点火波形详解

合集下载

检测分析发动机点火波形(2-1)分析

检测分析发动机点火波形(2-1)分析
检测分析发动机点火波形
点火系统的波形:
1、点火系统的组成和检测程序: 计算机控制的点火系统,是电喷系统共控网络的 一个重要部分。是由:、点火信号发生器、ECU的相 关电路、点火器、点火线圈、分电机、高压线、火花 塞等元件组成。 点火系统又分:有分电机和无分电机两种型式。
其点火性能的好坏和检测程序,应使用点火检测 仪和示波器进行。
当火花塞被击穿 时,两电极间产生 “火花放电”,次级 电压骤然下降,cd 线的高度称“放电电 压”,一般可达 20KV以上,其宽度 称“放电持续时间” (ms),故称“燃 烧线”。此时,所有 的电容能量将释放, 因而产生“高频振荡” 波形。
说明: A、“击穿电压”高, 为次级电路电阻过高 (高压线或火花塞间隙 大);低为次级电路电 阻过低。 B、“燃烧线”不应 有过多的杂波。否则, 为火花塞赃污或喷油器 损坏。 C、“燃烧线”持续 时间的长短(一般为 1.5ms),与混合气的 浓稀有关,浓则长 (>2ms);稀则短 (<0.75ms)。
计算机控制的点火系统
初级波形
次级波形

2、波形的分析:
(1)点火系统实际上是 电感(L)、电阻(R)、电 容(C)、组成的振荡电路。 点火线圈是一个变压器,当 电流通断变化时,由于磁场 的变化,瞬时会产生电感振 荡波形。所以,当Tr—OFF 时,磁场迅速减小,产生感 应电动势,次级电压迅速增 长,不等达到峰值,就击穿 了火花塞电极,此为“击穿 电压”。ab线称“点火线”, 其峰值电压可达30KV。
(2)当次级线 圈放电完了时, 电火花消失,初 级线圈中还存在 着残余磁场能量, 产生衰减的电感 “低频振荡,” 如图中的de段。
(3)同样,由于电 容能量和电感能量 的作用,点火线圈 的“互感效应”, 使初级线圈也产生 与次级线圈相同的 振荡波形,只是波 形的幅值大小不同, 可任意择取其波形 来判断故障。

【图文并茂】汽车点火系统结构原理及波形分析

【图文并茂】汽车点火系统结构原理及波形分析

【图文并茂】汽车点火系统结构原理及波形分析很多朋友都在微信问这个示波器点火波形该怎么来测量怎么来通过一段波形来判别各个电器部件的好坏,所以就这个问题我们分别从点火系统的结构原理及初级次级点火波形来和朋友们来入手。

下图为一个老外用电锯锯开的一个点火线圈的横截面图片,从上面我们能清楚的看到两个线圈绕组。

外面一层为初级线圈,里面一层为次级线。

次级线圈的绕组线要比初级线圈的绕组线要密很多,但没有初级线圈绕组粗。

我们都知道发动机点火系统的分类分为三种:第一种是发动机所有气缸共用一个点火线圈,点火线圈产生的高压电通过分电器分配给各缸的火花塞。

早期化油器时均采用此方式,在电控发动机也有采用此种点火系统的,如桑塔纳(采用M1.5.4电控系统)夏利面包车。

第二种是两缸共用一个点火线圈,像伊兰特别克凯越。

对于常见的四缸发动机,一缸和四缸共用一个点火线圈,二缸和三缸共用一个点火线圈。

第三种被称为独立点火,即每缸火花塞上一个点火线圈,这种点火系统有3大优点:1.点火的能量强2.密封性好抗干扰能力强3.使用寿命长, 现在的车基本上都是这种点火系统.我们知道初级点火的波形是由初级线圈产生的,次级点火波形是由次级线圈产生的。

初级点火产生的相对是低压,次级点火产生的是上万伏的高压。

注意这里的高压只是一个瞬间击穿火花塞电极点燃缸内混合气的脉冲信号,原理可以理解为打火机点火一样,这个上万伏的高压不会对人身造成伤害。

无论是初级点火的电压还是次级点火的电压,其能量都是由12V或24V的电瓶电压经过初级线圈产生的初级电压,经过次级线圈产生的次级高压,这一过程是一个升压的过程。

而我们的手机充电器给手机充电是将220v的电压变成5v的电压是一个降压的过程,都是通过线圈作用下实现的。

(火花塞装的时候注意一点装错了会抖动无力甚至发生爆震现象)由于点火系统是与火花塞工作情况联系十分密切,所以我们顺带讲一下关于火花塞的热值和电阻。

火花塞自身所受热量的散发量称为热值。

初级点火信号

初级点火信号

初级点火信号标准波形连接操作说明故障波形(1)触点烧蚀的波形(2)电容漏电波形(3)触点弹簧力不足(4)闭合角过小(5)接地不良(6)电子点火系统充磁段无限流作用标准波形如下图1所示为常规式(传统式)点火系初级点火信号标准波形,下图2为晶体管点火标准波形。

