二次函数图象及性质知识总结
二次函数图像与性质ppt课件
![二次函数图像与性质ppt课件](https://img.taocdn.com/s3/m/be712b672bf90242a8956bec0975f46527d3a79b.png)
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
二次函数知识点总结
![二次函数知识点总结](https://img.taocdn.com/s3/m/060ed048cd7931b765ce0508763231126edb7781.png)
二次函数知识点总结二次函数是初中数学的重要内容之一,也是中考数学的重点和难点。
它不仅在数学领域有着广泛的应用,在物理、经济等其他学科中也经常出现。
下面我们来详细总结一下二次函数的相关知识点。
一、二次函数的定义一般地,形如\(y = ax^2 + bx + c\)(\(a\)、\(b\)、\(c\)是常数,\(a ≠ 0\))的函数,叫做二次函数。
其中\(x\)是自变量,\(a\)叫做二次项系数,\(b\)叫做一次项系数,\(c\)叫做常数项。
需要注意的是,二次函数的最高次必须是二次,并且二次项系数\(a\)不能为\(0\)。
如果\(a = 0\),那么函数就变成了一次函数。
二、二次函数的图象二次函数的图象是一条抛物线。
抛物线的形状由二次项系数\(a\)决定:1、当\(a > 0\)时,抛物线开口向上;当\(a < 0\)时,抛物线开口向下。
2、\(|a|\)越大,抛物线的开口越窄;\(|a|\)越小,抛物线的开口越宽。
抛物线是轴对称图形,对称轴为直线\(x =\frac{b}{2a}\)。
二次函数的顶点式为\(y = a(x h)^2 + k\),其中\((h, k)\)是抛物线的顶点坐标。
当抛物线的顶点坐标已知时,通常使用顶点式来表示二次函数,这样可以更方便地求出函数的最值等性质。
四、二次函数的一般式与顶点式的转化由一般式\(y = ax^2 + bx + c\)通过配方法可以转化为顶点式:\\begin{align}y&=ax^2 + bx + c\\&=a(x^2 +\frac{b}{a}x) + c\\&=a(x^2 +\frac{b}{a}x +\frac{b^2}{4a^2} \frac{b^2}{4a^2})+ c\\&=a(x +\frac{b}{2a})^2 \frac{b^2}{4a} + c\\&=a(x +\frac{b}{2a})^2 +\frac{4ac b^2}{4a}\end{align}\所以顶点坐标为\((\frac{b}{2a},\frac{4ac b^2}{4a})\)。
二次函数的相关知识点总结
![二次函数的相关知识点总结](https://img.taocdn.com/s3/m/01385476a31614791711cc7931b765ce05087a3b.png)
二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
二次函数知识点 二次函数图像与性质
![二次函数知识点 二次函数图像与性质](https://img.taocdn.com/s3/m/dc33bef7360cba1aa811da60.png)
二次函数图像与性质〖知识要点〗 1.二次函数定义一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
定义域是全体实数,图像是抛物线。
2y ax bx c =++是二次函数的“一般式”。
特点:① 自变量x 最高次数是2,② a ≠0 ③ 整式2. 二次函数的基本形式:2y ax =(0a ≠)的图像性质:a 越大抛物线的开口越小考点一:二次函数定义例1.(1)圆的半径是xcm ,圆的面积为ycm²,写出y 与x 之间的函数关系式;(2)用总长为60m 的篱笆围成矩形场地,写出场地面积y(m ²)与矩形一边长x(m)之间的关系式例2. (1)下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =222(2)2x x --;⑧y=-5x.(2)若y=(m +1)x562--m m 是二次函数,则m=( )A .7B .—1C .-1或7D .以上都不对(3)函数)1(432-=x y 的自变量x 的取值范围是 ; (4)已知二次函数3)12()1(2+++-=x m x m y ,当x=1时,y=3,则其表达式为 ;(5)已知二次函数8-10-2x xy +=,当x=________________时,函数值y 为1.考点二:2y ax =(0a ≠)的图像性质例3.作二次函数2x 2y =的图像观察图象,你发现了:例4.(1) 函数y=-x 2的图像是一条______线,开口向_______,对称轴是______, 顶点是________, 顶点是图像最_____点,表示函数在这点取得最_____值。
