微波天线考试试题

微波天线考试试题
微波天线考试试题

填空题

1. 微波是电磁波谱中介于 超短波和红外线之间的波段,它属于无线电波中波长最 短(即频率最高)的波段,其频率范围从 300MHz (波长im 至3000GHz (波长 0.1mm )。

微波波段分为米波、厘米波、毫米波和亚毫米波 四个分波段。 2. 微波的特点(因其波长):

① 似光性 ②穿透性 ④热效应特性

⑤散射特性

3. 均匀传输线的分析方法:

① 场分析法:从麦克斯韦方程出发,求出满足边界条件的波动解,得出传输线上 电场和磁场的表达式,进而分析传输特性;

② 等效电路法:从传输线方程出发,求出满足边界条件的电压、电流波动方程的 解,得出沿线等效电压、电流的表达式,进而分析传输特性。

后一种方法实质是在一定条件下“化场为路”

4. 无线传输线的三种工作状态:①行波状态②纯驻波状态③行驻波状态

5. 阻抗匹配的三种不同含义:①负载阻抗匹配②源阻抗匹配③共轭阻抗匹配

6. 如何在波导中产生这些导行波呢?这就涉及到波导的 激励,在波导中产生各种 形式的

导行模称为激励,要从波导中提取微波信息,即波导的耦合。波导的激励 与耦合就本质而言是 电磁波的辐射和接收,是微波源向波导内有限空间的辐射或 在波导的有限空间内接收微波信息。由于辐射和接收是互易的,因此激励与耦合 具有相同的场结构。

7. 激励波导的三种方法:①电激励②磁激励③电流激励

8. 微波技术与半导体器件及集成电路的结合,产生了微波集成电路。

9. 光纤可分为石英玻璃光纤、多组分玻璃光纤、塑料包层玻璃芯光纤、全塑料光 纤。 10. 光纤的三种色散:① 材料色散 ②波导色散 ③模间色散

11. 微波网络正是在分析场分布的基础上,用 路的分析方法将微波原件等效为 电 抗或电

阻元件,将实际的波导传输系统等效为 传输线,从而将实际的微波系统简 化为微波网络。尽管用“路”的分析法只能得到元件的外部特征,但它却可给出

系统的一般传输特性,如功率传递、阻抗匹配等。而且这些结果可以通过 实际测 量的方法来验证。

12. 还可以根据微波元件的 工作特性综合出要求的微波网络,从而用一定的微波 结构实现它,这就是微波网络的综合。

13. 微波网络的分析与综合 是分析和设计微波系统的有力工具,而 微波网络分析 又是综合的基础。

14. 微波系统也不例外地有各种无源、有源元器件,它们的功能是对微波信号进 行必要的处理或变换,它们是微波系统的重要组成部分。 微波元器件按其变换性 质可分为线性互易元器件、线性非互易元器件以及非线性元器件三大类。

15. 非线性元器件能引起频率的改变,从而实现 放大、调制、变频等。主要包括 微波电子管、微波晶体管、微波固态谐振器、微波场效应管 及微波电真空器件 等。

16. 研究天线问题,实质上是研究天线在空间所产生的 电磁场分布。空间任一点 的电磁场都满足 麦克斯韦方程和边界条件,因此,求解天线问题实质上是求解电 磁场方程并满足边界条件。

17. 天线的电参数:①天线方向图及其有关参数 ②天线效率 ③增益系数 ④极化 和交叉

极化电平⑤频带宽度⑥输入阻抗与驻波比⑦有效长度

③宽频带特性

⑥抗低频干扰特性

18. 电波传播方式:① 视距传播②天波传播③地面波传播④不均匀媒质传播

19. 什么是视距传播?

视距传播,是指发射天线和接收天线处于相互能看见的视线距离内的传播方式。

20. 视距传播的特点?

①视距r 4.12..,h ..h2 103m,当发射两点间的距离r *时,两天线互相“看得见”,当发射两点间的距离r r v时,两天线互相“看不见”:②视电波是在地

球周围的大气中传播,大气对电波产生折射与衰减;③除了自发射天线直接到达接收天线的直射波外,还存在从发射天线经由地面反射到达接收天线的反射波,即存在多经效应。

21. 什么是天波传播?

