数学物理方程第一章部分答案
数学物理方程第一章、第二章习题全解
![数学物理方程第一章、第二章习题全解](https://img.taocdn.com/s3/m/5d5c0d646294dd88d1d26b1b.png)
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
数学物理方程第二版谷超豪主编的课本的课后答案
![数学物理方程第二版谷超豪主编的课本的课后答案](https://img.taocdn.com/s3/m/ff2f7022ccbff121dd368395.png)
1、一个偏微分方程所含有的未知函数最高阶导数的阶数称为这个偏微分方程的阶。
2、如果方程对未知函数及其各阶导数总体来说是线性的,则称这个方程是线性方程,否则称这个方程是非线性方程。
3、几种不同原因的综合所产生的效果等于这些不同原因单独产生的效果(即假设其他原因不存在时,该原因所产生的效果)的累加。
这个原理称为叠加原理。
4、I 【22222//0u t a u x ∂∂-∂∂=0:(),/()t u x u t x ϕψ==∂∂=】初值问题I 的解为(,)[()()]/2(1/2)()x atx atu x t x at x at a d ϕϕψαα+-=-+-+⎰此公式称为达朗贝尔公式5、依赖区间(x-at,x+at )第一章课后题2.8求解222200{//sin |0,/|sin }t t u t u x t x u u t x ==∂∂-∂∂==∂∂= 解:()0()11(,)sin sin sin 22x t x tt x tx t u x t d d t xττξξτξξ+-+---=+=⎰⎰⎰sin(1,2,...)k k C x k lπ=为常微分方程()()0X x X x λ''+=满足边界条件(0)0,()0X X l ==的固有函数(或特征函数)而222k lπλ=称为相应的固有值。
2222200:(),()0,:0uu atxu t u x x tx x l u ϕψ∂∂-=∂∂∂===∂===初值问题,的解是(,)cos sin sin k k k a k a k a u x t A t B t xl l l πππ⎛⎫=+ ⎪⎝⎭又可以写成(,)c o s ()s ink kk k k u x t N t xlπωθ=+其中,cos sin K K k k K a N lπωθθ====KN 称为波的振幅,Kω称为圆频率,k θ称为波的初位相。
弦上位于m l x k=(m=0,1,..k )处的点在振动过程中保持不动,称为节点。
数学物理方程第二版答案(平时课后习题作业)
![数学物理方程第二版答案(平时课后习题作业)](https://img.taocdn.com/s3/m/2533aef610a6f524cdbf85cd.png)
数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。
定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。
解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。
仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。
x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。
且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。
§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。
数理方程第一章答案
![数理方程第一章答案](https://img.taocdn.com/s3/m/eb633e592b160b4e767fcf54.png)
u = f( − 3 ) + g(x + y) (−3 ) + ( ) = 3 代入边界条件得: (−3 ) + ( ) = 0 (2)式积分得: (−3 ) + ( ) = 3 −
(−3 ) + ( ) = 0 (3)
求得: 所以:
( )= ( )= u= ( + ) + ( −3 )
14.解下列定解问题. = , > 0, − ∞ < x < +∞ (2). (0, ) = 特征方程: 特征线 f(x + at) f(x) = u=( + )
∫ ( )
[∫ ( ) +
∫ ( )
+ ]
( ) ( )
( )]
+ ( )+
(2).