函数y=x 2 的图像的开口方向________,对称轴________,顶点_______.(2).关于213y x =,2y x =,y=-3x 2的图像,开口最大的是 .例5已知抛物线y=ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,- 4)是否在此抛物线 ;(3)求出此抛物线上纵坐标为-6的点的坐标.例6已知二次函数mm m +=2xy (1)当m 取何值时它的图象开口向上。
二次函数图像与性质完整归纳
![二次函数图像与性质完整归纳](https://img.taocdn.com/s3/m/5a60d1a6aef8941ea76e05c0.png)
3 2 -2
3 2 0 5…
2
【例 2】 求作函数 y x 2 4 x 3 的图象。
【解】 y x 2 4x 3 ( x2 4x 3)
[( x 2) 2 7] [( x 2) 2 7 先画出图角在对称轴 x 2 的右边部分,列表
x -2 -1 0 1 2 y 76 5 4 3
【点评】 画二次函数图象步骤: (1) 配方; (2) 列表; (3) 描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利 用对称性描出右(左)部分就可。
, 3 ] 上是增函数,在区间 [ 3, 10
29 ymaz 20 ) 上是减函数。
【点评】 要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:
(1) 配方法;如例 3
(2) 公式法:适用于不容易配方题目 ( 二次项系数为负数或分数 ) 如例 4,可避免出错。
任何一个函数都可配方成如下形式:
b 时, y 随 x 的增大而增大; 当 x b
2a
2a
b ,顶点坐标为 2a
b ,4ac b2 .当 2a 4a
x b 时, y 随 x 的增大而增大;当 x 2a
2
有最大值 4ac b . 4a
b 时, y 随 x 的增大而减小;当 x 2a
b 时, y 2a
六、二次函数解析式的表示方法
1. 一般式: y ax 2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a ( x h)2 k ( a , h , k 为常数, a 0 );
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y X=h
随 x 的增大而增大; x h 时, y 有最大值 k .
二次函数的像与性质知识点总结
![二次函数的像与性质知识点总结](https://img.taocdn.com/s3/m/2b0e8923c381e53a580216fc700abb68a982adcf.png)
二次函数的像与性质知识点总结一、二次函数的定义及性质二次函数是指一般形式为f(x) = ax² + bx + c的函数,其中a ≠ 0。
它是二次方程的图象。
1. 定义二次函数的定义域是一组实数,范围可根据上下文中的题目来确定。
它是实数集到实数集的映射关系。
2. 对称性二次函数的图象关于直线x = -b/2a对称。
3. 零点二次函数的零点就是使得f(x) = 0的x值。
零点可以通过求解二次方程ax² + bx + c = 0来得到。
二、二次函数的图象与特点1. 图象的开口方向二次函数开口向上(a > 0)或开口向下(a < 0)。
开口方向直接取决于二次函数的系数a。
2. 图象的顶点顶点是二次函数的极值点,其横坐标为x = -b/2a,纵坐标为f(-b/2a)。
顶点是二次函数图象的最高点(开口向下)或最低点(开口向上)。
3. 最值当二次函数开口向上时,它在定义域上无下界,但有一个最小值;当二次函数开口向下时,它在定义域上无上界,但有一个最大值。
4. 对称轴对称轴是指二次函数图象的对称轴,其方程为x = -b/2a。
图象关于对称轴对称。
5. 零点零点是指二次函数的图象与x轴交点的横坐标。
零点的个数和种类取决于二次函数的判别式Δ = b² - 4ac。
- 当Δ > 0时,二次函数有两个不同的实根,图象与x轴有两个交点。
- 当Δ = 0时,二次函数有一个实根,图象与x轴有一个交点。
- 当Δ < 0时,二次函数无实根,图象与x轴无交点。
6. 区间根据二次函数开口的方向,可以将定义域分成两个区间。
在每个区间内,二次函数具有相同的增减性。
