菱形性质判定PPT课件

合集下载

菱形的性质(共22张PPT)

菱形的性质(共22张PPT)
18.2.2.1菱形的性质
理解菱形的定义,理解菱形与平行四边形的关系。
探究并理解菱形的性质,会运用菱形的性质解决问题。
经历菱形性质的探索过程,体会观察、类比、猜想、证明等数学方法。
探究菱形的性质与运用。
重点
菱形性质的综合运用。
难点
请在这里输入文字信息请在这里输入文字信息请在这里输入文字信息请在这里输入文字信息
证明:(1)∵四边形ABCD是菱形, ∴AB = CD,AD = BC(菱形的对边相等). 又∵AB=AD; ∴AB = BC = CD =AD.
性质1:菱形的四条边都相等。
证明菱形的性质
D
B
C
A
O
性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。
课后作业
完成练习册本课时的习题。
谢谢观看
同学们再见!
授课老师:
时间:2024年9月1日
同学们再见!
授课老师:
时间:2024年9月1日
问题1:我们已经学习了特殊的平行四边形--矩形,它是从平行四边形哪个方面特殊化进行研究的?
问题2:平行四边形和矩形的性质有哪些?
研究内容
平行四边形
矩形


对角线
问题3:平行四边形的角特殊化得到特殊的平行四边形--矩形,平行四边形的边特殊化,我们得到的特殊平行四边形是什么呢?
菱形的定义:有一组邻边相等的平行四边形叫做菱形。
(2)证明:∵AB = AD, ∴△ABD是等腰三角形. 又∵四边形ABCD是菱形, ∴OB = OD . (菱形的对角线互相平分) 在等腰三角形ABD中, ∵OB = OD, ∴AO⊥BD,AO平分∠BAD, 即AC⊥BD,∠DAC=∠BAC. 同理可证∠DCA=∠BCA, ∠ADB=∠CDB,∠ABD=∠CBD.

1.菱形的性质与判定第1课时菱形的性质PPT课件(北师大版)

1.菱形的性质与判定第1课时菱形的性质PPT课件(北师大版)

新知导航
2.如图,菱形ABCD的边长为4 cm,对角线AC,BD 交于O,∠BAD=60°.求对角线AC,BD的长.
解:∵四边形ABCD是菱形, ∴AB=AD,∵∠BAD=60°, ∴△ABD是等边三角形, ∴BD=AB=4 cm ∴BO=2 cm,∴AO=2 3 cm,∴AC=4 3 cm
第1课时 菱形的性质
第1课时 菱形的性质
新知导航
知识点3:对角线平分对角
【例3】如图,菱形ABCD中,O是对角线AC上一点,
连接OB,OD,求证:OB=OD.
【例3】证明:∵四边形ABCD是菱形,
∴AD=AB,∠DAO=∠BAO AD=AB
在△ADO和△ABO中, ∠DAO=∠BAO , AO=AO
∴△ADO≌△ABO(SAS),∴OB=OD.
第1课时 菱形的性质
新知导航
(一)基础呈现 菱形的定义:有一组邻边 相等 的 平行四边形 叫做 菱形. 菱形的性质 (1)菱形具有平行四边形的所有性质; (2)菱形不同于一般平行四边形的性质: ①四条边都 相等 ; ②两条对角线 垂直平分 ,并且每条对角线平分对角. ③菱形是轴对称图形,有 2 条对称轴.
(2)平行四边形的对角
相等
.
(3)平行四边形的对角线 互相平分 .
第1课时 菱形的性质
知识回顾
几何语言 ∵四边形ABCD是平行四边形 ∴(边)__如__A__B_=__C_D_________________________; (角)____∠__A__=__∠__C_________________________; (对角线)__O_A__=__O_C_,__O__B_=__O_D__等______________.
第1课时 菱形的性质