天波传播通常是指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,有时也称电离层电波传播。主要用于中波和短波波段。

22. 何谓天波传播的静区?由于入射角o omin arcsin 1 8°8叽^的电波不能被电离层“反射”回来,

Y f2

使得以发射天线为中心的、一定半径的区域内就不可能有天波到达,从而形成了天波的静区。

23. 横向尺寸远小于纵向尺寸并小于波长的细长结构的天线称为线天线。它广泛

的应用于通信、雷达等无线电系统中。

24. 求解面天线的辐射问题,通常采用口径场方法,即先由场源求得口径面上的

场分布,再求出天线的辐射场。分析的基本依据是:惠更斯-菲涅尔原理

(本填空包含各章节及绪论内容)

计算题

1. 设有一无耗传输线,终端接有负载 乙40 j30 ,则

① 要使传输线上驻波比最小,则该传输线的特性阻抗应取多少? ② 此时最小的反射系数及驻波比各为多少? ③ 离终端最近的波节点位置在何处?

1

解:①要是线上驻波比最小,实质上只要使终端反射系数的模值最小, 即二厂0

Z 0

1

|乙

40 Z 。2

302 二

1 I 乙

Z °|

40 Z 02

302

将上式对Z 。求导,并令其为零,经整理可得:402

302

Z ; 0 ;即Z 。50 。

②此时终端反射系数及驻波比分别为:

3

Z 1 Z 0 40 j30 50 1

1

e

Z 1 Z 0 40 j30 50 3

Z min 1

2. 设某一均匀无耗传输线特性阻抗为 Z 。50 ,终端接有未知负载 乙。现在传 输线上测得

电压最大值和最小值分别为 100mV 和20mV 第一个电压波节的位置 离负载l min1 3,试求该负载阻抗Z 1。 解:根据驻波比的定义:

U max

100

5 ;反射系数的模值:

1

1 2

U min

20

1 3

由l min1

1

,求得反射系数的相位1

4

4

3

3

2 j-

因而反射系数为:1 -e 3

1

负载阻抗为:乙 Z 0

1

82.4

64.3

3

1 1

这就是说,当特性阻抗Z 0

50 时,终端反射系数最小, 从而驻波比也为最小。

故离终端的第一个电压波节点位置为:

3. 已知圆波导的直径为50mm 填充空气介质。试求:

①TE ii 、TE 01、TM 01三种模式的截止波长。

② 当工作波长分别为70mm ,60mm ,30mm 时,波导中出现上述哪些模式?

③ 当工作波长为 70mm 时,求最低次模的波导波长 g 。

解:①三种模式的截止波长为:

4.

已知工作波长 5mm ,要求单模传输,试确定圆波导的半径,并指出

是什么 模式?

解:圆波导中两种模式的截止波长:

CTE 11

3.4126a, CTM 01 2.6127a

要保证单模传输,工作波长满足以下关系: 2.6127a 3.4126a

即1.47mm a 1.91mm 时,可以保证单模传输,此时传输模式为主模

TE 11

cTE 11

CTE 01

cTM 01

3.4126a 1 1.6398a - 2.6127a 85.3150mm 40.9950mm 65.3175mm

②当工作波长 70mm

时,

只出现主模 TE 11 ;

当工作波长

60mm

时,

只出现主模 TE 11 和 TM 01 ; 当工作波长 30mm

时,

只出现主模 TE 11、TM 01 和

TE 01 ;

g

2

122.4498mm

1

70

85.3150

5.求如图所示双端口网络的[Z ]矩阵和

[丫]矩

阵 解:由[Z ]矩阵的定义得:

Z 11

Z A

Z C

I 2 0

Z 12

Z C

Z 21

I 1 0

Z 22 U 2

Z B

Z C

I 2

I 1 0

于是:Z

Z A Z C

Z C

Z

C Z - Z C

Z 1 1 Z A Z B Z A Z B Z C

而:丫

Z B Z C Z C

Z C Z A Z C

6.试求图示终端接匹配负载时的输入阻抗,并求出输入端匹配的条件。 Z in 1 丄 Z

。jX jB

Z o jX j- jB

Z 0 1 BX

1 j 2X —

B BX jBZ o

不引起反射的条件为:乙' in

Z o

2 2

从而求得:X 1 B Zo

2B

般可取X Z 。,

7.设矩形波导宽边a 2.5cm ,工作频率f 10GHz ,用g 4阻抗变换器匹配一

0得E 面方向函数F E

90得H 面方向函数F H

cos 1 cos

4

段空气波导和一段r 2.56的波导,如图所示,求匹配介质的相对介电常数 r 及 变换器长度。

解:各部分的等效特性阻抗如图所示,根据传输线的四分之一波长阻抗变换性:

8.有两个平行于z 轴并沿x 轴方向排列的半波振子,若

2。② d 3

4,

2.37cm

r

' [*

% ]

匹配段内波导波长:

-2

2a

2.69cm ;变换的长度:

0.67 cm

试分别求其 E 面和H 面的方向函数,并画出方向图。

解:半波振子的方向函数:

cos cos ------ 2 --------- ,阵因子:cos ,其中

sin 2

kd sin cos

。由方向图乘积定理,二元阵的方向函数等于二者的乘积。

可得r : 1.6

3 cm ,

违 1 sin

9.直立振子的高度h 10m ,当工作波长 波腹电流的辐射电阻。

h

h

解:gh ein 0 I Z dz °

I m 归于波腹电流的有效高度:h ein 為煜

1m

由于h 1 30 0.1,用近似公式:R 10 h 4

0.0192

9.有一卡塞格伦天线,其抛物面主面焦距

f 2m ,若选用离心率为e 2.4的双

曲副反射面,求等效抛物面的焦距。 f e 1

解:由于A 」,有f e Af ——f 4.86m

f e 1

令 0得E 面方向函数F E

cos — cos

2 sin

cos 1 4

3si n 令 90得H 面方向函数F H

cos 1 3 cos

4

300m 时,求它的有效高度以及归于

h z dz

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2123 2 1 100j j z z U z e U z e πβ' ' -''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

微波技术与天线考试复习重点(含答案)

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ , 波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有 哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值, 其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为 衰减常数和相移常数,其一般的表达式为γ=传输线上电压、电 流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即 p v ωβ= ;4)传输线上电磁波的波长λ与自由空间波长0λ 的关系2π λβ==。

7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析 三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。 8. 均匀传输线输入阻抗的特性,与哪些参数有关? 9. 均匀传输线反射系数的特性 10. 简述传输线的行波状态,驻波状态和行驻波状态。 11. 什么是行波状态,行波状态的特点 12. 什么是驻波状态,驻波状态的特性 13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分 布 14. 介绍传输功率、回波损耗、插入损耗 15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?

微波技术与天线傅文斌习题答案第4章

第4章 无源微波器件 4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。 4.2推导Z 参量与A 参量的关系式(4-1-13)。 解 定义A 参量的线性关系为 () () ?? ?-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为 ?? ?+=+=2221212 2 121111I Z I Z U I Z I Z U ?? ?? ??????-=??????=c d c c bc ad c a Z Z Z Z 1 2221 1211 Z 4.3从I S S =* T 出发,写出对称互易无耗三口网络的4个独立方程。 解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。三口网络的散射矩阵简化为 ???? ? ?????=1123 13 231112 131211S S S S S S S S S S 由无耗性,I S S =* T ,即 ?????? ????=????????? ???????????100010001*11*23 *13*23 *11* 12 * 13 * 12* 11 1123 13 2311121312 11 S S S S S S S S S S S S S S S S S S 得