车辆在实际运行过程中,由于引起故障波原因很多,现场测得的故障波形也十分复杂,以下只就一些常见的典型故障简略说明。

图1 常规点火系初级点火信号标准波形图2 晶体管点火标准波形故障波形(1)触点烧蚀的波形(2)电容漏电波形(3)触点弹簧力不足(4)闭合角过小(5)接地不良(6)电子点火系统充磁段无限流作用根据各类初级故障波形,可以分析常规点火系断电电路有关元件和机械装置的状态,为断电电路的调整和维修提供可靠的依据,以避免盲目拆卸。

(1)触点烧蚀的波形下图所示波形在触点开启点出现大量杂波,显然是触点严重烧蚀而造成的,打磨触点或更换断电器即可证实。

触点烧蚀的波型(2)电容漏电波形下图为初级电压波形在火花期间的衰减周期数明显减少,幅值也变低,这明显是电容漏电造成的。

电容漏电波形(3)触点弹簧力不足下图所示波形在触点闭合阶段有意外的跳动,造成这种现象的原因是触点因弹簧力不足引起的接点不规则跳动所至。

触点弹簧力不足(4)闭合角过小下图所示曲线的充磁期既触点闭合角太小,一般是由触点间隙过大造成的。

闭合角过小(5)接地不良如果触点接地不良.就会引起低压波水平部分的大面积杂波,如下图所示。

接地不良(6)电子点火系统充磁段无限流作用下图为电子点火系统的低压故障波形,对比正常波形,在充磁阶段电压没有上升,说明电路的限流作用失效,无分电器点火系统无元件可调整,当这一波形严重失常时只能逐个更换诸如点火线圈、点火器、点火信号发生器和凸轮位置传感器等未找出故障器件或模块。

电子点火系统充磁段无限流作用连接A.常规点火系统首先将电瓶电压拾取器的红、黑夹分别夹在电瓶的正、负极上,将初级信号提取器(1280401)的红、黑色探头分别连接到点火线圈的正、负极,再将一缸信号拾取器夹在一缸高压线上,如图所示。

汽车点火波形分析

汽车点火波形分析

汽车点火波形分析目录一、内容概要 (2)1. 背景介绍 (2)2. 目的和意义 (3)二、汽车点火系统概述 (5)1. 汽车点火系统简介 (6)2. 点火系统的基本组成 (7)3. 点火系统的工作原理 (8)三、汽车点火波形分析基础 (9)1. 波形分析的基本概念 (10)2. 波形分析的常用工具 (11)3. 波形分析的基本步骤 (12)四、汽车点火波形分析实例 (13)1. 正常点火波形分析 (14)(1)波形特征 (15)(2)数据分析 (15)2. 点火故障波形分析 (17)(1)点火过早点火波形分析 (17)(2)点火过晚点火波形分析 (18)(3)缺火波形分析 (19)(4)其他点火故障波形分析 (20)五、汽车点火系统故障诊断与排除 (21)1. 故障诊断方法 (22)2. 常见故障分析及排除方法 (23)3. 故障诊断注意事项 (25)六、汽车点火系统维护与保养 (26)1. 点火系统的日常维护 (26)2. 点火系统的定期保养 (27)3. 点火系统性能优化措施 (28)七、汽车点火技术发展趋势展望 (29)1. 新型点火系统技术介绍 (30)2. 点火系统技术发展趋势分析 (32)3. 未来汽车点火系统的挑战与机遇 (33)一、内容概要汽车点火波形分析是研究发动机在燃烧过程中混合气体的压力和点火时刻随时间变化的规律。