+ ( , ) = ( , ) ,u = u(x, y)
直接套用公式 6. 推导杆的微小纵振动方程 解: 设细杆截面积 S,密度 ,杨氏模量 E 取一小段 dx, 用牛顿第二定律得:
E S u ( x dx, t ) u ( x, t ) 2u ES Sdx 2 x x t
数理方程 A 参考答案 中国科学技术大学
代入原方程得:
u 1, u f ( )
u xy f ( x 2 y 2 ) 15.一端固定的半无界弦的定解问题. = , > 0, >0 ( , 0) = 0 (0, ) = sin , (0, ) =
若为cos ,则 =? 解: 为满足边界条件作以下延拓: φ(x) = sin , 由达朗贝尔公式得: u(t, x) = [sin( +
d 2 R 2 dR )0 dr 2 r dr
数学物理方程答案谷超豪
![数学物理方程答案谷超豪](https://img.taocdn.com/s3/m/b6e938cd6294dd88d0d26b64.png)
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
数学物理方程(谷超豪)课后习题完整解答
![数学物理方程(谷超豪)课后习题完整解答](https://img.taocdn.com/s3/m/48bfff0fb52acfc789ebc98d.png)
即对任何 x, G(x) C 0 又 G(x)=
1 1 x C ( x) ( )d x 2 2a 0 2a
x 2 ]的影响区域以外不发生变化;
(2) 在 x 轴区间[ x1 , x 2 ]上所给的初始条件唯一地确定区间[ x1 , x 2 ]的决定区 域中解的数值。 证: (1) 非齐次方程初值问题的解为 u(x,t)= [ ( x at ) ( x at )]
运动方程为:
2u 2u 2u t 2 x 2 y 2
2
x s x x
2u t
2
u u u ES x x ES x b x s x x x t t
利用微分中值定理,消去 x ,再令 x 0 得
2 2u u 2 u . b a t x 2 t 2
E
, 则得方程
所以 为原方程的通解。 由初始条件得
u
F x at G x at h x
1.
§2 达朗贝尔公式、 波的传抪 证明方程
2 2 x u 1 x 2 u h 0常数 1 1 2 2 h x h x a t
同理
5 2u 2 2 2 2 2 t x y t x 2 2 y 2 2 y
t
2 5 2 2 2 x y t 2x 2 y 2
u sin tg x. 2u u u [l ( x x)] ∣ x x g [l x] ∣ x g 2 x x t
1 F x Gx hx 1 x aF / x aG / x hx
数学物理方程 陈才生主编 课后习题答案 章
![数学物理方程 陈才生主编 课后习题答案 章](https://img.taocdn.com/s3/m/e0f4329fa76e58fafab00388.png)
1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n
→
0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细
数学物理方程智慧树知到课后章节答案2023年下中国石油大学(华东)
![数学物理方程智慧树知到课后章节答案2023年下中国石油大学(华东)](https://img.taocdn.com/s3/m/dd1c52e9185f312b3169a45177232f60ddcce711.png)
数学物理方程智慧树知到课后章节答案2023年下中国石油大学(华东)中国石油大学(华东)绪论单元测试1.法国数学家、物理学家达朗贝尔首先将将弦振动问题归结为波动方程。
A:对 B:错答案:对2.欧拉首先提出位势方程,后来因为拉普拉斯(Laplace)的出色工作,称为Laplace方程。
这类方程描述的是一种稳恒状态方程。
A:对 B:错答案:对3.数学物理方程是纯粹数学的许多分支和自然科学各部门之间的一个桥梁。
A:对 B:错答案:对4.Fourier对介质热流动问题颇感兴趣,建立了热传导方程,并首次提出了分离变量法。
A:错 B:对答案:对5.本课程主要内容包括三大经典方程:波动方程、热传导方程、位势方程。
四种求解方法:分离变量法、行波法、积分变换法、格林函数法。
两类特殊函数:贝赛尔函数、勒让德函数。
同时要特别注重方法中蕴含的数学思想。
A:对 B:错答案:对第一章测试1.偏微分方程与()结合在一起,称为初值问题。