7. 渐近线二次函数没有水平渐近线,但有一条垂直渐近线x = -b/2a,这条线是对称轴。
如果a ≠ 0,则二次函数有斜渐近线。
三、二次函数的变形与应用1. 平移变换将二次函数沿x轴平移h个单位,或沿y轴平移k个单位,可通过将x或y的值替换为x ± h或y ± k来实现。
二次函数知识点总结
![二次函数知识点总结](https://img.taocdn.com/s3/m/e95bfa82336c1eb91a375ded.png)
二次函数知识点总结一、二次函数的定义1. 二次函数的定义:一般的形如c bx ax y ++=2(其中0,,≠a c b a 是常数且)的函数叫做二次函数. 注:c bx ax y ++=2不一定是二次函数,只有当0≠a 时,c bx ax y ++=2才是二次函数. 二、二次函数y =ax ²的图像与性质1. 2ax y =的图像性质:一般的,当0>a 时,抛物线2ax y =的开口向上,对称轴是y 轴,顶点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当0<a 时,抛物线2ax y =的开口向下,对称轴是y 轴,顶点是原点,顶点是抛物线的最高点,a 越大,抛物线的开口越大.2. 2ax y =的增减性:如果a >0,当x <0时,y 随着x 的增大而减小,当x >0时y 随着x 的增大而增大;如果a <0,当x <0时,y 随着x 的增大而增大,当x >0时,y 随着x 的增大而减小. 三、二次函数y =a (x -h )²+k 的图像与性质1. k h x a y +-=2)(的图像与性质:一般的,当0>a 时,抛物线k h x a y +-=2)(的开口向上,对称轴是h x =,顶点是),(k h ,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当0<a 时,抛物线k h x a y +-=2)(的开口向下,对称轴是h x =,顶点是),(k h ,顶点是抛物线的最高点,a 越大,抛物线的开口越大.2. k h x a y +-=2)(的增减性:如果a >0,当x <h 时,y 随着x 的增大而减小,当x >h 时y 随着x 的增大而增大;如果a <0,当x <h 时,y 随着x 的增大而增大,当x >h 时,y 随着x 的增大而减小. 四、二次函数的平移1. 二次函数的平移:任意抛物线k h x a y +-=2)(可由2ax y =平移得到,k h x a y +-=2)(是由2ax y =向上平移k 个单位,向右平移h 个单位得到(k ,h 为正数时).2. 平移原则:左加右减,上加下减.五、二次函数y =ax ²+bx +c 的图像与性质1. c bx ax y ++=2的图像与性质:一般的,当0>a 时,抛物线c bx ax y ++=2的开口向上,对称轴是ab x 2-=,顶点是)44,2(2a b ac a b --,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当0<a 时,抛物线c bx ax y ++=2的开口向下,对称轴是a b x 2-=,顶点是)44,2(2a b ac a b --,顶点是抛物线的最高点,a 越大,抛物线的开口越大.2. c bx ax y ++=2的增减性:如果a >0,当a b x 2-<时,y 随着x 的增大而减小,当ab x 2->时y 随着x 的增大而增大;如果a <0,当a b x 2-<时,y 随着x 的增大而增大,当ab x 2->时,y 随着x 的增大而减小. 3. 二次项系数a 的特性:a 的大小决定抛物线的开口大小,a 越大抛物线的开口越小,a 越小抛物线的开口越大.4. 左同右异:当a 、b 符号相同时,对称轴在y 轴的左面;当a 、b 符号不同时,对称轴在y 轴的右面.5. 常数项c 的意义:c 是抛物线与y 轴交点的纵坐标,即x=0时y=c.6. 一般式的赋值:判断c b a c b a c b a c b a ++++++2-424-、、、值的正负时,令x=1、-1、2、-2时y 值的正负.六、二次函数的最值 1. 形如c bx ax y ++=2的最值:当a >0时抛物线在a b x 2-=时取到最小值a b ac y 442min -=,当a <0时抛物线在ab x 2-=时取到最大值a b ac y 442max -=七、待定系数法求二次函数解析式1. 一般式(三点式):一般的,所给的条件是三个点的坐标是时可以设解析式为c bx ax y ++=2,再将三个点带入解析式解三元一次方程组来求解。
二次函数的图像和性质
![二次函数的图像和性质](https://img.taocdn.com/s3/m/39aebd23647d27284b73512a.png)