通过对点火波形的深入分析,可以了解发动机的燃烧状况、点火系统的性能以及混合气的燃烧特性。

本文将对汽车点火波形的基本原理、分析方法及常见故障进行详细阐述,旨在为汽车维修技术人员提供实用的参考指南。

文中首先介绍了点火波形分析的目的和意义,接着系统地阐述了点火波形的基本原理,包括点火波形的组成、特点及其在发动机运行中的作用。

结合具体案例,详细讲解了如何利用万用表等工具检测点火波形,并根据检测结果判断发动机的工作状态及故障原因。

文中还对汽车点火系统的主要部件进行了分析,包括点火线圈、分电器、火花塞等,以及它们在点火过程中的作用和相互影响。

点火波形分析-new

点火波形分析-new

3、重叠波
把各缸点火波形的始端对齐,重叠在一个水平位置上, 这有利于比较各缸的点火周期、闭合区间及断开区间等差 异。
图 重叠波
初级阵列波形
如果一个缸的点 火峰值电压比其 它缸低,则表明 点火高压线短路 或火花塞间隙过 小、火花塞破裂 或污浊。
次级阵列波形(故障波形之一)
两 缸 点 火 电 压 相 差 太 大
(4)一缸信号夹,又称为转速传感器夹(感应式 电感探头,或电压式触发探头)
连接 CH3 通道,可以检测发动机转速,并认为被夹 高压线为第一缸高压线。
三、电子点火正时信号或点火控制信号
1、电子点火正时信号 (EST)
(Electronic Spark Timing) 点火系统需要知道什么时候该点火、点火线圈通电时间多 长以及点火正时(点火提前角)提前多少。 在早期点火装置中这些信息则是由传感器,分电器,真空 提前前点装置等来提供。 发动机控制电脑用来自点火模块的点火参号信号和其它输 入信号产生电子点火正时信号(EST)给点火模块或直接给 点火线圈,这个EST信号含有老式分电器,真空提前点火 装置的全部信息。
1、平列波
按点火顺序将各缸点火波形从左到右首尾相连排成一字 形,这种波形组合主要用于分析次级电压的故障,如各缸 次级电压是否均衡,火花电压是否有差异等。
图 平列波
把各缸点火波形的始端对齐,按点火顺序将各 缸点火波形从上到下分别排列,可以比较火花线 长度和一次电路闭头测试夹:夹高压绝缘导线上 黑鱼夹:接地 注意:需要同时测试几个缸波形时,因高压是顺序点火,因 此需要在第一缸高压线上安装一缸信号夹,以便在点 火示波器触发时确定第一缸在显示屏中的位置
3、次级单缸波形
DUR——闭合时间
3、次级单缸波形

点火波形分析

点火波形分析

部分缸点火电压过高实测波形
次级点火故障波形 车型:FORD LIATA 4缸
• 部分气缸高压过高原因 • 所有气缸高压过低原因 • 部分气缸高压过低原因:
火花塞积垢,引起部分火花塞提前跳火; 分电器盖破裂,部分气缸高压分线漏电; 火花塞绝缘体破裂,导致部分气缸高压漏电,点火 电压过低
9.点火闭合(导通)角分析
正常波形
所有缸点火 电压过高
所有缸点火 电压过低
所有缸点火电压过低实测波形
次级点火多缸并 列故障波形 车型:TOYOTA CORONA 2.0
部分缸点火电压过低实测波形
次级点火多缸 并列故障波形 车型:FORD LIAATA
部分缸点火电压过高实测波形
次级点火多缸并列故障波形 车型:JEEP CHEROKEE 7250E 2.5L 4缸
3.二次侧电压分析
• 4.波形分析 • 高压电路原因: • 火花塞高压线绝缘不好 • 分电器盖有漏电 • 点火线圈与分电器接线状况不好或有碰铁现象 • 点火线圈性能不佳,产生不了足够的高压 • 低压电路原因: • 蓄电池电压不足 • 触点闭合角太小 • 一次侧电路电阻过大 • 电容器性能不好或损坏
10.分电器与分电器盖间隙检查
• 分电器与分电器盖间隙大小直接影响火化塞点火 能量的大小,因此必须进行检查并使之符合要求。
• 应明显低于8kV(点火高压),否则说明有故障
11.断电器触点工作状态的检测
• 断电器触点的好坏直接影响到闭合角的大小及初 级电路充电状态的好坏。
• 正常波形在闭合段区域内没有杂波,触点刚闭合 时时有二次振荡3~5个,第一个振荡波应最长。
值电压偏低,触点闭合故障反映区有内光。
一次侧电路电阻 正常波形