菱形的判定公开课ppt课件

菱形的判定公开课ppt课件

BDC
∵ AD是△ABC的角平分线 ∴ ∠1=∠2
∴ ∠1=∠3
∴AE=DE∴ □AEDF源自菱形返回1、这节课你学到了些什么知识? 2、你有什么收获?
(1)菱形的判定方法有哪些?
有一组邻边相等的平行四边形叫做菱形.(定义) 对角线互相垂直的平行四边形是菱形. (对角线互相垂直平分的四边形是菱形.)
∴ ABCD是菱形
判定定理2:对角线互相垂直的平行四边形是菱形.
判定定理2:对角线互相垂直的平行四边形是菱形.
1.对角线互相垂直的四边形一定是菱形吗?为什么?
D
A
C
答:不一定。如图A

C
B
B
D
2.通过问题1,我们在使用菱形判定定理2时,需 要注意哪些事项?
答:要注意两个条件,(1)是一个平行四边 形;(2)两条对角线互相垂直。
四边形EFGH,求证:四边形EFGHA是菱形。E
D
证明:连接AC、BD
∵四边形ABCD是矩形 F
H
∴AC=BD
B
G
∵点E、F、G、H为各边中点
C
∴ EF GH 1 BD EH GF 1 AC
2
2
∴EF=FG=GH=HE
∴四边形EFGH是菱形
为什么丝带重叠的部 分是菱形?你能证明 吗?请把证明过程写 在草稿纸上。
四条边相等的四边形是菱形.
谢谢指导
课后作业:课本60页第6题,61页第10题。
你能证明这 个猜想吗?
猜想: 对角线互相垂直的平行四边形是菱形.
猜想:对角线互相垂直的平行四边形是菱形.
已知:在 ABCD中,AC ⊥ BD
A
求证: ABCD是菱形
B

菱形及其性质PPT课件(北师大版)

菱形及其性质PPT课件(北师大版)

感悟新知
知识点 1 菱形的定义
知1-讲
定义:有一组邻边相等的平行四边形叫做菱形。
特别提醒: 菱形必须满足两个条件:一是平行四边形;二是一 组邻边相等。二者必须同时具备,缺一不可。 菱形的定义既是菱形的基本性质,也是菱形的基本 判定方法.
感悟新知
例例11:如图1-1-1,在△ ABC中,CD平分∠ ACB交 知1-练
感悟新知
知3-练
例例33:如图1-1-3,在菱形ABCD 中,对角线AC 与BD 相交于点O,BD=12 cm,AC=6 cm。求菱形的周长。
解题秘方:紧扣菱形边的性质、对角线的性质进行解答。
解法提醒: 菱形的两条对角线将菱形分成四个全等的
直角三角形,我们通常将菱形问题中求相关线 段的长转化为求直角三角形中相关线段的长, 再利用勾股定理来计算.
第一章 特殊平行四边形
1.1 菱形的性质与判定
第1课时 菱形及其性质
学习目标
1 课时讲授 2 课时流程
菱形的定义 菱形的判定 菱形对角线的性质
逐点 导讲练
课堂 小结
作业 提升
课时导入
下面几幅图片中都含有一些平行四边形.视察这些平 行四边形,你能发现它们有什么样的共同特征?
复习提问 引出问题
感悟新知
解:∵四边形ABCD 是菱形, ∴ AC⊥BD,AO= 12AC,BO= 12BD. ∵ AC=6 cm,BD=12 cm, ∴ AO=3 cm,BO=6 cm. 在Rt △ ABO 中,由勾股定理 得AB= AO2+BO2 = 32+62 =35 (cm), ∴菱形的周长=4AB=4×35 =125 (cm).
AB于点D,DE∥AC交BC于点E,DF∥BC 交AC 于点