A:初始条件 B:初始条件与边界条件 C:边界条件 D:定解条件答案:初始条件2.下面各边界条件中,属于第二类边界条件的是A:B:C:D:答案:3.柯西问题指的是()A:其余选项都不正确 B:微分方程和初始边界条件 C:微分方程和边界条件 D:微分方程和初始条件答案:微分方程和初始条件4.边值问题指的是()A:其余选项都不正确 B:微分方程和初始边界条件 C:微分方程和初始条件 D:微分方程和边界条件答案:微分方程和边界条件5.定解问题的适定性指定解问题的解具有()A:唯一性和稳定性 B:存在性和唯一性 C:存在性和稳定性 D:存在性、唯一性和稳定性答案:存在性、唯一性和稳定性6.下列偏微分方程中,属于二阶、线性、非齐次的有()A:B:C:D:答案:7.下列偏微分方程中,属于二阶、线性、齐次的是()A:B:C:D:答案:8.下列偏微分方程哪个是双曲型的()A:B:C:D:答案:9.A:双曲型 B:抛物型 C:混合型 D:椭圆型答案:双曲型10.A:抛物型 B:椭圆型 C:双曲型 D:混合型答案:椭圆型第二章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A:B:C:D:答案:5.A:B:C:D:答案:6.A:B:C:D:答案:;7.A:B:C:D:答案:8.A:对 B:错答案:对9.A:B:C:D:答案:10.A:B:C:D:答案:;第三章测试1.A:B:C:D:答案:2.A:B:C:D:答案:3.A:B:C:D:答案:4.A:C:D:答案:5.A:B:C:D:答案:6.A:关于变量y的Laplace变换 B:关于变量y的Fourier变换 C:关于变量x的Laplace变换 D:关于变量x的Fourier变换答案:关于变量x的Fourier变换7.A:B:C:D:答案:8.A:B:C:D:答案:9.A:B:C:D:答案:10.A:错 B:对答案:错第四章测试1.A: B: C: D:答案:2.A:B:C:D:答案:3.A:错 B:对答案:错4.A:0 B:C:1 D:答案:5.A:1 B:-1 C:D:答案:-16.A:错 B:对答案:对7.A:错 B:对答案:错8.A:Neumann 边值问题 B:第一边值问题 C:Dirichlet 边值问题 D:第二边值问题答案:Neumann 边值问题;第二边值问题9.A:B:处处可导 C:D:处处满足拉普拉斯方程答案:;10.A:错 B:对答案:对第五章测试1.A:零阶贝塞尔方程 B:一阶贝塞尔方程 C:欧拉方程 D:二阶贝塞尔方程答案:零阶贝塞尔方程2.A:该方程为亥姆霍兹方程 B:该方程为贝塞尔方程 C:该方程为齐次方程 D:方程为欧拉方程答案:该方程为亥姆霍兹方程;该方程为齐次方程3.A:错 B:对答案:错4.A:错 B:对答案:错5.A:对 B:错答案:对6.A:错 B:对答案:错7.A:B:C:D:答案:8.A:错 B:对答案:对9.关于第一类贝塞尔函数的说法正确的是()A:B:C:D:答案:10.A:B:C:D:答案:第六章测试1.A:错 B:对答案:对2.A:B:C:D:答案:;;;3.A:对 B:错答案:错4.A:B:C:D:答案:;;5.A:B:C:D:答案:6.A:对 B:错答案:对7.A:B:C:D:答案:8.在球坐标系中三维的拉普拉斯方程为()A:B:C:D:答案:9.A:B:C:D:答案:10.A:B:C:D:答案:。
数学物理方程第二版(谷超豪)前三章习题答案
![数学物理方程第二版(谷超豪)前三章习题答案](https://img.taocdn.com/s3/m/f88a6b1a6edb6f1aff001fc5.png)
1
l 1
x h
所以截面积 s( x) (1 ) 。利用第 1 题,得
2
x h
证:函数 u ( x, y, t )
1 t x y
2 2 2
在锥 t x y >0 内对变量 x, y, t 有
2 2 2
( x) (1 ) 2
若 E ( x) E 为常量,则得
代入原方程,得
x sx
若 s( x) 常数,则得
2u u u . ES b x s x 2 t x x t
即
2v 1 2v h x 2 2 h x 2 x a t 2v 1 2v x 2 a 2 t 2
于是得运动方程
( x)s( x) x utt ( x, t ) ESu x ( x x) | x x ESu x ( x) | x
( x)s( x)utt ( ESu x ) x
即
利用微分中值定理,消去 x ,再令 x 0 得
u ∣ x 0 k[u(0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x E
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
u(0, t ) 0, u(l , t ) 0.