点火波形的类型

点火波形的类型

点火波形是用于控制火花塞跳火的关键电力波形。

根据发动机的工作状况,点火波形会在特定的时间间隔内发生连续的变化。

这种波形是由多种类型组成,主要分为脉冲式点火波形、准脉冲式点火波形、可变周期的脉冲式点火波形和正弦式点火波形四种类型。

首先是脉冲式点火波形,这种波形在发动机的每个工作周期内都会产生一系列高电压的脉冲,使火花塞在脉冲结束时跳火。

这种点火方式常见于传统点火线圈的工作方式,具有高电压和电流幅值的特点,适合于低转速的发动机。

准脉冲式点火波形与脉冲式相似,但在每个工作周期内会插入一个较小的非脉冲电压,使火花塞在非脉冲期间不跳火。

这种点火方式有助于降低发动机的噪音,对于追求噪音较低的车辆来说是一种不错的选择。

可变周期的脉冲式点火波形是一种更为先进的点火方式,其周期会随着发动机转速的变化而变化。

这种点火波形可以更好地利用火花能量,提高燃烧效率,同时降低油耗和排放。

这种点火方式常见于一些高端车型上,如电动汽车等。

最后是正弦式点火波形,这是目前最为常见的点火方式。

其周期与发动机转速呈正弦曲线关系,能够更加均匀地分布火花能量,使燃烧更加充分,同时降低了发动机的噪音和振动。

这种点火方式适用于各种类型的发动机,具有较高的稳定性和可靠性。

总之,点火波形是控制火花塞跳火的关键电力波形,根据发动机的工作状况和需求,会选择不同类型的点火波形。

脉冲式、准脉冲式、可变周期的脉冲式以及正弦式是常见的四种类型,每种类型都有其独特的优点和适用范围。

在实际应用中,需要根据车辆类型、发动机类型以及工作需求来选择合适的点火波形,以达到最佳的燃烧效率和性能表现。

次级点火波形

次级点火波形

二、点火初级线圈电流波形
• 当怀疑点火线圈短路或点火模块开关晶体 管(或白金)有故障。还可以用以下几种方 法进行诊断: • 第一,制造厂家的维修规范可提供初级点 火线圈的电阻范围,这是对初级点火线圈 的静态测量; • 第二,对初级点火线圈进行更精确的动态 测量,包括在工作状态下用分析电流波形 的方法测试电流值(安培);
• 参照波形图中相关部件所相对应的波形特定段 能分别指示出相应故障。同样示波器在显示屏 上可以用数字的方法显示出波形的特征值。
1.波形测试方法 1.波形测试方法
• 按照波形测试设备使 用说明连接波形测试 设备。 • 让发动机怠速运转、 急加速或路试汽车, 使行驶性能或点火不 良等故障现象再现。 • 并确认各缸信号的幅 值、频率、形状和脉 冲宽度等判定性尺度 是否一致。 • 分电器点火初级陈列 波形如图所示。
• 另外,在初级点火线圈电流测试中,可以对点 火模块开关晶体管的工作状况进行检查,即对 点火模块电流极限进行测试,它能够确认在点 火模块开关晶体管中的电路运行极限电流是否 合适。 • 但是,要进行上述试验需要示波器的一个附 件——电流钳。因为它可以使汽车示波器的内 部设置不做任何改动,只需做初始设置就可以 进行电流测试。 • 而且在任何时候,这种电流钳都可以用来检查 电磁阀线圈 (喷油器等)、点火线圈或开关电路 的电流大小,汽车示波器还可以在显示波形的 同时用数字的方式显示最大电流的数值。
• 现代发动机控制电脑含有最优化的点火控 制图,它对点火正时、闭合角等因素的控 制比传统的白金一电容系统要精确得多。 这一点对发动机性能和尾气排放则更有益。 • 但由于发动机控制电脑及其线路系统和点 火控制模块都可能出现故障,所以初级点 火闭合角测试仍然是有用的。 • 由于点火初级和次级线圈的互感作用,在 次级发生跳火会反馈给初级电路,因此初 级点火波形就显得非常有用。

点火波形分析初级点火波形分析课件

点火波形分析初级点火波形分析课件

脉冲宽度
电压波形的脉冲宽度反映了点火系统的点火 持续时间,以及燃烧过程在气缸中的发展。
波形形状
电压波形的形状可以提供关于燃烧过程和气 缸状况的信息,例如燃烧室的压力和温度。
时间波形分析
01
02
03
点火时刻
时间波形分析可以确定点 火时刻,即火花塞在气缸 中的点火时间。
燃烧时间
燃烧时间是从点火时刻到 燃烧结束的时间,它反映 了燃烧过程的发展和气缸 中的压力变化。
故障原因
火花塞积碳严重,导致点火不良
解决方法
更换积碳严重的火花塞,提高点 火效果
案例三:调整点火时刻改善发动机燃油经济性
故障现象
发动机燃油经济性下降,油耗增加
故障原因
点火时刻过早或过晚,导致燃油燃烧不充分
解决方法
调整点火时刻,使燃油燃烧更加充分,提高燃油 经济性
感谢您的观看
THANKS
频谱分析
频谱分析是一种将频率成分分解成 独立频率的方法,它可以帮助我们 更好地理解发动机的运转状态和燃 烧过程。
04
点火波形异常分析
电压异常
总结词
点火电压过高、过低或波动大
详细描述
点火电压过高可能会导致发动机损坏,点火电压过低则可能导致发动机启动困难或无法启动。电压波 动大可能会影响发动机的稳定性和性能。
06
点火波形分析案例
案例一:点火系统故障导致发动机性能下降
故障现象
发动机启动困难,运转不 平稳,性能下降
故障原因
点火系统故障,导致点火 不均匀,火花塞跳火不良
解决方法
检查点火线圈、高压线、 火花塞等部件,确保正常 工作
案例二:更换火花塞后发动机性能提升
故障现象

