七年级数学下-平方差完全平方公式专项练习题

合集下载

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。

)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。

)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。

)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。

)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。

)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。

)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。

)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。

)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。

)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。

)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。

)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。

)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。

解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。

2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。

七年级数学下册8.3《完全平方公式与平方差公式》练习题

七年级数学下册8.3《完全平方公式与平方差公式》练习题

2017-2018学年(新课标)沪科版七年级数学下册《完全平方公式与平方差公式》一、填空1、若a 2+b 2-2a+2b+2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a+3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4、要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________.5、(4a m+1-6a m )÷2a m -1=________.6、29×31×(302+1)=________.7、已知x 2-5x+1=0,则x 2+21x =________.8、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、选择9、.若x 2-x -m=(x -m )(x+1)且x ≠0,则m 等于( )A.-1B.0C.1D.210、(x+q )与(x+51)的积不含x 的一次项,猜测q 应是( ) A.5 B.51 C.-51 D.-5 11、下列四个算式:①4x 2y 4÷41xy=xy 3 ;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y=3x 5y④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m+2,其中正确的有( )A.0个B.1个C.2个D.3个12、设(x m -1y n+2)·(x 5m y -2)=x 5y 3,则m n 的值为( )A.1B.-1C.3D.-313、计算[(a 2-b 2)(a 2+b 2)]2等于( )A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814、已知(a+b )2=11,ab=2,则(a -b )2的值是( )A.11B.3C.5D.1915、若x 2-7xy+M 是一个完全平方式,那么M 是( ) A.27y 2 B.249y 2 C.449y 2 D.49y 216、若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )A.x n 、y n 一定是互为相反数B.(x1)n 、(y1)n 一定是互为相反数C.x2n、y2n一定是互为相反数D.x2n-1、-y2n-1一定相等三、综合17、计算(1)(a-2b+3c)2-(a+2b-3c)2;1b2)](-3a2b3);(2)[ab(3-b)-2a(b-2(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x+2y)(x-2y)+4(x-y)2-6x]÷6x.18、解方程x(9x-5)-(3x-1)(3x+1)=5.四、生活中的数学19、如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20、计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1) =(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.1.已知m 2+n 2-6m+10n+34=0,求m+n 的值.2.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值.3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值4.已知()5,3a b ab -==求2()a b +与223()a b +的值.5.已知6,4a b a b +=-=求ab 与22a b +的值.6.已知224,4a b a b +=+=求22a b 与2()a b -的值.7.已知(a+b)2=60,(a-b)2=80,求a 2+b 2及ab 的值.8.已知6,4a b ab +==,求22223a b a b ab ++的值.9.已知222450x y x y +--+=,求21(1)2x xy --的值. 10.已知16x x -=,求221x x+的值.11.已知012=-+a a ,求2007223++a a 的值.12.试说明不论x ,y 取何值,代数式226415x y x y ++-+的值总是正数.。

实用版平方差、完全平方公式专项练习题(精品)汇编

实用版平方差、完全平方公式专项练习题(精品)汇编

平方差与完全平方式一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。

2、即:(a+b)(a-b) = 相同符号项的平方 - 相反符号项的平方3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

3、能否运用平方差公式的判定①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)③有两数的平方差即:a2-b2 或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()caba-+(2)()()xyyx+-+(3)()()abxxab---33(4)()()nmnm+--2.判断:(1)()()22422baabba-=-+()(2)1211211212-=⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+xxx()(3)()()22933yxyxyx-=+--()(4)()()22422yxyxyx-=+---()(5)()()6322-=-+aaa()(6)()()933-=-+xyyx()3、计算:(1))4)(1()3)(3(+---+aaaa(2)22)1()1(--+xyxy(3))4)(12(3)32(2+--+aaa(4))3)(3(+---baba更多精品文档更多精品文档(5)22)3(x x -+ (6)22)(y x y +-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。

平方差公式和完全平方公式(习题及答案)

平方差公式和完全平方公式(习题及答案)