菱形性质与判定课件ppt

菱形性质与判定课件ppt

面积计算
菱形面积的计算公式为
面积 = (对角线1 × 对角线2) / 2。由于菱形的对角线互相垂直且平分,因此可以使用此公式来计算面积。
另一种计算菱形面积的方法是
面积 = 底 × 高。在这里,底是菱形的一条边,高是从这条边到对角顶点的垂直距离。
周长计算
01
菱形的周长计算公式为:周长 = 4 × 边长。由于菱形的四条边都相等, 因此可以使用此公式来计算周长。
建筑学中的应用
建筑设计
菱形结构在建筑设计中常被用作装饰元素,如菱形窗格、菱形图案的墙面等,增加建筑物的美感和独特性。
空间划分
菱形地砖、菱形玻璃等可以用于室内空间划分,创造出独特视觉效果,同时起到引导人流、划分功能区域的作用。
工程学中的应用
结构工程
菱形结构具有较好的稳定性和承重能力,在桥梁、道路、隧道等工程建设中,菱形结构 常被用于增强结构的稳定性和承载能力。
邻边互相垂直且相等判定
邻边互相垂直
菱形的任意一组邻边互相垂直,因此 可以通过测量任意一组邻边的夹角是 否为90度来判断一个四边形是否为菱 形。
邻边长度相等
除了互相垂直外,菱形的任意一组邻 边的长度还相等。这也是菱形的一个 基本性质。
03
菱形与其他四边形的比较
与矩形的关系
01
02
03
边的性质
菱形的对边相等,与矩形 相同;但菱形的邻边也相 等,这是矩形不具备的性 质。
角度关系
两组对角相等,即∠A=∠C,∠B=∠D;邻角互补,即∠A+∠B=180°, ∠B+∠C=180°。
对角线性质
对角线互相垂直: AC⊥BD。
对角线长度关系:对 角线长度不一定相等 ,但满足 AC²+BD²=4AB²。

《菱形的性质》PPT课件

《菱形的性质》PPT课件
思考 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变 边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?
平行四边形
邻边相等
菱形
定义:
有一组邻边相等的平行四边形是菱形
菱形是特殊的平行四边形, 平行四边形不一定是菱形
如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片? 根据上述方法动手试试吧!
平行四边形的性质又是从哪几方面来探究的呢?
边 角 对角线
对称性 面积
两组对边平行且相等 对角相等;邻角互补
1.每一条对角线 不平分 一组对角 2.两条对角线互相平分 中心对称图形:对称中心是两条对角线的交点
底×高
情景引入
欣赏下面图片,图片中的图形是你熟悉的吗?它们和 平行四边形有哪些不同之处?
讲授新课
那么线段CD的长是( A )
A.4
B.8
C.12
D.16
6.如图1-1-3,P是菱形ABCD的对角线BD上一点,PE⊥AB于点
E,PE=5 cm,则点P到BC的距离是 5cm .
7.菱形的两条对角线长分别是10和24,则此菱形的周长是( D )
A.15
B.20
C.36
D.52
8.菱形的两条对角线长分别是6和8,则此菱形的面积是( B )
归纳总结
有一组邻边相等的平行四边形是菱形ቤተ መጻሕፍቲ ባይዱ
边 角 对角线
对称性 面积
两组对边平行且相等 对角相等;邻角互补
1.每一条对角线 不平分 一组对角 2.两条对角线互相平分 中心对称图形:对称中心是两条对角线的交点
底×高
在自己剪出的菱形上画出两条折痕,折叠手中的图形(如图), 并回答以下问题:

1.1.2菱形的判定 课件(共20张PPT)

1.1.2菱形的判定 课件(共20张PPT)

教师讲评
③四边相等的四边形是菱形.
几何语言:如图,∵AB=BC=CD=DA,∴四边形ABCD是菱形.
注意点:①②两种方法都是在平行四边形的基础上外加一个条
件来判定菱形.③是在四边形的基础上加上四条边相等来判定菱
形.
典例精讲
【题型一】菱形的判定简单应用
例1.下列条件中能判断四边形是菱形的是( )
如图所示,绿丝带重叠部分形成的图形是一个漂
亮的菱形.你知道怎样判断它是一个菱形吗?
为了迎接第33届牡丹花会,公园里的园艺师建造了一个如图所示
的平行四边形花坛ABCD,经测量花坛的边长AB=20米,沿着花
坛的两条对角线修建的两条小路AC和BD交于点O,AC=24米,
BD=32米,小亮说这是个菱形花坛。他的说法正确吗?为什么?
列结论一定成立的是( )
A. AD=CD
B.四边形 ABCD面积不变
C. AC=BD
D.四边形 ABCD周长不变
典例精讲 【题型二】利用菱形的性质与判定求长度、角度或面积
例4:如图,在平行四边形ABCD中,AC与BD交于点O,点E是AB边
上的中点,连接OE,OE=2.5,AC=8,BD=6.有下列结论:①△ABD是
弧,得到两弧的交点C,连接BC,CD,就得到了一个四边形,如图.
(1)猜一猜,这是什么四边形?
(菱形)
(2)根据画图,你还有其他方法能判定此四边形的形状吗?
小组合作试着进行证明. (四边相等的四边形是菱形)
证明:因为AB=AD,AB=BC,所以AD=BC . 又因为
AB=CD,所以四边形ABCD为平行四边形.