(2)若 x l 为自由端,则杆在 x l 的张力 T (l , t ) E ( x) 界条件为
u u x E t t x x
1 F x Gx hx 1 x aF / x aG / x hx
x
(1)
数学物理方程,偏微分方程答案第一章1-25 课后答案
![数学物理方程,偏微分方程答案第一章1-25 课后答案](https://img.taocdn.com/s3/m/ac5b411cfad6195f312ba6a8.png)
x
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
u v u u 2v [(h x) 2 (u ) (h x) (h x) 2 (h x)(u 2 ) x x x x x x
( x) s( x)u tt ( ESu x ) x
ww w.
利用微分中值定理,消去 x ,再令 x 0 得
u ∣ x 0 k[u (0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x
E
x 2 u x 2 2u 3. 试证:圆锥形枢轴的纵振动方程为 E [(1 ) ] (1 ) x h x h t 2
t有
即对任何 x, G(x) C 0 又 G(x)=
(1) 如果初始条件在 x 轴的区间[x 1 ,x 2 ]上发生变化,那末对应的解在区间[ x1 ,
1 1 x C ( x) ( )d x 2 2a 0 2a
x 2 ]的影响区域以外不发生变化;
w.
2u x 2 t x
2
网
u (t 2 x 2 y 2 ) 2 x x
da
后
同理 所以 运动方程为:
2
答
且 T ( x) 的方向总是沿着弦在 x 点处的切线方向。仍以 u ( x, t ) 表示弦上各点在时刻 t 沿垂直于 x 轴 方向的位移,取弦段 ( x, x x), 则弦段两端张力在 u 轴方向的投影分别为
+
x at 1 (h ) ( )d . 2a(h x) x at
即为初值问题的解散。 2.问初始条件 ( x) 与 ( x) 满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波
数学物理方程(谷超豪)课后习题完整解答
![数学物理方程(谷超豪)课后习题完整解答](https://img.taocdn.com/s3/m/48bfff0fb52acfc789ebc98d.png)
所以
2u x 2
2u y 2
t x
2
2
5 2 2 y
u 2t 2 x 2 y 2 . t 2
2
x
即得所证。 6. 在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力) 与杆件在该点的速度大小成正比 (比例系数设为 b), 但方向相反,试导出这时位移函数所满足的微 分方程. 解: 利用第 1 题的推导,由题意知此时尚须考虑杆段 x, x x 上所受的摩阻力.由题设,单位质 量所受摩阻力为 b
由 (1), ( 2) 两式解出
1 F x h x x 2
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
1 h d c 2a x 2
o
x
t 0 : u x ,
解:令 h x u v 则
二阶连续偏导数。且
u (t 2 x 2 y 2 ) 2 t t 2 2 2 3 2
3
x u x 2u E [(1 ) 2 ] (1 ) 2 2 h x h t x
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置, 试导出此线的微小横振动方程。 解:如图 2,设弦长为 l ,弦的线密度为 ,则 x 点处的张力 T ( x) 为
又
2 2v h x u t 2 t 2
所以
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
+
x at 1 (h ) ( )d . 2a(h x) x at
数学物理方程(第三版)第一章练习答案全解
![数学物理方程(第三版)第一章练习答案全解](https://img.taocdn.com/s3/m/ab3069dc4028915f804dc22c.png)
方程的导出、定解条件
.E.xample 1.4
绝对柔软而均匀的弦线有一端固定, 在它本身重力作用下, 此线处于铅垂的平 .衡位置, 试导出此线的微小横振动方程.
解: 设弦长为 l, 取弦上端点为原点, 取铅垂向下的轴为 x 轴. 设 u(x, t) 为
时刻 t, x 处的横向位移. 取位于 (x, x + ∆x) 的微元进行分析, 由绝对柔软
齐海涛 (SDU)
数学物理方程
2012-10-3 13 / 67
达朗贝尔公式、波的传播
.E.xample 2.2
问初始条件 φ(x) 与 ψ(x) 满足怎样的条件时, 齐次波动方程初值问题的解仅 由. 右传播波组成?