平⽅差公式和完全平⽅公式(习题及答案)平⽅差公式和完全平⽅公式(习题)例题⽰范例1:计算:23(1)(1)2(1)a a a -+---+.【操作步骤】(1)观察结构划部分:23(1)(1)2(1)a a a -+---+①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第⼀部分:a -和a -符号相同,是公式⾥的“a ”,1和-1符号相反,是公式⾥的“b ”,可以⽤平⽅差公式;第⼆部分:可以⽤完全平⽅公式,利⽤⼝诀得出答案.(3)每步推进⼀点点.【过程书写】解:原式2223()12(21)a a a ??=---++??223(1)242a a a =----2233242a a a =----245a a =--巩固练习1. 下列多项式乘法中,不能⽤平⽅差公式计算的是()A .()()x y y x ---+B .()()xy z xy z +-C .(2)(2)a b a b --+D .1122x y y x --- ??2. 下列各式⼀定成⽴的是()A .222(2)42x y x xy y -=-+B .22()()a b b a -=-C .2221124a b a ab b ??-=++D .222(2)4x y x y +=+3. 若2222(23)412x y x xy n y +=++,则n =__________.4. 若222()44ax y x xy y -=++,则a =________.5. 计算:①112233m n n m --- ??;②22()()()y x x y x y -++;③22(32)4x y y ---;④2()a b c +-;⑤296;⑥2112113111-?.6. 运⽤乘法公式计算:①2(2)(2)(2)x y x y x y -+-+;②22(1)2(24)a a a +--+;③(231)(231)x y x y +--+;④3()a b -;⑤222233m m +-- ? ?;⑥2210199-.思考⼩结1. 在利⽤平⽅差公式计算时要找准公式⾥⾯的a 和b ,我们把完全相同的“项”看作公式⾥的“_____”,只有符号不同的“项”看作公式⾥的“_____”,⽐如()()x y z x y z +---,_______是公式⾥的“a”,_______是公式⾥的“b ”;同样在利⽤完全平⽅公式的时候,如果底数⾸项前⾯有负号,要把底数转为它的______去处理,⽐如22()(_______)a b --=2. 根据两⼤公式填空:+(_______)+(_______)b )22(2【参考答案】巩固练习1. C2. B3. ±34. -25. ①22149n m - ②44x y -+ ③2912x xy +④222 222a ab b bc ac c ++--+ ⑤9 216⑥1 6. ①242xy y --②267a a -+- ③224961x y y -+- ④322333a a b ab b -+- ⑤83m ⑥400 思考⼩结1. a ,b ,(x -z ),y ,相反数,a +b2. 2ab ,2ab ,4ab。

平方差、完全平方公式专项练习

平方差、完全平方公式专项练习

平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007 200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

初中数学沪科版七年级下册-8.3-完全平方公式与平方差公式-同步分层作业(含解析)

初中数学沪科版七年级下册-8.3-完全平方公式与平方差公式-同步分层作业(含解析)

8.3 完全平方公式与平方差公式简记为:“首平方,尾平方, 积的 2 倍放中间”两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍.这两个公式叫做完全平方公式.公式特征:1. 积为二次三项式;2. 积中的两项为两数的平方;3. 另一项是两数积的 2 倍,且与原式中间的符号相同;4. 公式中的字母 a ,b 可以表示数、单项式和多项式.注意:1. 项数、符号、字母及其指数2. 不能直接应用公式进行计算的式子,可能需要先添括号,变形成符合公式的形式才行。