∴OA=OC= AC=3,OD=OB= BD=4.

1.菱形的性质与判定第2课时 菱形的判定PPT课件(北师大版)

1.菱形的性质与判定第2课时 菱形的判定PPT课件(北师大版)

第2课时 菱形的判定
新知导航
变式训练 1.如图,CE是△ABC外角∠ACD的平分线,AF∥CD 交CE于点F,FG∥AC交CD于点G. 求证:四边形ACGF是菱形. 证明:∵AF∥CD,FG∥AC, ∴四边形ACGF是平行四边形,∠2=∠3, ∵CE平分∠ACD,∴∠1=∠2, ∴∠1=∠3,∴AC=AF, ∴四边形ACGF是菱形.

∠EOD=∠FOB
∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,
∴四边形EBFD是平行四边形, ∵EF⊥BD,∴四边形BFDE为菱形.
第2课时 菱形的判定
新知导航
3.将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE
(如图所示),点D与点F分别是斜边AB,AE的中点,连接
第2课时 菱形的判定
轻松过招
6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE 垂直平分BC,垂足为D,交AB于点E. 点F在DE的延长线上,且AF=CE. 求证:四边形ACEF是菱形. 证明:∵AC⊥BC,DE垂直平分BC, ∴DE∥AC∴点E是BA中点,∴在Rt△ACB中,CE=AE 又∵∠BAC=60°,∴△ACE是等边三角形 ∴AC=CE=AE,又∵AF=CE,∴AF=AE 又∵DF∥AC,∴∠FEA=∠CAE=60° ∴△AEF为等边三角形,∴EF=AF. ∴CE=AC=AF=EF,∴四边形ACEF是菱形
第2课时 菱形的判定
轻松件是( B )
A. AC=AD B.BA=BC C.∠ABC=90° D.AC=BD
第2课时 菱形的判定
轻松过招
2.(202X·宁夏)如1题图,四边形ABCD的两条对
角线相交于点O,且互相平分.添加下列条件,仍不

《菱形的性质》课件

《菱形的性质》课件
服更具特色。
其他领域的应用
总结词
除了建筑和服装设计,菱形在艺术、家 居、包装等领域也有广泛的应用。
VS
详细描述
在艺术领域,菱形常被用作创作元素,如 绘画、雕塑等。在家居设计中,菱形图案 的壁纸、地毯等也常被使用,能够营造出 温馨、舒适的氛围。在包装设计中,菱形 形状的包装盒、标签等也十分常见,能够 吸引消费者的注意。
菱形只有一组邻边相 等,而矩形两组邻边 分别相等。
菱形的对角线互相垂 直且平分对方,而矩 形的对角线相等且互 相平分。
THANKS 感谢观看
《菱形的性质》ppt课件
• 菱形的定义与性质 • 菱形的判定方法 • 菱形面积的计算 • 菱形在生活中的应用 • 菱形与平行四边形、矩形的联系
与区别
01 菱形的定义与性质
菱形的定义
总结词
明确菱形的定义
详细描述
菱形是一种四边形,其中两组相对边相等且平行。
菱形的性质
总结词:列举菱形的性质
1. 菱形的两组相对边相等 。
05 菱形与平行四边形、矩形的联系与区别
联系
菱形、平行四边形和矩Hale Waihona Puke 都属于 四边形,具有四边形的共同性质