二次函数的图像和性质知识点一:图像函数性质a>0定义域x∈R(个别题目有限制的,由解析式确定)值域a>0 a<0y∈[4ac-b24a,+∞) y∈(-∞,4ac-b24a]奇偶性b=0时为偶函数,b≠0时既非奇函数也非偶函数a<0单调性a>0a<0x∈(-∞,-b2a]时递减,x∈[-b2a,+∞)时递增x∈(-∞,-b2a]时递增,x∈[-b2a,+∞)时递减图像特点①对称轴:x=-b2a;②顶点:(-b2a,4ac-b24a)例:1、求函数1352++-=xxy图象的顶点坐标、对称轴、最值及它的单调区间。
2、如果cbxxxf++=2)(对于任意实数t都有)3()3(tftf-=+,那么()(A))4()1()3(fff<<(B))4()3()1(fff<<(C))1()4()3(fff<<(D))1()3()4(fff<<3、求函数522--=xxy在给定区间]5,1[-上的最值。
4、已知函数1)2(2-+-=nxxny是偶函数,试比较)2(f,)2(f,)5(-f的大小。
5、求当k为何值时,函数kxxy++-=422的图象与x轴(1)只有一个公共点;(2)有两个公共点;(3)没有公共点.6、抛物线642--=xaxy的顶点横坐标是-2,则a=7、已知二次函数bxay+-=2)1(有最小值–1,则a与b之间的大小关系是()A .a <bB .a=bC .a >bD .不能确定 8、二次函数y=(x-k )2与直线y=kx(k>0)的图像大致是( )知识点二:(1)当Δ=b2-4ac=0,方程有两个相等的实根,这时图象与x 轴只有一个公共点; (2)当Δ=b2-4ac>0,方程有两个不相等的实根,这时图象与x 轴有两个公共点; (3)当Δ=b2-4ac<0,方程有两个不相等的实根,这时图象与x 轴无公共点;课堂练习: 一.选择题1.二次函数522+-=x x y 的值域是( )A.)4∞+, [ B.),4(∞+ C.(4, ∞-] D.)4,( -∞2.如果二次函数452++=mx x y 在区间)1,(--∞上是减函数,在区间),1[+∞-上是增函数,则=m ( )A.2 B.-2 C.10 D.-103.如果二次函数)3(2+++=m mx x y 有两个不相等的实数根,则m 的聚值范围是( ) A.),6()2,(+∞⋃--∞ B.)6,2(- C.)6,2[- 0 D.}6,2{- 4.函数3212-+=x x y 的最小值是( ) A.-3. B..213- C.3 D..2135.函数2422---=x x y 具有性质( ) A.开口方向向上,对称轴为1-=x,顶点坐标为(-1,0)B.开口方向向上,对称轴为1=x ,顶点坐标为(1,0) C.开口方向向下,对称轴为1-=x ,顶点坐标为(-1,0) D.开口方向向下,对称轴为1=x,顶点坐标为(1,0)6.函数(1)3422-+=x x y ;(2)3422++=x x y ;(3)3632---=x x y ;(4)3632-+-=x x y 中,对称轴是直线1=x 的是( )A.(1)与(2) B.(2)与(3) C.(1)与(3) D.(2)与(4) 7.对于二次函数x x y 822+-=,下列结论正确的是( )A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8 C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8 8.如果函数)0(2≠++=a c bx ax y ,对于任意实数t 都有)2()2(t f t f -=+,那么下列选项中正确的是( )A.)4()1()2(f f f <-< B.)4()2()1(f f f <<- C.)1()4()2(-<<f f f D.)1()2()4(-<<f f f二.填空1.若函数12)(2-+=x x x f ,则)(x f 的对称轴是直线2.若函数322++=bx x y 在区间]2,(-∞上是减函数,在区间],2(+∞是增函数,则=b3.函数9322--=x x y 的图象与y 轴的交点坐标是 ,与x 轴的交点坐标是 、 4.已知6692+-=x x y ,则y 有最 值为 5.已知12842++-=x x y ,则y 有最 值为 三.解答题1.已知二次函数342-+-=x x y(1)指出函数图象的开口方向;(2)当x 为何值时0=y ;(3)求函数图象的顶点坐标、对称轴和最值。
《二次函数的图象和性质》 知识清单
![《二次函数的图象和性质》 知识清单](https://img.taocdn.com/s3/m/0b60cf7d974bcf84b9d528ea81c758f5f61f29c3.png)