3. 弄清完全平方公式和平方差公式的区别(公式结构特点及结果)常用结论:a 2 +b 2 = (a + b)2 - 2ab = (a - b)2 + 2ab ,4ab = (a + b)2 - (a - b)2.平方差公式:(a + b)(a − b) = a 2 − b 2两数和与这两数差的积,等于它们的平方差.紧紧抓住“一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;不能直接应用公式的,要经过适当变形才可以应用基础过关练一、单选题1.已知非负实数,,a b c 满足24,0a b a b c +=-+<,则下列结论一定正确的是( )A .()2222a b a ab b +=++B C .()()224a b a b ab -=+-D 二、填空题11.如图,用四个长为a ,宽为b 的长方形大理石板不重叠地拼成一个大正方形拼花图案,正中间留下的空白区域恰好是一个小正方形,当拼成的这个大正方形的边长比中间小正方形的边长多6时,大正方形的面积+=12.已知x y13.化简:(x-14.定义:若三个正整数培优提升练三、解答题19.问题呈现:借助几何图形探究数量关系,是一种重要的解题策略,图1,图2是用边长分别为a,b的两个正方形和边长为a,b的两个长方形拼成的一个大正方形,利用图形可以推导出的乘法公式分别是图1________图2________;(用字母a,b表示)数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形积分别是1S 和2S .若AB m =,12S S S =+,则直接写出Rt ACF 的面积.(用(1)【知识生成】请用两种不同的方法表示图②中阴影部分的面积(直接用含方法一: ;方法二: ;(2)【得出结论】22(2)()23a b a b a ab b ++=++.(1)根据图(2)的面积关系可以解释的一个等式为______;(2)已知等式2()()()x p x q x p q x pq ++=+++,请你画出一个相应的几何图形加以解释.故选:C .8.C【分析】根据积的乘方、合并同类项、平方差公式、单项式的除法等知识,熟练掌握运算法则是解题的关键.【详解】解:A .()326-=-b b ,故选项错误,不符合题意;B .3332a a a +=,故选项错误,不符合题意;C .()()22224x y x y x y +-=-,故选项正确,符合题意;D .62422÷=a a a ,故选项错误,不符合题意.故选:C .9.D【分析】此题考查了完全平方式.利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:216x mx ++ 是完全平方式,8m ∴=±.故选:D .10.D【分析】本题主要考查了平方差公式在几何图形中的应用,分别表示出两幅图中阴影部分的面积,再关键两幅图阴影部分面积相等即可得到答案.【详解】解:左边一幅图阴影部分面积为22a b -,右边一幅图阴影部分面积为()()a b a b +-,∵两幅图阴影部分面积相等,∴()()22a b a b a b -=+-,故选:D .11.2【分析】本题考查用图象法验证完全平方公式,准确识图列出()22(4)a b b b a a +--=是解题关键.分别表示出每个长方形石板的面积和图中大、小正方形的面积,然后列出等量关系计算求解.【详解】解:每个长方形石板的面积为ab ,中间小正方形的边长为a b -,面积为2()a b -;大正方形的边长为a b +,面积为2()a b +,所以()22(4)a b b b a a +--=;当()()6460a b a b ab +--=⎧⎨=⎩时,解得53a b =⎧⎨=⎩,∴2a b -=,故答案为:2.12.22x y m n x y m n +=+⎧∴⎨-=-⎩或x y m n x y n m+=+⎧⎨-=-⎩解得x m y n =⎧⎨=⎩或x n y m=⎧⎨=⎩.故都有2006200620062006x y m n +=+.21.(1)2x xy +,6;(2)244 24m m -,.【分析】本题考查了整式乘法混合运算,求代数式的值.(1)分别用乘法公式及单项式乘多项式的法则展开,再合并同类项,最后代值求解即可;(2)用平方差公式展开再合并同类项,由已知得26m m -=,然后整体代入求值即可.【详解】解:(1)2()()()()x y x x y x y x y +-++-+222222x xy y x xy x y =++--+-2x xy =+,当2x =-,1y =-时,原式2(2)(2)(1)6=-+-⨯-=;(2)2(2)(2)(4)m n m n n m +-+-22244m n n m=-+-244m m =-,由260m m --=,得26m m -=,原式24()4624m m =-=⨯=.22.(1)()24m n mn +-;()2m n -(2)()()224m n mn m n +-=-(3)6a b -=或6a b -=-.【分析】本题考查了完全平方公式的实际应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.(1)观察图形很容易得出运用大正方形的面积减去四个矩形的面积,即()24m n mn +-,图②中的阴影部分正方形的边长等于m n -,即面积为()2m n -;(2)根据(1)中表示的面积是同一个图形的面积,两个式子相等,即可列出等量关系;(3)由(2)中的等量关系即可求解.【详解】(1)解:方法一:()24m n mn +-;方法二:()2m n -,故答案为:()24m n mn +-;()2m n -;(2)解:代数式()2m n +,()2m n -,mn 之间的等量关系为:。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方式常见的变形有:1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知0136422=+-++yxyx,yx、都是有理数,求y x的值。