菱形是特殊的平行四边形,具有 平行四边形的对边平行且相等的
性质。
矩形是特殊的平行四边形,具有 平行四边形的两组对边平行且相
等的性质。
区别
菱形的两组对边平行 但不一定相等,而平 行四边形的两组对边 分别相等。
详细描述
在建筑设计中,菱形图案的运用可以增加建筑的视觉效果, 使建筑看起来更加独特和美观。同时,在建筑的结构中,菱 形结构也经常被使用,因为它的稳定性强,能够承受较大的 压力。
服装设计中的应用

1.1 课时2 菱形的判定 课件 (共16张PPT) 数学北师版九年级上册

1.1 课时2 菱形的判定 课件 (共16张PPT) 数学北师版九年级上册
2
A
C
B
E
D
F
1
练1.如图,在△ABC 中,AD 是角平分线,点 E、F 分别在 AB、 AD 上,且 AE = AC,EF = ED. 以CD = ED = CF = EF,所以四边形 ABCD 是菱形.
证明:由平移变换的性质得 CF = AD = 10cm,DF=AC.因为∠B = 90°,AB = 6cm,BC = 8cm,所以AC = DF = AD = CF = 10cm,所以四边形 ACFD 是菱形.
A
B
C
D
E
F
O
1
2
练2.如图,在□ABCD 中,对角线 AC 的垂直平分线分别与 AD、AC 、BC相交于点 E、O、F,求证:四边形 AFCE 是菱形.
又∠AOE =∠COF,所以△AOE ≌ △COF,所以EO = FO.所以四边形 AFCE 是平行四边形.又因为EF⊥AC,所以 四边形 AFCE 是菱形.
练2.如图,在△ABC 中,∠B = 90°,AB = 6cm,BC = 8cm.将 △ABC 沿射线 BC 方向平移 10cm,得到 △DEF,A,B,C 的对应点分别是 D,E,F,连接 AD. 求证:四边形 ACFD 是菱形.
有一组邻边相等的平行四边形是菱形.
菱形的判定
同学们再见!
授课老师:
探究:如图所示,小唯唯在一长一短两根木棍的中点处固定一个小钉,以小木棍作为四边形的对角线,四周围上一根橡皮筋,转动小木棍,探究什么时候橡皮筋所构成的四边形为菱形.
已知:如图,四边形 ABCD 是平行四边形,对角线 AC 与 BD 相交于点 O ,AC⊥BD.求证:□ ABCD 是菱形.
证明:因为 四边形 ABCD 是平行四边形,所以OA = OC.因为 AC⊥BD,所以 BD 是线段 AC 的垂直平分线.所以 BA = BC.所以四边形 ABCD 是菱形(菱形的定义).

菱形的性质与判定ppt课件

菱形的性质与判定ppt课件

几何语言:
∵ ∴
四AB边=B形CA=BCCDD=是DA菱,形
AC⊥BD,
∠1=∠2=∠3=∠4 ,
∠5=∠6=∠7=∠8
探究二:菱形的性质 证明菱形的性质
D
已知:如图,四边形ABCD是菱形,对角线AC
与BD相交于点O.
A
1 2
56 O
3 4
C
求证:(1) AB=BC=CD=AD;
78
(2) AC⊥BD.
(4)全等三角形有哪些?
(5)对角线有什么特点?
D
O C
B
D
归纳小结
56
①2. 菱菱形形的是性特质殊:的平行四边形,具有平行四边形所有A性质12
O
3 4
C
78
②菱形是的四条边都相等
B
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形既是轴对称图形,也是中心对称图形,对称轴有两条, 是对角线所在的直线.
B
(3) ∠1=∠2=∠3=∠4 ,∠5=∠6=∠7=∠8
证明:(1)∵四边形ABCD是菱形 ∴AB = CD, AD= BC (菱形的对边相等) ∵AB=AD ∴AB=BC=CD=AD
探究二:菱形的性质
D
已知:如图,四边形ABCD是菱形,对角线AC
与BD相交于点O.
A
1 2
56 O
3 4
C
求证:(1) AB=BC=CD=AD;
78
(2) AC⊥BD.
B
(3) ∠1=∠2=∠3=∠4 ,∠5=∠6=∠7=∠8 ∵在等腰三角形ABD中,OB=OD
证明:(2) ∵AB=AD ∴△ABD是等腰三角形 ∵四边形ABCD是菱形