点火波形检测讲解

点火波形检测讲解

2.二次电压击穿火花塞后,放电产生火花,电压降低形 成火花线CD。放电时间0.6-1.6ms。当点火线圈的能量消耗 到不足以维持火花放电时,火花终了,电压下降,残余能量 在电容与电感之间充放电形成4-8个振荡波DE。能量大,则 火花线高而宽。
3.触点闭合一次通电电流增加,产生互感,但感 应电压方向相反,在二次电路导致一个较小反向电 压 。既形成第二次震荡波的FA
点火波形上的故障反映区
A区为断电器触点故障反映区,B区为电容器、 点火线圈故障反映区,C区为电容器、断电器触点 故障反映区,D区为配电器、火花塞故障反映区。
学习任务二 用点火示波器检测点火波形
点火示波器是专门用来检测诊断汽油机点火系 技术状况的检测设备。 当点火示波器连接在运转的汽油机点火系电路 上时,示波器屏幕上将显示出点火系中电压随时 间变化的曲线,即点火波形。 示波器屏幕显示的波形,在垂直方向上表示 电压,在水平方向上表示时间,基线的上方为正 电压,下方为负电压。
⑵火花线:1000r/min时,火花时间为1.5ms。 火花过短,很快熄灭,说明点火系统储能 不足。可能是供电电压偏低,或初级电路 导线接触不良造成的。 过长:火花塞积碳,间隙小,短路。
⑶振荡区分析:4-8个波形,如少,说明点火线圈短 路,一次线圈接触不良。 ⑷波形倒置:点火线圈初级接反,电压波形倒置, 点火能量小。
4.闭合(导通)时间越长,电流越大,磁场能越大。
单缸标准二次电压波形
三、波形分析:
⑴发火线AB(击穿电压)电压1.5-2万伏. a) 过高:花塞间隙太大,或次级电路开路等所引 起。电阻过大;断线;接触不良;脏污。拔下高
压线与火花塞距离加大,击穿电压升高 b) 过低:可能是火花塞间隙太小或积炭较严重。

点火系统波形分析

点火系统波形分析

点火系统波形分析1.点火次级波形你如同大多数技术人员一样,或许已熟悉了一种类型的示波器,例如在车间使用发动机分析仪里的示波器,正如现在已经知道的发动机分析仪中的示波器是专用的,它被设计成用来测量一个特殊系统--点火系统。

在大多数情况下,发动机分析仪不能提供足够的功能用以诊断当今轿车的所有电气系统。

因为汽车示波器具备测试当今轿车所有必要的功能--包括点火系统,所以这是它胜过发动机分析仪的地方。

用专门设计的点火探头,能够容易地使用汽车示波器去完成通常要用大型昂贵的发动机分析仪才能做到的许多相同的试验和程序,测试例如初级和次级点火阵列波形,单独气缸的初级波形,急加速高压值--至点火系统的输出等等,这些都是汽车示波器容易完成的测试,并且,由于汽车示波器完全是便提式的,所以可以用汽车示波器来进行路试检查在行驶条件下很有可能发生的点火故障,所以在任何有公路的地方,汽车示波器就像一个公路上的“诊所”。

在这一部分中,将看到为测试典型点火系统而设置在汽车示波器中的测试程序一部分,还将学会用它独特的性能去诊断当今汽车的点火系统故障。

①分电器点火次级阵列波形,参见图7。

用点火次级阵列波形显示测试作为有效的行驶能力检查,已有三十年的历史了。

点火的次级阵列波形主要被用来检查短路或开路的火花塞高压线,或引起点火不良的污损火花塞。

这个试验可以为提供一个关于各个气缸燃烧质量情况有价值的资料。

由于点火二次波形明显地受到各种不同的发动机、燃油系统和点火条件的影响,所以它能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件,故障波形的不同部分能够指明在任何气缸中的某一部件或系统的故障。

试验方法:起动发动机或驾驶汽车使行驶性能故障或点火不良等情况出现,调整触发电平直到波形稳定和发动机转速可以清楚的在显示屏上显示出来。

波形结果:确认幅值、频率、形状和脉冲宽度等判定性尺度,在各缸上都是一致的,各缸的点火峰值电压高度应该相对一致、基本相等,任何峰值高度相互之间的差到都表明有故障,一个相比高出很多的峰值,指示在该气缸点火二次系统中存在着高的电阻,这可能意味着点火高压开路或电阻太大,一个相比低出很多的峰值指示出点火高压线短路或火花塞间隙过小,火花塞污损或破裂。

点火波形分析

点火波形分析

3.点火波形分析无论就是传统点火系统还就是电子点火系统或计算机控制得点火系统,都就是由点火线圈通过互感作用把低压电转变为高压电,通过火花塞跳火点燃混合气做功得。

点火系统低压、高压得变化过程就是有规律得,它可通过其点火波形予以反映。

点火系统正常工作时得点火线圈初、次级得电压波形,称为标准点火波形,它就是点火系统得诊断标准。

(1)传统点火波形图3—17所示就是传统点火系统单缸初、次级电压标准波形。

图中张开时间就是初级线圈断电时间,它对应于次级线圈得点火、放电及振荡阶段;闭合时间就是初级线圈通电时间,它对应于点火线圈得储能阶段,这两个阶段组成了一个完整得点火循环。