3.已知2()16,4,a b ab+==求223a b+与2()a b-的值。

练习:()5,3a b ab-==求2()a b+与223()a b+的值。

平方差完全平方公式专项练习题

平方差完全平方公式专项练习题

公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形边长之和为5, 边长之差为2, 那么用较大正方形面积减去较小正方形面积, 差是_____.5.利用平方差公式计算: 2023×2113.×-2.6.计算: (a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(3+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程: x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1, 计算(1+x)(1-x)=1-x2, (1-x)(1+x+x2)=1-x3, (1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想: (1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)依据你猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)经过以上规律请你进行下面探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方法常见变形有:abbaba2)(222-+=+abbaba2)(222+-=+abbaba4)(22=--+)(bcacabcbacba222)(2222---++=++1、已知m2+n2-6m+10n+34=0, 求m+n值2、已知0136422=+-++yxyx, yx、都是有理数, 求y x值。

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

- 1 -平方差公式专项练习题一、基础题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是( ) A .(a+b )(b+a ) B .(-a+b )(a -b ) C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 3.下列计算中,错误的有( )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) A .5 B .6 C .-6 D .-5 二、填空题5.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 三、计算题6.利用平方差公式计算:(1) )52)(52(22--+-x x (2) )4)(4(-+ab ab(3) )14)(14(---a a (4)2009×2007-20082.(5)2023×2113. (6).(a+2)(a 2+4)(a 4+16)(a -2).(7)(2+1)(22+1)(24+1) (22)+1)+1(n 是正整数);完全平方公式专项练习题 一、选择题1.下列各式中,能够成立的等式是( ).A .B .C .D .2.下列式子:①②③ ④ 中正确的是( )A .①B .①②C .①②③D .④ 3. ( ) A .B .C .D .4.若 ,则M 为( ).A .B .C .D .5.一个正方形的边长为 ,若边长增加,则新正方形的面积人增加了( ). A . B .C .D .以上都不对6.如果 是一个完全平方公式,那么a 的值是( ). A .2 B .-2 C .D .7.若一个多项式的平方的结果为 ,则( )A .B .C .D .- 2 -二、填空题 1.2.3.(2x -______)2=____-4xy +y 2.4.(3m 2+_______)2=_______+12m 2n +________.5.(3a -5)2=9a 2+25-_______. 三、解答题1.运用完全平方公式计算:(1) (2)(3)(4) .四、首尾互倒例1:已知242411112,1;(2);(3)x a a a x a a a+=++-求:()例2.已知0132=--x x ,求①221x x += ②221x x -=五.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.(2)已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.六.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b ) C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+. 3.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方公式专项练习题完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

平方差公式完全平方公式综合练习题

平方差公式完全平方公式综合练习题

乘法公式1、平方差公式一、填空题⑴ (b + a)(b -a) = _______________, (x -2) (x + 2) = _________________;⑵ (3a + b) (3a -b) =________________, (2x 2-3) (-2x 2-3) = ______________________;⑶ 2294)3)(______3(______________,__________)2132)(2132(b a b b a a -=-+=-+ ⑷ (x + y) (-x + y) = ______________, (-7m -11n) (11n -7m) = ____________________; ⑸ _____________________)2)(4)(2(___,__________)2)(2(2=++-=---a a a y x x y ;2、计算题)5)(5(33m n n m -+ )2.02)(22.0(x y y x -+)1)(1(---xy xy )132)(132(++--y x y x3、⑴下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)⑵下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+⑶若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- ⑷22)213()213(-+a a 等于( )A 、4192-aB 、161814-aC 、161298124+-a aD 、161298124++a a 4、计算题⑴ x (9x -5)-(3x + 1) (3x -1) ⑵ (a + b -c) (a -b + c)⑶)49)(23)(23(22b a b a b a ++- ⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)4、解不等式1)3)(3()2(2<-+-+y y y2、完全平方公式一、填空题⑴ (x + y)2=_________________,(x -y)2=______________________;⑵______________________)2(_________,__________)3(22=+-=-b a b a ⑶41________)21(22+=-x x ⑷ (3x + ________)2=__________+ 12x + ____________; ⑸ _________________________)2(__,__________)()(222=--+-=+y x b a b a ;⑹ (x 2-2)2-(x 2 + 2)2 = _________________________;二、计算题 ⑴2)2332(y x -⑵22)2()2(a b b a -++⑶)1)(1)(1(2--+m m m ⑷ 22)2()2(n m n m -+⑸22)23()32(+-+x x ⑹2)32(z y x +-7、已知x + y = a , xy = b ,求(x -y) 2 ,x 2 + y 2 ,x 2-xy + y 2的值8、已知3)()1(2-=+-+y x x x ,求xy y x -+222的值 一、判断题⑴222964)32(y xy x y x +-=- ( ) ⑵ (3a 2 + 2b )2 = 9a 4 + 4b 2 ( ) ⑶2234226.004.0)2.0(n m n m m mn m ++=-- ( )⑷ (-a + b) (a -b) = -(a -b) (a -b) = -a 2-2ab + b 2 ( )二、选择题⑴2)2(n m +-的运算结果是 ( )A 、2244n mn m ++B 、2244n mn m +--C 、2244n mn m +-D 、2242n mn m +- ⑵运算结果为42421x x +-的是 ( )A 、22)1(x +-B 、22)1(x +C 、22)1(x --D 、2)1(x -⑶已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±32⑷如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy三、计算题⑴ 22)()(y x y x +- ⑵22)35()35(y x y x ++-⑶ ))((c b a c b a +--+ ⑷ 2222)2()4()2(++-t t t5、已知(a + b) 2 =3,(a -b) 2 =2 ,分别求a 2 + b 2, ab 的值提高拓展1、已知a+b=4,a 2-b 2=20,则a -b= 。