《菱形的性质》课件

《菱形的性质》课件
源自菱形是四边相等 的平行四边形
四边相等的平行 四边形是菱形
菱形的对角线互 相垂直且平分
菱形的对角线相 等且互相垂直
根据邻边垂直判定菱形
菱形定义:四边相等的四边形 邻边垂直:对角线互相垂直的四边形 判定方法:如果四边形的对角线互相垂直,那么它就是菱形 证明:利用三角形全等和相似性进行证明
建筑中的应用
菱形对角线互相垂直平分 菱形对角线互相平分 菱形对角线长度相等 菱形对角线长度的平方和等于边长的平方和
菱形对角线的角度性质
菱形对角线互相垂直,且平分 菱形对角线相交于菱形中心,且平分 菱形对角线长度相等,且平分 菱形对角线夹角为90度,且平分
菱形对角线的垂直平分性质
菱形对角线互 相垂直平分
菱形的周长等于 其边长的4倍
菱形的边长等于 其对角线的一半
菱形的对角线互 相垂直且平分
菱形的面积等于 其对角线乘积的 一半
特殊菱形的面积和周长计算
特殊菱形:等 边菱形、直角 菱形、等腰菱
形等
面积计算:等边 菱形面积=边长 ^2/2,直角菱形 面积=对角线乘 积/2,等腰菱形 面积=底边乘以

周长计算:等边 菱形周长=4*边 长,直角菱形周 长=2*对角线, 等腰菱形周长 =2*底边+2*高
菱形的边长性质
菱形具有四条边,且四条边长 度相等
菱形的对角线互相垂直,且平 分
菱形的对角线长度相等,且等 于边长的2倍
菱形的面积等于对角线乘积的 一半
菱形的角度性质
菱形是四边相等的四边形 菱形的对角线互相垂直且平分 菱形的四个角都是直角 菱形的对角线互相平分且相等
菱形对角线的长度性质
特殊菱形的性 质:对称性、 稳定性、对角 线互相垂直等

菱形的性质与判定分层ppt课件

菱形的性质与判定分层ppt课件

试一试
对角线互相垂直的平行四边形是菱形吗?
已知:如图1-3,在□ABCD中,对角线AC与
BD交于点O,AC⊥BD.
求证: □ABCD是菱形
证明:
定理
对角线互相垂直的平行四边形是菱形 符号语言:
∵四边形ABCD是平行四边形
AC⊥BD ∴四边形ABCD是菱形
议一议
已知线段AC,你能用尺规作图的方法做一 个菱形ABCD,使AC为菱形的一条对角线吗?
探索新知
根据菱形的定义,邻边相等的平行四边形是菱形. 除此之外,你认为还有什么条件可以判断一个平行四 边形是菱形?先想一想,再与同伴交流.
小明的想法
平行四边形的不少性质定理与判定定理都是互逆 命题.受此启发,我猜想:
四边相等的四边形是菱形,对角线垂直的平行四边 形是菱形.
你是怎么想的?你认为小明的想法如何?与同伴交 流一下.
第一章 特殊平行四边形
1.1.2菱形的性质与判定
教学目标:1.探索证明菱形的两种判定方法,掌握证明的基本要求、 方法及思路.
2.能利用菱形的判定方法进行证明.
复习旧知
1.菱形的定义?性质?
2.如图,已知四边形ABCD是一个平行四边形,则只需
补充
就可以判定它是一个菱形.
3.如图,已知菱形ABCD的对角线AC、BD相交于点O, 并且AC=6cm,BD=8cm,则菱形ABCD的周长为_____ 怎么做的?你认为小刚的作法正确吗?与 同伴交流.
请尝试证明下面的定理
四条边相等的四边形是菱形
已知:如图1-5,四边形ABCD中,AB=BC=CD=DA. 求证: 四边形ABCD是菱形 证明:
定理 四条边相等的四边形是菱形
符号语言:
∵AB=BC=CD=DA ∴四边形ABCD是菱形

