有点连式,边连式,边点混合连接式。

GPS观测中,3台或3台以上接收机同步观测获得的基线向量构成同步环。

故所谓点连接、边连接等方式都是指同步环之间的连接。

本文用3台接收机进行观测的网形设计如图a所示将三角点(A、B、C、D)作为基准点与变形监测点一同进行GPS网的网形设计。

对于3台接收机组成的监测网,基准网点4个,需观测3个时段。

基准点与变形监测点连成16个三角形,观测16个时段。

该网形的多余观测比较多,属于可靠性较强、精度较高的网形。

对于设计出的GPS网形,要依据接收机的观测精度和网形结构,进行精度预计,同时给出该网的可靠性指标,求出最弱点点位中误差。

考虑到观测时段数,最后优化出精度能满足要求、工作量最省的方案。

2.2 监测点布设本次将变形监测点埋在大坝上,由于GPS测量不一定要求测站间相互通视,且网的图形结构较灵活,因此点位目标要显著,视场周围15度以上不应有障碍物,以减小GPS信号被遮挡或被障碍物吸收。

本次为了避免磁场对GPS信号的干扰,选取的点位远离大功率无线电发射源不小于200m处,远离高压输电线,其距离不小于50m。

确定了控制点的位置以后,即着手进行造标埋石工作,最为重要的是标志点的选取必须非常坚固,从而有效反应大坝的变形情况,另选取了大坝外的基准点,作为对大坝上标志点的对照。

此大坝共有5个标志点GC06、OP05、OP04、OP03、GC11,其中GC06、GC11两个基准点位于坝体之外,可认为是固定的,在没有较大的运动情况下,基本上可视为是坝体运动的参考点。

OP05、OP04、OP03位于坝体上的特征点,通过监测这三个点的运动,可分析坝体的大致运动趋势。

2.3 大坝变形监测方案2.3.1测区勘察主要是了解测区的地理位置、形状大小,今后发展远景,测量成果使用的精度要求,完成任务的期限以及生产上对控制点的位置、密度的要求等。

控制点的分布情况;三角点、水准点、GPS点、多普勒点、导线点的等级、坐标、高程系统、点位的数量及分布,点位标志的保存状况等。

2.3.2资料收集(1)如设计时需用的地形图(比例尺为1/1000~1/50000),各类图件;大地水准面起伏图,交通图等。

(2)测区已有各类控制点的成果;三角点、水准点、GPS点、导线点及各控制点坐标系统、技术总结等相关资料。

(3)测区有关的地质、气象、交通、通信等方面的资料。

(4)城市及乡村行政区划表等。

2.3.3确定布网方案由于仅仅是对大坝所在区域相对于大坝外控制点的变形,因此布设成图1独立网(其中,GC06、GC11为已知点)。

2.3.4 GPS测量方法本次测量方法是GPS相对定位测量,是采用三度带投影的全面布设。

图上设计时是在1:25000的地形图上进行的,具体过程是:首先展绘已知点、网;按照已定的布网方案从图上判断点与点之间是否彼此通视,由各点组成的图形能否满足规范所规定的精度和其他要求,监测点所在位置也应能满足使用要求。

相关文档
最新文档