平方差公式、完全平方公式综合练习题

平方差公式、完全平方公式综合练习题

平方差公式、完全平方公式综合练习题在代数学的学习中,平方差公式和完全平方公式是我们经常会用到的重要公式。

它们可以帮助我们简化复杂的计算,提高效率。

本文将为大家提供一些综合练习题,以帮助大家熟练掌握平方差公式和完全平方公式的应用。

练习题1:计算以下表达式的值:(1) $(3x + 4)(3x - 4)$;(2) $(5a + 2b)(5a - 2b)$;(3) $(2x + 7y)(2x - 7y)$。

解答:(1) 首先,我们可以利用平方差公式进行计算:$(3x + 4)(3x - 4) = (3x)^2 - 4^2 = 9x^2 - 16$。

(2) 同样地,利用平方差公式进行计算:$(5a + 2b)(5a - 2b) = (5a)^2 - (2b)^2 = 25a^2 - 4b^2$。

(3) 再次利用平方差公式进行计算:$(2x + 7y)(2x - 7y) = (2x)^2 - (7y)^2 = 4x^2 - 49y^2$。

练习题2:计算以下表达式的值:(1) $9x^2 - 16$;(2) $25a^2 - 4b^2$;(3) $4x^2 - 49y^2$。

解答:(1) 这个表达式可以看作是平方差公式的逆运算。

通过观察可得:$9x^2 - 16 = (3x)^2 - 4^2 = (3x + 4)(3x - 4)$。

(2) 类似地,我们可以将其写成平方差公式的形式:$25a^2 - 4b^2 = (5a)^2 - (2b)^2 = (5a + 2b)(5a - 2b)$。

(3) 同样地,利用平方差公式的逆运算,我们可以得到:$4x^2 - 49y^2 = (2x)^2 - (7y)^2 = (2x + 7y)(2x - 7y)$。