解: 由题意知
G(x)
=
1 φ(x) 2
+
1 2a
∫x ψ(ξ)dξ
x0
−
C 2a
.E.xample 1.7 √
验证 u(x, y, t) = 1/ t2 − x2 − y2 在锥 t2 − x2 − y2 > 0 中满足波动方程 .utt = uxx + uyy.
齐海涛 (SDU)
数学物理方程
2012-10-3 10 / 67
1. 方程的导出、定解条件 2. 达朗贝尔公式、波的传播 3. 初边值问题的分离变量法 4. 高维波动方程的柯西问题 5. 波的传播与衰减 6. 能量不等式、波动方程解的唯一性和稳定性
解: (1) u(0, t) = u(l, t) = 0;
(2) 端点自由,
即端点处无外力作用.
在左端点
SE(0)
∂u ∂x
(0,
t)
=
0,
即
∂u ∂x
数理方程第一章、第二章习题全解
![数理方程第一章、第二章习题全解](https://img.taocdn.com/s3/m/f290fc66ddccda38376bafbf.png)
u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则
有
所以 于是
u t
数学物理方程 陈才生主编 课后习题答案1-3章
![数学物理方程 陈才生主编 课后习题答案1-3章](https://img.taocdn.com/s3/m/10e96df89e314332396893a2.png)
的解是不适定的. 1 2 解 容易验证函数un (x, t) = 1 + en t sin nx (n 1), 满足 n ut = −uxx , (x, t) ∈ R1 × (0, ∞), 1 u(x, 0) = 1 + sin nx, x ∈ R1 . n 显然, 当n → +∞时supx∈R un (x, 0) − 1 =
化简后, 得式(1.3.9). 证毕. 注 如果圆锥杆的坐标按图1.2所示,则圆锥杆的纵向微振动方程为
ρ 1− x h
2
∂2u ∂ =E 2 ∂t ∂x
1−
x h
2
∂u , ∂x
(1.3.11)
其中h为圆锥的高. 事实上, 此时截面面积S = πr2 ,半径r = (h − x) tan α. 将其代入 式(1.3.10), 便得式(1.3.11).
−1
其中ε为介电常数, ρ为电荷密度. (7) 胡克(Hooke)定律. 在弹性限度内,弹性体的弹力和弹性体的形变量成正比, 即f = −kx, 其中k为 弹性体的劲度(倔强)系数, 倔强系数在数值上等于弹性伸长(或缩短)单位长度时的 弹力, 负号表示弹力的方向和形变量的方向相反. 另外, 有 应力 = 杨氏模量 × 相对伸长.
sup
x∈R1 ,t>0
un (x, t) − 1 =
sup
x∈R1 ,t>0
1 → 0. 但是, 当n → ∞时 n 1 2 1 n2 1 n2 t e sin nx = sup en t e → ∞, n n t>0 n
所以原定解问题的解是不稳定的.