1.1.3 菱形的性质与判定 课件

1.1.3 菱形的性质与判定 课件
=2 × △ABD的面积
1
1
=2 BD AE =2 10 12=120(cm2 )
2
2
思考:你还有其他的方法计算菱形的面积吗?
变式训练
如图所示,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,
AB=13,OA=5,OB=12.求菱形ABCD两对边的距离h.
解:在Rt△AOB中,AB=13,OA=5,OB=12,






于是∆ = ∙ = ∙ = × × =
所以,
S菱形ABCD=4S△AOB=4×30=120.
又因为菱形两组对边的距离相等,
所以,S菱形ABCD=AB·h=13h,
即,13h=120,得 =


典例精析
例:在任意四边形ABCD中,对角线AC⊥BD ,且AC=18,BD=10。问四边形
1.1.3 菱形的性质与判定
北师版九年级上册
教学目标
1.探究菱形面积的多种求法 ;
2.进一步掌握并巩固菱形的性质与判定的相关知识;
3.综合利用菱形的性质与判定解决问题.
复习旧知
菱形的相关知识有哪些?
菱形
定义
一组邻边相等的平行四边形叫做菱形
具有平行四边形的所有性质
性质
菱形的四条边都相等
对角线互相垂直且平分每一组对角
ABCD的面积.
A
解:∵四边形ABCD是菱形,
∴AC⊥BD,
∴S菱形ABCD=S△ABC +S△ADC


B


= AC·BO+ AC·DO

= AC(BO+DO)

菱形的性质与判定ppt课件

菱形的性质与判定ppt课件
四边形
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 对自己说我有哪些收获? ➢ 对同学有哪些温馨提示? ➢ 对老师说你还有哪些困惑?
1 个 定:有一组邻边相等的平行四边形叫菱形 义 2个公式 :S菱形=底×高
S菱形= 对角线乘积的一半
3 个 特 :特在“边、对角线、对称性” 性
巩固作业:课后习题和练习册
你敢挑战吗? 回去想一想
如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、 D两点的动点,F是CD上的动点,满足AE+CF=a。
O
C
2
4 1 1 AC • 1 BD B
22
2
S菱形ABCD
1 2
AC • BD
你有什么发现?
24
D
S菱形ABCD AB • DE
A
O
C
E B
S菱形ABCD
1 2
AC

BD
AB• DE 1 AC • BD 2
2、如图,菱形花坛ABCD的周长为80m, ∠ABC=60度,沿着菱形的对角线修建了 两条小路AC和BD,求两条小路的长和花 坛的面积(分别精确到0.01m和0.1m2 )
菱形性质判定
1.1.3特殊的平行四边形
1.1.3菱形
活动一:
边 平行四 边形的 性质:
对角线
平行四边形的对边平行; 平行四边形的对边相等;
平行四边形的对角线互相平分;

平行四边形的对角相等;
平行四边形的邻角互补;
矩形的性质
矩形的四个角都是直角 矩形的对角线相等
活动二:
在平行四边形中,如果内角大小保持不 变仅改变边的长度,能否得到一个特殊 的平行四边形?
还有什么方法吗?
探究一
用一长一短两根细木条,在它们的中点处 固定一个小钉,做成一个可以转动的十字,四周 围上一根橡皮筋,做成一个四边形.转动木条对角线互相垂直的 平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
已知:在 ABCD 中,AC ⊥ BD
A
求证: ABCD 是菱形
全等三角形有:Rt△DOA
Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
△ABD≌△BCD
△ABC≌△ACD
➢菱形的四条边相等
➢菱形的两条对角线互相垂直,
并且每一条对角线平分一组 对角。
➢菱形是轴对称图形, 也是中心对称图形
求证:菱形的四条边相等 菱形的两条对角线互相垂直, 并且每一条对角线平分一组对角。
D
O
A
C
B
(1)菱形具有平行四边形的一切性质;
(2)菱形的四条边都相等;
(3)菱形的两条对角线互相垂直, 并且每一条对角线平分一组对角;
活动四:做一做
1、菱形ABCD两条对角线BD、AC长分
别是6cm和8cm,求菱形的周长和面积。
分析: S菱形ABCD 4SAOB
D
4 1 OA • OB A
证明:不论E、F怎样移动,三角形BEF总是正三角形。
F D
C
E
A
B
想一想
同学们想一想,我们在学习平行四
边形的判定和矩形的判定时,我
们首先想到的第一种方法是什么?
那么类比着它们,菱形的第一A种 D 判定方法是什么?
根据定义得:
一组邻边相等的平行四边形是菱形.
在 ABCD中, AB AD
B
C
ABCD是菱形.
1 2
AC • BD
346.4m2
活动五:
1.菱形的定义:
是菱形
2.菱形的性质:①菱形的四条边