微波技术与天线复习题

微波技术与天线复习题 一、填空题 1微波与电磁波谱中介于(超短波)与(红外线)之间的波段,它属于无线电波中波长(最短)的波段,其频率范围从(300MHz)至(3000GHz),通常以将微波波段划分为(分米波)、(厘米波)、(毫米波)和(亚毫米波)四个分波段。 2对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 3无耗传输线的状态有(行波状态)、(驻波状态)、(行、驻波状态)。 4在波导中产生各种形式的导行模称为波导的(激励),从波导中提取微波信息称为波导的(耦合),波导的激励与耦合的本质是电磁波的(辐射)和(接收),由于辐射和接收是(互易)的,因此激励与耦合具有相同的(场)结构。 5微波集成电路是(微波技术)、(半导体器件)、(集成电路)的结合。 6光纤损耗有(吸收损耗)、(散射损耗)、(其它损耗),光纤色散主要有(材料色散)、(波导色散)、(模间色散)。 7在微波网络中用(“路”)的分析方法只能得到元件的外部特性,但它可以给出系统的一般(传输特性),如功率传递、阻抗匹配等,而且这些结果可以通过(实际测量)的方法来验证。另外还可以根据

微波元件的工作特性(综合)出要求的微波网络,从而用一定的(微波结构)实现它,这就是微波网络的综合。 8微波非线性元器件能引起(频率)的改变,从而实现(放大)、(调制)、(变频)等功能。 9电波传播的方式有(视路传播)、(天波传播)、(地面波传播)、(不均匀媒质传播)四种方式。 10面天线所载的电流是(沿天线体的金属表面分布),且面天线的口径尺寸远大于(工作波长),面天线常用在(微波波段)。 11对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 12微波具有的主要特点是(似光性)、(穿透性)、(宽频带特性)、(热效应特性)、(散射特性)、(抗低频干扰特性)。 13对传输线等效电路分析方法是从(传输线方程)出发,求满足(边界条件)的电压、电流波动解,得出沿线(等效电压、电流)的表达式,进而分析(传输特性),这种方法实质上在一定条件下是(“化场为路”)的方法。 14传输线的三种匹配状态是(负载阻抗匹配)、(源阻抗匹配)、(共轭阻抗匹配)。 15波导的激励有(电激励)、(磁激励)、(电流激励)三种形式。

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点 绪论 微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。 微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~ 0.1mm 微波的特点(要结合实际应用): 似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析) 第一章均匀传输线理论 均匀无耗传输线的输入阻抗(2个特性) 定义: 传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注: 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性: 无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)

2、λ/4变换性:Zin(z)-Z in(z+λ/4)=Z 02 证明题: (作业题) 均匀无耗传输线的三种传输状态(要会判断)参数 |Γ|ρZ 1行波01 匹配驻波1∞ 短路、开路、纯 电抗行驻波 0<|Γ|<1 1<ρ<∞ 任意负载 能量电磁能量全部 被负载吸收电磁能量在原 地震荡 1.行波状态: 无反射的传输状态 匹配负载:

负载阻抗等于传输线的特性阻抗 沿线电压和电流振幅不变 电压和电流在任意点上同相 2.纯驻波状态: 全反射状态 负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态: 传输线上任意点输入阻抗为复数 传输线的三类匹配状态(知道概念) 负载阻抗匹配: 是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。源阻抗匹配: 电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 共轭阻抗匹配: 对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) 阻抗圆图的应用(*与实验结合)

微波技术与天线复习大纲

微波技术与天线复习大纲 绪论 一、基本概念 1、什么是微波,微波的波段如何划分? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率围从300MHz到30 00GHz,波长从0.1mm到1m。 通常,微波波段分为米波、厘米波毫米和亚毫米波四个波段。 2、微波有何特点及特性? 答:似光性;穿透性;宽频带特性;热效应性;散射性;抗低频干扰性;视距传播性;分布参数的不确定性;电磁兼容和电磁环境污染。 第一章均匀传输线理论 一、基本概念 1、什么是微波传输线(或导波系统)? 答:微波传输线(或导波系统)是用以传输信息和能量的各种形式的传输系统的总称。它的作用是引导电磁波沿一定的方向传输,因此又称为导波系统,它所引导的电磁波称为导行波。 2、什么是均匀传输线,它是如何分类的? 答:截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统成为规则导波系统或均匀传输线。 可大致分为三种类型: (1)双导体传输线(或TEM波传输线);由两根或两根以上的平行导体构成,主要包括平行双线、同轴线、带状线和微带线等。由于其上传输的电磁波是TEM波或准TEM波,所以又称为TEM波传输线。 (2)波导:均匀填充介质的金属波导管,主要包括矩形波导,圆波导、脊形波导和椭圆波导等。 (3)介质传输线:因电磁波沿此类传输线表面传播,故又称为表面波波导,主要包括介质波导,镜像线和单根表面波传输线等。 二、计算题(一般是课后练习题) 1.1 设一特性阻抗为50Ω的均匀传输线终端接负载R1=100Ω,求负载反射系数。在负载0.2,0.25及0.5处的输入阻抗及反射系数分别为多少?