《二次函数的图象和性质》知识清单二次函数的图象和性质知识清单一、二次函数的基本形式二次函数的一般式为:$y = ax^2 + bx + c$($a \neq 0$),其中$a$、$b$、$c$是常数。
当$b = 0$,$c = 0$时,函数变为$y = ax^2$,这是最简单的二次函数形式。
当$b = 0$时,函数为$y = ax^2 + c$,图象是在$y = ax^2$的基础上进行了上下平移。
当$c = 0$时,函数为$y = ax^2 + bx$,其对称轴为直线$x =\frac{b}{2a}$。
二、二次函数的图象特点1、抛物线的形状二次函数的图象是一条抛物线。
$a$的大小决定了抛物线的开口宽窄程度。
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
$|a|$越大,抛物线的开口越窄;$|a|$越小,抛物线的开口越宽。
2、对称轴对于一般式$y = ax^2 + bx + c$,其对称轴的方程为$x =\frac{b}{2a}$。
3、顶点坐标抛物线的顶点坐标为$(\frac{b}{2a},\frac{4ac b^2}{4a})$。
当$a > 0$时,顶点是抛物线的最低点;当$a < 0$时,顶点是抛物线的最高点。
4、与$x$轴的交点通过求解方程$ax^2 + bx + c = 0$的根,可以得到抛物线与$x$轴的交点。
当判别式$\Delta = b^2 4ac > 0$时,抛物线与$x$轴有两个不同的交点;当$\Delta = 0$时,抛物线与$x$轴有一个交点(即相切);当$\Delta < 0$时,抛物线与$x$轴没有交点。
三、二次函数的性质1、单调性当$a > 0$时,在对称轴左侧($x <\frac{b}{2a}$),函数单调递减;在对称轴右侧($x >\frac{b}{2a}$),函数单调递增。
当$a < 0$时,在对称轴左侧,函数单调递增;在对称轴右侧,函数单调递减。
二次函数的性质与像知识点总结
![二次函数的性质与像知识点总结](https://img.taocdn.com/s3/m/9160cbe8b8f3f90f76c66137ee06eff9aef849cc.png)
二次函数的性质与像知识点总结二次函数是高中数学中重要的一种函数类型,它在数学建模、物理问题以及实际生活中具有广泛应用。
通过对二次函数的性质与像的总结,可以更好地理解和应用这个函数类型。
本文将对二次函数的性质与像进行详细的讨论和总结。
一、二次函数的定义与基本形式二次函数是指函数关系中含有x的二次项的函数。
一般地,二次函数的基本形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的定义域为所有实数,其图像为开口朝上或朝下的抛物线。
二、二次函数的性质1. 单调性:对于二次函数f(x) = ax^2 + bx + c,若a > 0,则函数图像开口朝上,函数单调递增;若a < 0,则函数图像开口朝下,函数单调递减。
2. 零点:对于二次函数f(x) = ax^2 + bx + c,零点即为函数图像与x 轴交点的横坐标。
二次函数有可能有两个、一个或零个零点,这取决于判别式Δ = b^2 - 4ac的值。
a) 若Δ > 0,则函数有两个不同的零点;b) 若Δ = 0,则函数有且仅有一个零点;c) 若Δ < 0,则函数无零点。
3. 对称轴:对于二次函数f(x) = ax^2 + bx + c,其对称轴的方程为 x = -b / (2a)。
对称轴是函数图像的中心对称轴线,对称轴上的任何一点关于对称轴都有镜像对称的点。
4. 定点:二次函数的定点是图像的顶点,也是函数的极值点。
定点的横坐标为对称轴的横坐标,纵坐标为函数值的最大值或最小值,取决于函数的开口方向。
5. 极值:当二次函数开口朝上时,函数取得最小值,该最小值为定点的纵坐标;当二次函数开口朝下时,函数取得最大值,该最大值为定点的纵坐标。
三、二次函数的像像是指函数关系中的值域,也即函数的输出值所构成的集合。
对于二次函数,其像的范围由定点的纵坐标向上或向下延伸而来,取决于函数的开口方向。
若二次函数开口朝上,则像的范围为定点纵坐标及以上的一切实数;若二次函数开口朝下,则像的范围为定点纵坐标及以下的一切实数。
二次函数知识要点
![二次函数知识要点](https://img.taocdn.com/s3/m/d565f4ba6529647d2728529b.png)
一、研究函数的图象和性质:二次函数的图象是抛物线。