图中波形反映了从断电器触点张开、闭合、再张开得整个点火过程中,初、次级电压随时间变化得规律.1)初级电压波形.图3-17a就是单缸初级电压标准波形。

当断电器触点张开时,初级电压迅速提高(约为100~300V),从而导致次级电压急剧上升击穿火花塞间隙。

当火花塞两极火花放电时,由于初、次级间得变压器效应,初级电压下降且出现高频振荡。

火花放电完毕后,由于点火线圈与电容器中残余能量得释放,又出现低频振荡波,其波幅迅速衰减直至初级电压趋向于蓄电池电压。

当断电器触点闭合后,初级电压几乎为零,成一直线一直延续到触点得下一次张开.当下一缸点火时,点火循环又将复现.示波器上张开时间、闭合时问,通常用毫秒(ms)表示,也可用分电器凸轮轴转角表示,此时其张开时间、闭合时间则分别用张开角与闭合角表示。

2)次级电压波形。

因点火线圈初、次级间得变压器效应,其次级电压波形与初级电压波形具有一定得对应关系,图3-17b就是单缸次级电压标准波形.有关次级电压波形点线得含义说明如下。

①A点:断电器触点张开,点火线圈初级绕组突然断电,导致次级电压急剧上升。

②AB线:称为点火线,其幅值为火花塞击穿电压即点火电压。

击穿电压约为8~20kV,不同得车型或点火系统,其击穿电压可能不一样。

单缸机点火系统标准波形

单缸机点火系统标准波形

单缸机点火系统标准波形
单缸机点火系统标准波形是一种描述单缸发动机点火过程的波形。

以下是该标准波形的一般特征描述:
1. 点火前阶段:
- 波形呈现较为平缓的基准线,代表发动机处于未点火状态。

- 信号较为稳定,为等待点火状态。

2. 点火阶段:
- 信号突然增加并迅速达到峰值,代表点火信号的到来。

- 具有明显的高频成分,表明点火系统正在产生高压脉冲。

- 峰值电压的幅度和时间短,以保证点火系统达到最佳点火效果。

3. 火花时刻:
- 在点火阶段的峰值电压达到一定数值后,出现一个幅度较高的高压火花信号。

- 火花信号的时长通常很短,一般在1-2毫秒之间。

4. 熄火阶段:
- 火花信号完毕后,信号迅速回归到基准线水平。

- 表明点火系统已经完成点火过程,发动机即将进入下一个点火周期。

需要注意的是,单缸发动机的点火系统波形可能会因不同发动机类型、点火系统类型和点火过程调整而有所差异,上述波形仅为一般参考描述。

点火初级波形分析

点火初级波形分析
李东江
点火波形分析
——点火初级波形分析
六、电子点火初级单缸波形
电子点火初级波 形(见图)的测试对 查出电子点火线 圈的点火故障是 很有效的 由于点火燃烧的 过程可以通过次 级与初级点火线 圈的互感返回到 初级电路,所以 这个点火波形是 非常有用的。
电子点火初级单缸波形 的测试内容、项目和方 法与上述分电器点火初 级单缸波形完全相同。 只是在测试时要确认闭 合角随发动机的转速和 负荷变化而改变的情况 另外,还需要逐个测试 模块组上的每个点火线 圈。 通过初级点火波形可以 观察到在气缸点火时点 火线圈产生的峰值电压。
Hale Waihona Puke

点火波形分析

点火波形分析

1.标准点火波形标准点火波形是指点火系统正常工作时点火线圈初、次级的电压波形,它是点火系统的诊断标准。

如图2-22所示为传统点火系统单缸初、次级电压标准波形。

图中的触点张开时间是初级线圈断电时间,它对应于次级线圈的放电阶段;图中的触点闭合时间是初级线圈通电时间,它对应于点火线圈的储能阶段,这两个阶段组成了一个完整的点火循环。

图中波形反映了从断电器触点张开、闭合、再张开的整个点火过程中,初、次级电压随时间变化的规律。

因点火线圈初、次级间的变压器效应,其初级电压波形与次级电压波形具有一定的对应关系。

b)图2-22单缸电压标准波形a)初级电压标准波形 b)次级电压标准波形(1)初级电压标准波形图2-22a是单缸初级电压标准波形。

当断电器触点张开时,初级电压迅速提高(约为100~300V),从而导致次级电压急剧上升击穿火花塞间隙。

当火花塞两极火花放电时,出现高频振荡波。

火花放电完毕后,由于点火线圈和电容器中残余能量的释放,又会出现低频振荡波,其波幅迅速衰减直至初级电压趋向于蓄电池电压。

当断电器触点闭合后,初级电压几乎为零,成一直线一直延续到触点的下一次张开。

当下一缸点火时,点火循环又将复现。

通常,示波器上触点的张开时间、闭合时间和各缸点火间隔时间用分电器凸轮轴转角表示,因此触点张开时间和闭合时间又可分别称为触点的张开角和闭合角,各缸点火间隔时间称为点火间隔角。