②菱形的对角线
,并且每一条对角
线一组 对角.
3.下列说法不正确的有 (填序号)
①菱形的对边平行且相等.②菱形的对角线互相平分
③菱形的对角线相等.④菱形的对角线互相垂直.
⑤菱形的一条对角线平分一组对角.⑥菱形的对角相
平行四边形 邻边相等 菱形
有一组邻边相等的平行四边形
有一组邻边相等 的平行四边形叫做菱形
A
∵四边形ABCD
是平行四边形
B
D
AB=BC
C
∴四边形ABCD
是菱形
感受生活
你能举出生活中你看到的菱形吗?
菱形就在我们身边
感受生活
三菱汽车标志欣赏
活动三:折一折 剪一剪
如何利用折纸、剪切的方法,既快又准 确地剪出一个菱形的纸片?
等.
4.菱形的面积公式:①

.
5.菱形既是
图形,又是
图形.
6.已知菱形的周长是12cm,那么它的
边长是__3_c_m__.
7.如下图:菱形ABCD中∠BAD=60
度,则∠ABD60=0 _______.
8、菱形的两条对角线长
D
分别为6cm和8cm,则 A
O
C
菱形的边长是C( )
A.10cm B.7cm C. 5cm D.4cm
A
B
O
C
解: 花坛ABCD是菱形
AC BD, ABO 1 ABC 1 600 300
2
2
在RtOAB中,AO 1 AB 1 20 10m
2
2
BO AB2 AO2 202 102 300m
花坛的两条小路长
AC 2 AO 20m
BD 2BO 34.64 花坛的面积
S菱形ABCD
B
9.菱形ABCD中,O是两条对角线的交 点,已知AB=5cm,AO=4cm,求 两对角线AC、BD的长。 D
解:∵四边形ABCD是A菱形
O
C
∴OA=OC,OB=OD
B
AC⊥BD
∴OB=3cm
∵Rt△AOB中OB2+OA2=A∴BB2D=2OB=6c AB=5cm,AO=4cm m
活动六: 畅所欲言
相等的线段A:B=CD=AD=BC
O
5 6
34
OA=OC OB=OD B
C
相等的角:∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
等腰三角形∠有1=:∠2△=A∠B3=C∠4△
∠5=∠6=∠7=∠8 DBC △ACD △ABD
直角三角形有:Rt△AOB Rt△BOC Rt△COD
他是这样做的:将一张长方形的纸 对折、再对折,然后沿图中的虚线剪下, 打开即可.你知道其中的道理吗?
画出菱形的两条折痕, 并通过折叠手中的图 形回答以下问题:
1、菱形是轴对称图形吗? 2、菱形有几条对称轴? 3、对称轴之间有什么关系?
4、你能看出图中哪些线段和角相等?
菱形ABCD中
A
12
D
7 8
已知:如图四边形ABCD是菱形
D
求证: (1)AB=BC=CD=
(2D)AAC⊥BD
A
O
C
AC平分∠DAB和
∠BD平CB分∠ADC和∠ABC 证明(1)∵四边形ABCD是菱
B
形∴DA=DC(菱形的定 ∴DB⊥AC,
义∵D) A=BC,AB=DC ∴AB=BC=DC=D (2A)在△DAC中,又
同D一B理)A平:C分平D∠分BA平∠DD分CA(∠BA三和B线C合; ∠DCB
相关文档
最新文档