(1)研究抛物线的图象特点主要包括:开口方向、顶点坐标、对称轴.(2)研究抛物线的图象性质主要包括:增减性以及最大(小) 值.1、二次函数y=ax²的图象及性质:2、二次函数y=ax²+k的图象及性质:抛物线y=ax²+k是由顶点在原点的抛物线y=ax²向上(下)平移个单位得到的.3、二次函数y=a(x-h)²的图象及性质:抛物线y=a(x—h)2是由顶点在原点的抛物线y=ax²向右(左)平移个单位得到的.4、二次函数y=a(x-h)²+k 的图象及性质:抛物线y=a(x—h)2+k是由顶点在原点的抛物线y=ax²先向上(下)平移个单位.再向右(左)平移个单位得到的.当k>0时,向平移;当k<0时,向平移.当h>0时,二次函数知识点归纳5.二次函数y=ax²+bx+c(a≠0)的图象及性质:条件图象特点性质开口对称轴顶点增减性最大(小)值a>0a<0二、配方法的步骤:(1)提取a(每一项除以a);(2)在提取a后的括号内加上一次项系数绝对值一半的平方再减去它;(3)配方;(4)整理形式y=a(x-h)²+k.三、有关抛物线与坐标轴交点的问题:1.求抛物线y=ax²+bx+c与y轴的交点:把x=0代入求y,得(0,c);2.求抛物线y=ax²+bx+c与x轴的交点:把y=0代入求x.交点个数由一元二次方程ax²+bx+c=0的根决定,而方程ax²+bx+c=0的根由△(即b²-4ac )决定.分三种情况:①当△>0时,方程ax²+bx+c=0有两个不相等的实数解x1,x2,此时抛物线y=ax²+bx+c与x轴有两个不同的交点(x1,0)(x2,0),②当△=0时,方程ax²+bx+c=0有两个相等的实数解x1=x2,此时抛物线y=ax²+bx+c与x轴只有一个交点(即顶点在x轴上);③当△<0时,方程ax²+bx+c=0没有实数解,此时抛物线y=ax²+bx+c与x轴无交点。
二次函数的性质知识点总结
![二次函数的性质知识点总结](https://img.taocdn.com/s3/m/81a73d12b5daa58da0116c175f0e7cd184251890.png)
二次函数的性质知识点总结二次函数是高中数学中重要的概念之一,它在各个领域都有广泛的应用。
了解二次函数的性质是理解和解决相关问题的关键。
本文将对二次函数的性质进行详细总结,包括定义、图像特征、导数、极值点、零点和符号规律等方面的知识点。
一、二次函数的定义二次函数是指以自变量的平方作为最高次幂的一类函数。
通常的形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
二、二次函数的图像特征1. 开口方向:二次函数的图像是一个拱形,其开口方向取决于二次系数a的正负性。
如果a > 0,则图像开口向上;如果a < 0,则图像开口向下。
2. 对称轴:二次函数的图像关于对称轴对称。
对称轴的方程为x = -b / (2a)。
3. 零点:二次函数的零点是函数对应的方程f(x) = 0的解。
二次函数的零点可能有0个、1个或2个。
4. 极值点:如果二次函数的开口向上,那么它的最低点为最小值点;如果二次函数的开口向下,那么它的最高点为最大值点。
5. 单调性:二次函数在对称轴两侧有不同的单调性。
三、二次函数的导数对于二次函数f(x) = ax² + bx + c,其导数函数为f'(x) = 2ax + b。
导数函数的图像表示了原二次函数的斜率变化情况。
四、二次函数的极值点1. 极值点的存在性:二次函数存在极值点,当且仅当a ≠ 0。
当a > 0时,函数的最小值位于极值点上;当a < 0时,函数的最大值位于极值点上。
2. 极值点的横坐标:极值点的横坐标可以通过对称轴的方程得到,即x = -b / (2a)。
3. 极值点的纵坐标:将极值点的横坐标带入原函数得到对应的纵坐标。
五、二次函数的零点1. 零点的判定:二次函数的零点即为使函数值为零的自变量取值。
可以通过解二次方程ax² + bx + c = 0来求得零点。
2. 零点的个数:二次函数的零点个数可能为0个、1个或2个,取决于二次方程的判别式Δ = b² - 4ac的正负性。
二次函数图像与性质总结
![二次函数图像与性质总结](https://img.taocdn.com/s3/m/479d6966cc175527072208c0.png)
二次函数图像与性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a-=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.。
二次函数的性质及其图象
![二次函数的性质及其图象](https://img.taocdn.com/s3/m/bb893662effdc8d376eeaeaad1f34693dbef1052.png)