数学物理方法第四版课后习题答案
![数学物理方法第四版课后习题答案](https://img.taocdn.com/s3/m/b20302b5bb0d4a7302768e9951e79b896902687f.png)
数学物理方法第四版课后习题答案数学物理方法是一门综合性的学科,它既包含了数学的抽象思维和逻辑推理,又融合了物理的实证观察和实验验证。
对于学习数学物理方法的学生来说,课后习题是非常重要的一部分,通过解答习题可以巩固所学的知识,提高问题解决能力。
本文将为读者提供《数学物理方法第四版》课后习题的答案,帮助读者更好地理解课本内容。
第一章:数学物理方法的基础1.1 习题答案:a) 由于是一元函数,所以可以将其表示为幂级数的形式:f(x) = a0 + a1x + a2x^2 + ...将f(x)代入微分方程,整理得到:a2 + (a3 - a1)x + (a4 - 2a2)x^2 + ... = 0由于等式左侧是一个幂级数,所以等式两边的每一项系数都为零,解得:a2 = 0a3 - a1 = 0a4 - 2a2 = 0...解得:an = 0 (n为偶数)an = an-2/n(n-1) (n为奇数)b) 将f(x)代入微分方程,整理得到:2a2 + (3a3 - a1)x + (4a4 - 2a2)x^2 + ... = 0a2 = 0a3 - a1 = 0a4 - 2a2 = 0...解得:an = 0 (n为偶数)an = an-2/(n+1)(n+2) (n为奇数)1.2 习题答案:a) 根据题意,设矩形的长为L,宽为W,则有:2L + 2W = 100LW = A解得:L = 50 - WW(50 - W) = AW^2 - 50W + A = 0由于W为矩形的宽度,所以W > 0,根据二次方程的性质,判别式D = 2500 - 4A > 0解得:A < 625b) 根据题意,设矩形的长为L,宽为W,则有:2L + 2W = 100解得:L = 50 - WW(50 - W) = AW^2 - 50W + A = 0由于W为矩形的宽度,所以W > 0,根据二次方程的性质,判别式D = 2500 - 4A ≥ 0解得:A ≤ 625第二章:向量分析2.1 习题答案:a) 根据题意,设向量A的分量为(A1, A2, A3),向量B的分量为(B1, B2, B3),则有:A ×B = (A2B3 - A3B2, A3B1 - A1B3, A1B2 - A2B1)A ·B = A1B1 + A2B2 + A3B3解得:A ×B = (1, -1, 2)A ·B = 3b) 根据题意,设向量A的分量为(A1, A2, A3),向量B的分量为(B1, B2, B3),则有:A ×B = (A2B3 - A3B2, A3B1 - A1B3, A1B2 - A2B1)A ·B = A1B1 + A2B2 + A3B3A ×B = (1, -1, 2)A ·B = 0以上是《数学物理方法第四版》第一章和第二章部分习题的答案,希望读者通过这些答案能够更好地理解课本内容,提高问题解决能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 ,取极限得在点 的相对伸长为 。由虎克定律,张力 等于
其中 是在点 的杨氏模量。
设杆的横截面面积为 则作用在杆段 两端的力分别为
于是得运动方程
利用微分中值定理,消去 ,再令 得
若 常量,则得
=
即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:边界条件是齐次ຫໍສະໝຸດ ,相应的固有函数为设将非次项 按 展开级数,得
其中
将 代入原定解问题,得 满足
方程的通解为
由 ,得:
由 ,得
所以
所求解为
6.用分离变量法求下面问题的解:
解:方程和边界条件都是齐次的。令
代入方程及边界条件,得
由此得边值问题
因此得固有值 ,相应的固有函数为
又 满足方程
将 代入,相应的 记作 ,得 满足
解:如图2,设弦长为 ,弦的线密度为 ,则 点处的张力 为
且 的方向总是沿着弦在 点处的切线方向。仍以 表示弦上各点在时刻 沿垂直于 轴方向的位移,取弦段 则弦段两端张力在 轴方向的投影分别为
其中 表示 方向与 轴的夹角
又
于是得运动方程
∣ ∣
利用微分中值定理,消去 ,再令 得
。
7. 验证 在锥 >0中都满足波动方程
=
=
+
=
+
所以
§3混合问题的分离变量法
1.用分离变量法求下列问题的解:
(1)
解:边界条件齐次的且是第一类的,令
得固有函数 ,且
,
于是
今由始值确定常数 及 ,由始值得
所以 当
因此所求解为
(2)
解:边界条件齐次的,令
得: (1)
及 。
求问题(1)的非平凡解,分以下三种情形讨论。
时,方程的通解为
由 得
由 得
(2).区间[ ]的决定区域为
在其中任给(x,t),则
故区间[x-at,x+at]完全落在区间[ ]中。因此[ ]上所给的初绐
条件 代入达朗贝尔公式唯一地确定出u(x,t)的数值。
8.求解波动方程的初值问题
解:由非齐次方程初值问题解的公式得
=
=
=
=
即 为所求的解。
9.求解波动方程的初值问题。
解:
=
=
3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
解:u(x,t)=F(x-at)+G(x+at)
令x-at=0得 =F(0)+G(2x)
令x+at=0得 =F(2x)+G(0)
所以F(x)= -G(0).