解:, ,, 由于,,故当分别为0.2,0.25及0.5时有: , 将上述所算得的反射系数带入求输入阻抗的公式则有 (化简略) 1.4 有一特性阻抗=50Ω的无耗均匀传输线,导体间的媒质参数= 2.25,=1,终接=1Ω的负载。当=100MHz时,其线长度为。试求: (1)传输线的实际长度。(2)负载终端反射系数。(3)输入端反射系数。(4)输入端阻抗。 解:先求波长,欲求波长应知道波的传播速度(一下简称为波速)。 波速 其中,分别是自由空间中电介质常数和磁导率常数,分别是相对电介质常数和相对磁导率常数,为光速。 ,,于是, (1)传输线的实际长度 (2)负载终端反射系数 (3)输入端反射系数 (4)输入端阻抗 1.11 设特性阻抗为=50Ω的无耗均匀传输线,终端接有负载阻抗Ω为复阻抗时,可以用一下方法实现阻抗变换器匹配:即在终端或在阻抗变换器前并接一段终端短路线,试分别求这两种情况下阻抗变换器的特性阻抗及短路线长度。 解:图(a)中的短路线的输入导纳为,, 由,可得到短路线的长度,此时终端等效为纯电阻,即。因此阻抗变换器的特性阻抗为。

《微波技术与天线》实验指导书

微波技术与天线实验指导书 南京工业大学信息科学与工程学院 通信工程系

目录 实验一微波测量系统的熟悉和调整.................. - 2 -实验二电压驻波比的测量......................... - 9 -实验三微波阻抗的测量与匹配 .................... - 12 -实验四二端口微波网络阻抗参数的测量 ............. - 17 -

实验一 微波测量系统的熟悉和调整 一、实验目的 1. 熟悉波导测量线的使用方法; 2. 掌握校准晶体检波特性的方法; 3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE 10波的电场分量沿轴向方向上的分布。 二、实验原理 1. 传输线的三种状态 对于波导系统,电场基本解为ift rm ift r e E e a b r V E --== ) /ln(0 (1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( 00π π -=- 在x=a/2处 z E e e E E y ift ift y y βsin 2)(00-=+=+- 其模值为:z E E y y βsin 20= 最大值和最小值为: 2min 0max ==r r r E E E (2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( ' 00π π +=- 在x=a/2处 z E e E E e E e E e E e E e E e E E y ift y y fit y fit y fit y ift y fit y fit y y βcos 2)()()('0 ' 0'0 '0'00'00+-=++-=+=----- 由此可见,行驻波由一行波与一驻波合成而得。其模值为:

微波与天线习题

第一章 均匀传输线理论 1.在一均匀无耗传输线上传输频率为3GHZ 的信号,已知其特性阻抗0Z =100Ω,终端接 l Z =75+j100Ω的负载,试求: ① 传输线上的驻波系数; ② 离终端10㎝处的反射系数; ③ 离终端2.5㎝处的输入阻抗。 2.由若干段均匀无耗传输线组成的电路如图,已知g E =50V ,Z 0=g Z = 1l Z =100Ω,Z 01=150Ω,2l Z =225Ω,求: ① 分析各段的工作状态并求其驻波比; ② 画出ac 段电压、电流振幅分布图并求出极值。 3.一均匀无耗传输线的特性阻抗为500Ω,负载阻抗l Z =200-j250Ω,通过4 λ 阻抗变换器及并联支节线实现匹配,如图所示,已知工作频率f =300MHZ ,求4 λ 阻抗变换段的特性阻抗01Z 及并联短路支节线的最短长度min l 。