若上述角度数值用曲轴转角表示,则对于四冲程发动机来说须乘以2 0 (2)次级电压标准波形图2-22b是单缸次级电压标准波形,有关次级电压波形点线的含义说明如下。

1)A点:断电器触点张开,点火线圈初级绕组突然断电,导致次级电压急剧上升。

2)AB线:称为点火线,其幅值为火花塞击穿电压即点火电压。

击穿电压约为8—20kV,不同的车型或点火系统,其击穿电压可能不一样。

3)BC线:在火花塞间隙被击穿时,两电极之间会出现火花放电,同时次级电压骤然下降,BC为电压下降的幅值。

点火波形分析

点火波形分析
④ 闭合角控制:电控闭合角可调。
⑤ 振荡区分析:5-8个波形,如少,说明点火线圈短 路,一次线圈接触不良。
⑥ 闭合区分析:闭合区可变长,闭合段有上升,凸起, 属正常。因有限流和闭合角可调功能 。
整理ppt
9
整理ppt
5
第二节 点火系检测
初 级 电 压 波 形
整理ppt

第二节 点火系检测
次 级 波 形
整理ppt
7
② 火花线:1000r/min,火花时间为1.5ms。 时间过短:火花塞间隙大;电极烧蚀或间隙
大;高压线电阻大;混合气稀;点火过迟。 过长:火花塞积碳,间隙小,短路。
整理ppt
8
③ 波形倒置:点火线圈初级接反,电压波形倒置,点 火能量小。
点火波形分析
整理ppt
1
一、点火波形分析要点
分析单缸的点火闭合角(点火线圈充电时 间);
分析点火线圈和次级高压电路性能(从燃烧 线或点火击穿电压);
检查单缸混合气空燃比是否正常(从燃烧 线);
分析电容性能(白金或点火系统); 查出造成汽缸断火的原因(污浊或破裂的火
花塞,从燃烧线)。
整理ppt
2
整理ppt
3
二、传统点火波形的接线方法
高压传感器夹中央高压线上;转速传感器夹在1缸线, 采集转速、点火时间和点火顺序。无中央高压线的, 两者可都夹1缸线上。
整理ppt
4
三、波形分析:
① 发火线(击穿电压)电压1.5-2万伏,击穿电压 4-8千伏。 a) 过高:电阻过大;断线;接触不良;脏污。 b) 拔下高压线与火花塞距离加大,击穿电压升 高。 c) 高压线搭铁,电压应低于4000V,否则有间隙 过大处。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BG
4
• 在火花间隙被击穿的同时,储存在次级电容C2(指分布电容,即点火线 圈匝间、火花塞中心电极与侧电极间、高压导线与机体间等所具有的电容量 总合)的能量迅速释放,故abc段被称为电容放电。其特点是放电时间极短 (1μs),放电电流很大(可达几十安培),所以a,c两点基本是在同一条 垂直线上。而电容放电时,伴有迅速消失的高频振荡,频率约为106Hz~ 107Hz。但电容放电只消耗磁场能的一部分,其余磁场能所维持的放电称为 “电感放电”。其特点是放电电压低,放电电流小,持续时间长,但振荡频
率仍然较高。所以整个abcd段波形称为高频振荡。
BG
5
• de段:当保持火花塞持续放电的能量消耗完毕,电火花消失,点火线圈和电 容器中的残余能量在线路中维持一段衰减振荡。这段振荡也叫第一次振荡。
• ef点:断电器触点闭合或电子点火器晶体管导通,是点火线圈初级突然闭合, 初级电流开始增加,引起次级电压突然增大。值得注意的是:在a点,初级 电流是急剧减小的,而在e点电流是逐渐增加的,所以这两点感应次级电压 的方向相反,而且大小也不相同。
• 7)次级波形的火花线有上下波动的现象。其故障原因是电子燃油喷射系统 中的喷油嘴工作不良,喷油不均,引起气缸内混和气的混和雾化不均匀,在
做功冲程的燃烧不稳定,致使火花线的持续阶段电压不稳定,火花线出现缓
慢上下波动现象。
BG
19
BG
9
• 3)观察cd段。即火花线是否近似水平,火花线的起点是否和火花放 电电压一致和稳定,以及火花线是否有杂波。如果火花线近似水平, 火花线的起点和火花放电电压一致且稳定,表明各缸的空燃比一致, 火花塞是正常的。如果火花线的起点比正常火花放电电压低一些,说 明混合比过稀;如果火化塞有污蚀或积炭,火花线的起点会上下跳动 且火花线明显倾斜;如果火花线有过多的杂波,表明气缸点火不良, 其原因为点火过早,喷油器损坏,火化塞污蚀或其他原因。