G(x)= -F(0).
且F(0)+G(0)=
所以u(x,t)= + -
即为古尔沙问题的解。
一般言之, 很小,即阻尼很小,故通常有
故得通解
其中
所以
再由始值,得
所以
所求解为
§4高维波动方程的柯西问题
第一章.波动方程
§1方程的导出。定解条件
1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 满足方程
其中 为杆的密度, 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 与 。现在计算这段杆在时刻 的相对伸长。在时刻 这段杆两端的坐标分别为:
次方程初值的解。
当 在[ ]上发生变化,若对任何t>0,有x+at<x 或x-at>x ,则区间[x-at,x+at]整个落在区间[ ]之外,由解的表达式知u(x,t)不发生变化,即对t>0,当x<x -at或x>x +at,也就是(x,t)落在区间[ ]的影响域
之外,解u(x,t)不发生变化。(1)得证。
求解此问题。
解:边值条件是非齐次的,首先将边值条件齐次化,取 ,则 满足
,
令 代入原定解问题,则 满足
满足第一类齐次边界条件,其相应固有函数为 ,
故设
将方程中非齐次项 及初始条件中 按 展成级数,得
其中
其中
将(2)代入问题(1),得 满足
解方程,得通解
由始值,得
所以
因此所求解为
5.用分离变量法求下面问题的解
解:(1)杆的两端被固定在 两点则相应的边界条件为
(2)若 为自由端,则杆在 的张力 | 等于零,因此相应的边界条件为 | =0
同理,若 为自由端,则相应的边界条件为 ∣
(3)若 端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数 给出,则在 端支承的伸长为 。由虎克定律有
∣
其中 为支承的刚度系数。由此得边界条件
2.问初始条件 与 满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波组成?
解:波动方程的通解为
u=F(x-at)+G(x+at)
其中F,G由初始条件 与 决定。初值问题的解仅由右传播组成,必须且只须对
于任何 有G(x+at) 常数.
即对任何x, G(x) C
又G(x)=
所以 应满足
(常数)
或 (x)+ =0
解以上方程组,得 , ,故 时得不到非零解。
时,方程的通解为
由边值 得 ,再由 得 ,仍得不到非零解。
时,方程的通解为
由 得 ,再由 得
为了使 ,必须 ,于是
且相应地得到
将 代入方程(2),解得
于是
再由始值得
容易验证 构成区间 上的正交函数系:
利用 正交性,得
所以
2。设弹簧一端固定,一端在外力作用下作周期振动,此时定解问题归结为
证:函数 在锥 >0内对变量 有
二阶连续偏导数。且
同理
所以
即得所证。
§2达朗贝尔公式、波的传抪
1.证明方程
的通解可以写成
其中F,G为任意的单变量可微函数,并由此求解它的初值问题:
解:令 则
又
代入原方程,得
即
由波动方程通解表达式得
所以
为原方程的通解。
由初始条件得
所以
由 两式解出
所以
+
即为初值问题的解散。
∣ 其中
特别地,若支承固定于一定点上,则 得边界条件
∣ 。
同理,若 端固定在弹性支承上,则得边界条件
∣
即 ∣
3. 试证:圆锥形枢轴的纵振动方程为
其中 为圆锥的高(如图1)
证:如图,不妨设枢轴底面的半径为1,则
点处截面的半径 为:
所以截面积 。利用第1题,得
若 为常量,则得
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
4.对非齐次波动方程的初值问题
证明:当f(x,t)不变时,
(1)如果初始条件在x轴的区间[x ,x ]上发生变化,那么对应的解在区间[ ,
]的影响区域以外不发生变化;
(2)在x轴区间[ ]上所给的初始条件唯一地确定区间[ ]的决定区
域中解的数值。
证:(1)非齐次方程初值问题的解为
u(x,t)=
+
当初始条件发生变化时,仅仅引起以上表达式的前两项发生变化,即仅仅影晌到相应齐