象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题
得
4a 2b 4 36a 6b 0
,解得
a
1 2
;
b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<
二次函数图像与性质完整归纳
![二次函数图像与性质完整归纳](https://img.taocdn.com/s3/m/d096d00e998fcc22bdd10d9d.png)
二次函数图像与性质完整归纳二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2.2y ax c=+的性质:上加下减。
a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()00,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a的符号 开口方向 顶点坐标对称轴性质3.()2y a x h =-的性质:左加右减。
a > 向上()0c ,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()0h ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.a < 向下()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.4.()2y a x h k=-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()h k ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .a < 向下()h k ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴cbx axy ++=2沿y 轴平移:向上(下)平移m 个单位,cbx ax y ++=2变成mc bx ax y +++=2(或mc bx axy -++=2) ⑵cbx axy ++=2沿轴平移:向左(右)平移m 个单位,cbx ax y ++=2变成cm x b m x a y ++++=)()(2(或cm x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y axbx c=++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y axbx c=++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴a b x 2-=在y 轴左边则>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=++关于x轴对称后,得到的解析式是y ax bx c2=---;y ax bx c()2y a x h k=-+关于x轴对称后,得到的解析式是()2=---;y a x h k2. 关于y轴对称2=++关于y轴对称后,得到的解析式是y ax bx c2y ax bx c=-+;()2=-+关于y轴对称后,得到的解析式是y a x h k()2=++;y a x h k3. 关于原点对称2=++关于原点对称后,得到的解析式是y ax bx c2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by axbx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:x …-7 -6-5-4-3-2 -1…y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x +2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2y (2)50 23--2 23- 0 25…【例2】求作函数342+--=x xy 的图象。
二次函数的图象与性质
![二次函数的图象与性质](https://img.taocdn.com/s3/m/e47142246bd97f192279e9b2.png)
y2;④-35<a<-25.其中正确结论有( D )
A.1 个
B.2 个
C.3 个
D.4 个
第 25 页
重难点3 二次函数解析式的确定 重点
• 例3 (2018·曲靖改编)已知二次函数的图象经
过点(0,3),(-3,0),(2,-5),求二次函数的
☞
解析式.
思路点拨
设出二次函数的解析式y=ax2+bx+c,直接用待定系数求 解即可.