BG
6
• fa段:触点闭合后,因初级电流接通而引起回路电压出现衰减振荡。称为第 二次振荡。逐渐变化到零。当至a点时,触点又打开,次级电路又产生点火 电压。
• 整个波形中,从a点至e点,对应于初级电流不导通、次级线圈放电阶段,对 于传统点火系为断电器触点张开阶段,即触点打开段;从e点至a点对应于初 级电流导通、线圈储能阶段,也是传统点火系的触点闭合时间,即触点闭合
或火花塞的间隙过大使击穿电压过高。
BG
15
• 4)次级波形的火花线向下倾斜且不稳定,有细小的多余波形出现,而火花 线的持续电压也不正常。其故障原因是火花塞上具有较多的积炭和油污。火 花塞积炭就相当于在火花塞上并联一个分路电阻,与次级电路闭合回路。当 触点打开时,次级电路内产生泄漏电流,使击穿电压下降,火花塞的放电过 程不稳定。
BG
3
• bc段:当火花塞的间隙被击穿时,两电极之间要出现火花放电,同时次级电压 骤然下降,bc为此时的放电电压;(电容放电阶段电压)
• cd段:火花塞电极间隙被击穿后,通过电极间隙的电流迅速增加,致使两极间 隙中的可燃气体粒子发生电离,引起火花放电。cd的高度表示火花放电的电压, cd的宽度表示火花放电的持续时间。cd被称为火花线;(电感放电阶段电压)
BG
16
• 5)次级波形出现上下平移,其故障原因次级电路出现间歇性断电,导致次 级波形有上下波动。
BG
17
• 6)次级波形在触点打开段的火花线与第一次振荡界限分不清,失去火花放 电过程,其故障原因是火花塞电极的间隙过大,击穿电压再高也无法击穿,
而失去了火花塞的放电过程,也就是去了火花线。
BG
18
BG
12
(3)常见单缸次级故障波形
• 1)次级波形在触点断开时刻即出现击穿电压之前出现一个小平台且击穿电 压较低,其原因是断电器的电容漏电,使触点放电能量不足。
BG
13
• 2)次级波形在触点闭合段的第二次振荡波小而少,其原因是点火线圈 的阻抗过大将触点闭合时产生的振荡波吸收。
BG
14
• 3)次级波形的火花线倾斜且较陡峭(下降较快),而火花线的起点(c点) 也很高。其故障是分电器与该气缸之间的高压分线断路使次级电路电阻增大
二、点火系统的波形检测
1 .次级点火波形的分析
发动机的点火线圈是由两部分的线圈组成:低压部分的初级线圈和高压部分的 次级线圈。当初级线圈的电流被截断时,初级线圈会产生200V~300V的电压, 而在次级线圈上将产生高达15kV~20kV的电压,所以,两者的波形有所不同。
BG
1
次级点火电压标准波形
BG
段。打开段加上闭合段等于一个完整的点火循环。
BG
7Байду номын сангаас
(2)分析次级点火波形的要点
• 1)观察efa段,即点火线圈在开始充电时,波形的下降沿是否与标准波形一致: 如果一致,表明闭合角正常,点火正时准确;如果不一致,表明闭合角出现问 题,即电容器,点火线圈和断电器触点出现故障。
BG
8
• 2)观察ab段,即点火线。主要看点火线的高度是否符合该车技术参 数,点火线的中后段是否有杂讯。一般汽车在怠速时,次级点火电压 为10~15kV。如果点火电压过高,表明在次极线路中存在着高电阻, 如火花塞,高压线开路或损坏,火花塞的电极间隙过大。如果点火电 压过低表明次级线路的电阻低于正常值,如火花塞污蚀或损坏,火花 塞,高压线漏电等。
2
• a点:断电器的触点断开或电子点火器晶体管没导通,点火线圈初级突然断电, 使次级电压急剧上升。
• ab段:为火花塞的击穿电压,即在断电器打开的瞬间,由于初级电流下降至零, 磁通也迅速减小,于是次级产生的高压急剧上升,当次级电压还没有达到最大 值时,就将火花塞的间隙击穿。所以ab也称为点火线;(5000-8000v)
BG
10
• 4)观察cd段的宽度,即看火花线的火花放电持续时间是否符合该车的技术参数。 火花放电持续时间表明气缸内混合气的浓与稀。火花放电持续时间过长(通常
超过2ms)表示混合气过浓;相反,火花放电持续时间过短(通常少于0.75ms) 表示混合气过稀。
BG
11
• 5)观察efa段的低频振荡,点火线圈振荡波最少为两个,最好多于三个, 这表明点火线圈和电容器的工作正常。
相关文档
最新文档