练习题3:计算以下表达式的值:(1) $(x + 2)^2$;(2) $(y - 3)^2$;(3) $(3a - b)^2$。

解答:(1) 这些表达式可以应用完全平方公式进行计算。

完全平方差公式练习题

完全平方差公式练习题

完全平方差公式练习题一、结论:完全平方和公式:2完全平方差公式:2二、练习1、判断下列各式是否正确,如果错误,请改正在横线上2=a2+b2________________=a2+2ab+b2______________=a2-b2________________2=a2-4________________2、你准备好了吗?请你对照完全平方公式完成以下练习=a+2ab+b =a-2ab+b=+2+=____________=-___+=____________222222222222=2+___+2=____________=2-____+2=____________=2+___+2=____________3、不使用计算器,你能快速求出下列各式的结果吗?请试一试9==-2+222=_____-_______+____9解:原式=解:原式=224、计算: 12221213解:原式=解:原式=第 1 页共页解:原式=解:原式=2-25、下列运算中,错误的运算有①2=4x2+y2, ②2=a2-9b,③2=x2-2xy+y,④2=x2-2x+,A.1个B.2个C.3个D.4个7、已知x-y=9,x·y=5,求x2+y2的值.解:∵=x-2xy+y 2212149=x2-2×+y2∴ x2+y2=____8、若x-y=3,x·y=10.求x2+y2的值9、已知第页共页 a2+b2=,ab=-,求a+b的值C组题1、一个正方形的边长增加2cm,它的面积就增加12cm2,?这个正方形的边长是_________2、x2+y2=2-=2+ .3、m2+112=-.mm4、若x-y=9,.则x2+y2=91,x·y=.5、如果x+111=3,且x>,则x-= . xxx6、下列各式计算正确的是A.2=a2+b2+c B.2=a2+b2-c2C.2=2D.2=2 7、要使x2-6x+a成为形如2的完全平方式,则a,b的值A.a=9,b=B.a=9,b=C.a=3,b=D.a=-3,b=-28、若x2+mx+4是一个完全平方公式,则m的值为A.2B.2或-2C.D.4或-49、一个长方形的面积为x2-y2,以它的长边为边长的正方形的面积为A.x2+y2B.x2+y2-2xy C.x2+y2+2xy D.以上都不对10、若2+N=x2+xy+y2,则N为A .xy B 0 C.2xy D.3xy11、根据已知条件,求值:a2?b2已知a+=-7,求-ab的值.212、计算+1第页共页安徽省宣城市孙埠中学七年级数学下8.3平方差公式与完全平方公式测试卷及解析一、选择1、下列运算正确的是A、?x?3yB、?x?9yC、??x?9yD、?x?9y2、下列算式可用平方差公式的是A、 B、 C、 D、3、计算?y2的结果是2222A、xB、-x C、2y-x D、x-2y4.的运算结果正确的是A.—x-2xy+yB.-x-2xy+yC.x+2xy+yD.x-2xy+y5.下列各式计算结果是2mn-m-n的是A. B.- C.- D.6.下列等式:①=②=③=④a-b=⑤=.其中一定成立的是A.1个B.2个C.3个D.4个7.计算的结果是A.x-4xy+4yB.-x-4xy-4yC.x+4xy+4yD.-x+4xy-4y8.若=x-81,则括号里应填入的因式是A.x-B.3-xC.3+xD.x-99.计算正确的是A.a-2ab+bB.a-bC.a+bD.a+b+2ab10.=+A,则代数式A是A.-12xyB.12xyC.24xyD.-24xy二、填空题11.= .12.已知x+4x+y-2y+5=0,则x+y= .2224m2m2n4m4m44m4nm2nmnmn2m2nmn24222222222222 2222222222242242222213.已知3x?y0,则x+y= .2214.若x+y=3,x-y=1,则x+y=xy= . 15.?x2?4y29216. =1-16m217.x-px+16是完全平方式,则p= .18.= +________.19.若x+2y=3,xy=2,则x+4y=______.20.已知=9,=5,则xy=三、解答题21.计算:①②20082?2007?2009③④若a?b?2,a2?b2?12,求a?b的值.⑤2?222222222.①已知a-8a+k是完全平方式,试问k的值.②已知x+mx+9是完全平方式,求m的值.23.已知x?24.给出下列算式3-1=8=8×1;5-3=16=8×27-5=24=8×3;9-7=32=8×4………⑴观察上面一系列式子,你能发现什么规律?用含有n的式子表示出来::⑵根据你发现的规律,计算:2005-2003= .这时,n= .22222222222211?2,求x2?2的值. xx参考答案一、选择题1.D .C .B.C.B.C7.C.A.A 10.C二、填空题11.a-b+2b-1 12.-1 13.2211 14. , 15.?x?2y916. 17.± 18.ab19.120.1一、解答题21.解析:①原式=-b=4a-b.②原式=2008-=2008-=1.2222222③原式==a-b.④因为a-b=12, = a-b所以a+b=6.⑤原式==4=8a+8;22. 解析:①设m=k;因为a-8a+k是完全平方式,所以a-8a+m== a-2ma+m,所以8a=2ma,解得m=4,所以k=16. ②因为x+mx+9是完全平方式,所以x+mx+9=,所以m=±6.222222222222222224412)?4, x1∴x2?2?2?4, x23.解:∵ -=8n⑵8016平方差公式与完全平方公式专项练习题姓名座号日期一、选择题1.下列运算正确的是33635A.a+a=3a B.·=-aC.·4a=-24ab D.=16b-a332.下列多项式的乘法中,可以用平方差公式计算的是A.B.C. D.33.下列计算中,错误的有 A.1个 B.2个 C.3个 D.4个22222①=9a-4;②=4a-b;222③=x-9;④·=-=-x-y.224.若x-y=30,且x-y=-5,则x+y的值是A.5B.C.-6D.-5二、填空题22445.=______.6.=9x-4y.227.=-.8.请写出一个平方差公式,使其中含有字母m,n和数字4:.9.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.三、计算题10、2021242008×21. 12、…;3220072007213、2009×2007-2008.一变:.二变:.2007?2008?20062008?2006?1214、解方程:x+=5.15、广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?22316.已知x≠1,计算=1-x,=1-x,234=1-x.2n 观察以上各式并猜想:=______.根据你的猜想计算:234523n ①=______.②2+2+2+…+2=______.999897③=_______.通过以上规律请你进行下面的探索:22322①=______.②=______.③=______.完全平方公式应用一、填空:1、= .2.已知x+4x+y-2y+5=0,则x+y= .3.已知3x?y??2?0,则x+y= .4.若x+y=3,x-y=1,则x+y=xy= .222225.x-px+16是完全平方式,则p= . .= +________.7.若x+2y=3,xy=2,则x+4y=______. .已知=9,=5,则xy=二.选择题9.的运算结果正确的是A.—x-2xy+yB.-x-2xy+yC.x+2xy+yD.x-2xy+y10.下列各式计算结果是2mn-m-n的是A. B.- C.- D.11.下列等式:①=②=③=④a-b=⑤=.其中一定成立的是A.1个B.2个C.3个D.4个12.计算的结果是A.x-4xy+4yB.-x-4xy-4yC.x+4xy+4yD.-x+4xy-4y三、解答题1、①已知a-8a+k是完全平方式,试问k的值.②已知x+mx+9是完全平方式,求m的值.2、?已知x?3、试说明不论x,y取何值,代数式x?y?6x?4y?15的值总是正数。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113. 10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.式计算:2009×2007-20082. 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:22007200720082006-⨯.(2)计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是() A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=_____ _.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______ . ②(a -b )(a 2+ab+b 2)=_____ _. ③(a -b )(a 3+a 2b+ab 2+b 3)=____ __.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(; bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