最值
2ba时,y 有最小值,最小值 2ba时,y 有最大值,最大值
为4ac4-a b2
为4ac4-a b2
在对称轴左侧 当 x<-2ba时,y 随 x 的增 当 x<-2ba时,y 随 x 的增
增减性
大而③___减__小_____
大而④___增__大_____
在对称轴右侧 当 x>-2ba时,y 随 x 的增 当 x>-2ba时,y 随 x 的增
大而⑤___增__大_____
大而⑥__减__小______
第5页
知识点三 二次函数的图象与字母系数a,b,c的关系
字母或代数式 符号
图象的特征
a
a>0
开口向①___上_____ |a|越大,开口越③___小_____
a<0
开口向②___下_____
b=0 对称轴为④_____y___轴
b
ab>0(b 与 a 同号) 对称轴在 y 轴⑤__左______侧
第7页
字母或代数式 符号
图象的特征
当 x=1 时,y=⑬_____a_+__b_+__c_____ 特殊 当 x=-1 时,y=⑭____a_-__b_+__c______
(完整版)二次函数图象和性质知识点总结
![(完整版)二次函数图象和性质知识点总结](https://img.taocdn.com/s3/m/3212ccc1f7ec4afe05a1df61.png)
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 轴的交点,与 y 轴的交点 .
解 1. 一般式: y ax2 bx c 2. 顶点式: y a (x h) 2 k 3. 两根式: y a( x x1)( x x2 ) 析
2
式 2.平移⑴ 将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h,k ;在原有函数的 的 表 基础上 “h 值正右移,负左移; k 值正上移,负下移 ”.概括成八个字“左加右减,上加下减”
y a(x m) 2 b( x m) c (或 y a( x m) 2 b( x m) c )
当x
y 随 x 的增大而增大; x 0 时, y 有最大值 0
b 时, y 随 x 的增大而减小; 2a b 时, y 随 x 的增大而增大 2a b 时, y 随 x 的增大而增大; 2a
向下
当x
b 时, y 随 x 的增大而减小
2a
图 利用配方法将二次函数 y ax 2 bx c 化为顶点式 y a( x h)2 k ,确定其开口方向、对称轴及顶
二次函数图象及性质知识总结
二次函数 概念
一般地,形如 y ax2 bx c ( a,b ,c 是常数, a 0 )的函数,叫做二次函数。 定义域是全体实数,图像是抛物线
解析式
b﹑ c 为 0 时 y ax2
b 为 0 时 y ax2 c b﹑ c 不为 0 时 y ax2 bx c
a 0 开口 a 0 开口 对称轴
向上. 向下 y轴
顶点坐标 图
0 ,0
向上 向下 y轴
0 ,c
向上 向下
b x
2a
b 4ac b 2 ,
2a 4a
a 0 时 y X=0. 时
有最小值
y 最小值等于 0
X=0, 时 Y 最小值等于 c
当x
b 时。 y 有最小值 4ac b2 .
2a
4a
a 0 时 y X=0. 时
像 有最大值
y 最大值等于 0
X=0, 时 Y 最大值等于 c
当x
b 时, y 有最大值 4ac b2 .
2a
4a
a 0时 开口 的 向上 性 质 a 0时 开口
x 0 时, y 随 x 的增大而增大; x 0 时,
当x
y 随 x 的增大而减小; x 0 时,y 有最小值 0 .
当x
x 0 两侧,左右对称地描点画图
. 一般我们选取的五点为:
画
顶点、与 y 轴的交点 0 ,c 、以及 0,c 关于对称轴对称的点 2h ,c 、
法
与 x 轴的交点 x1 ,0 , x2 ,0 (若与 x 轴没有交点,则取两组关于对称轴对称的点)
.
画草图时应抓住以下几点:开口方向,对称轴,顶点,与
示 ① y ax 2 bx c 沿 y 轴平移 :向上(下)平移 m 个单位, y ax 2 bx c 变成
及
图 y ax 2 bx c m (或 y ax 2 bx c m )
像
平
移 ② y ax 2 bx c 沿 轴 平 移 : 向 左 ( 右 ) 平 移 m 个 单 位 , y ax2 bx c 变 成