3、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值。

3、已知224,4a b a b +=+=求22a b 与2()a b -的值。

4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值。

B 组:5、已知6,4a b ab +==,求22223a b a b ab ++的值。

6、已知16x x-=,求221x x +的值。

7、已知222450x y x y +--+=,求21(1)2x xy --的值。

8、0132=++x x ,求(1)221x x +(2)441xx +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

10、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法综合题一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________. 4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m)÷2am -1=________ . 6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________. 二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于( )A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是( )A.5B.51C.-51D.-511. 下列四个算式:①4x 2y 4÷41xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 2b 2c ; ③9x 8y 2÷3x 3y =3x 5y ;12. ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有( ) A.0个B.1个C.2个D.3个13.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为( )A.1 B.-1 C.3D.-314.计算[(a 2-b 2)(a 2+b 2)]2等于( ) A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 815.已知(a +b )2=11,ab =2,则(a -b )2的值是( )A.11 B.3C.5D.1916.若x 2-7xy +M 是一个完全平方式,那么M 是( ) A.27y 2B.249y 2C.449y 2D.49y 217.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( ) A.x n 、y n 一定是互为相反数 B.(x1)n 、(y1)n 一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x 2n -1、-y 2n -1一定相等 三、考查你的基本功:18.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3); (3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x . 19.解方程x (9x -5)-(3x -1)(3x +1)=5.四、探究拓展与应用:20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算:(3+1)(32+1)(34+1)…(332+1)-2364的值.练习:1.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1). 2、计算:2481511111(1)(1)(1)(1)22222+++++.3、计算:22222110099989721-+-++- ; 3、计算:2222211111(1)(1)(1)(1)(1)23499100-----.五、“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。

3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值。

4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值。

5、若123456786123456789⨯=M ,123456787123456788⨯=N ;试比较M 与N 的大小。

6、已知012=-+a a ,求2007223++a a 的值.。

相关文档
最新文档