4.性阻抗为0Z 的无耗传输线的驻波比为ρ,第一个电压波节点离负载的距离为min1l ,试证明此时终端负载应为 min1 min1 1tan tan l j l Z j l ρβρβ-Z =- 5 明无耗传输线上任意相距 4 λ 的两点处的阻抗的乘积等于传输线特性阻抗的平方。 6某一均匀无耗传输线特性阻抗为0Z =50Ω,终端接有未知负载l Z ,现在传输线上测得电压最大值和最小值分别为100mV 和200mV ,第一个电压波节的位置离负载min13 l λ =,试求 负载阻抗l Z 。 7.传输系统如图,画出AB 段及BC 段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值。(图中R=900Ω) 8.特性阻抗0150Z =Ω的均匀无耗传输线,终端接有负载250100l j Z =+Ω,用 4 λ 阻抗

微波技术与天线考试试卷(A)

一、填空(102?) 1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为 mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。(同轴线的单位分布电容和单位分布电感分别()() 70120104,F 1085.8,ln 2ln 2--?==?===πμμεπμπεm a b L a b C 和m H ) 2、 匹配负载中的吸收片平行地放置在波导中电场最_ __________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。 3、 平行z 轴放置的电基本振子远场区只有________和________ 两 个分量,它们在空间上___________(选填:平行,垂直),在 时间上_______________(选填:同相,反相)。 4、 已知某天线在E 平面上的方向函数为()?? ? ??-=4sin 4sin πθπθF ,其半功率波瓣宽度_________25.0=θ。 5、 旋转抛物面天线由两部分组成, ___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来 的球面波沿抛物面的___________向反射出去,从而获得很强 ___________。 二、判断(101?) 1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时, 该传输线为短线。( ) 2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。( )

3、由于沿smith 圆图转一圈对应2λ,4λ变换等效于在图上旋转180°, 它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。( ) 4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大 功率。( ) 5、微带线在任何频率下都传输准TEM 波。( ) 6、导行波截止波数的平方即一定大于或等于零。( ) 7、互易的微波网络必具有网络对称性。( ) 8、谐振频率、品质因数和等效电导是微波谐振器的三个基本参量。( 对) 9、天线的辐射功率越大,其辐射能力越强。( ) 10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。( ) 三、简答题(共19分) 1、提高单级天线效率的方法?(4分) 2、在波导激励中常用哪三种激励方式?(6分) 3、从接受角度来讲,对天线的方向性有哪些要求?(9分) 四、计算题(41分) 1、矩形波导BJ-26的横截面尺寸为22.434.86a mm b ?=?,工作频率为3GHz ,在终端接负载时测得行波系数为0.333,第一个电场波腹点距负载6cm ,今用螺钉匹配。回答以下问题。 (1)波导中分别能传输哪些模式?(6分) (2)计算这些模式相对应的p νλ,p 及。(9分)

微波技术与天线试卷B

1 2007 /2008学年第 2 学期 课程名称:微波技术与天线 共 5 页 试卷: B 考试形式: 闭 卷 一、 填空题(每空1分,共10分) 1、微波的频率范围从 到 。 2、圆波导的主模是 。 3、微带线的高次模有两种模式,其中波导模式存在于 与 之间。 4、无耗传输线上任意相距λ/2处的阻抗 。 5、矩形波导中传输的主模是__________。 6、圆波导中损耗最小的的模式是_______________。 7、电基本振子的远区场是一个沿着径向向外传输的 电磁波。 8、天线的有效长度越长,表明天线的辐射能力___________。 二、选择题(每题2分,共20分) 1、若传输线上全反射时,驻波比等于 。 A :0 B :1 C :2 D :∞ 2、双导体传输系统中传输的是 。 A :TE 波 B :TM 波 C :TEM 波 D :TE 和TM 波 3、匹配双T 的四个端口 。 A :只有两个端口匹配 B : 完全匹配 C :只有三个端口匹配 D :完全不匹配 4、当单极天线的高度h<<λ时,其有效高度约为实际高度的 。 A :2/3 B :1/3 C : 1/2 D :1/4

5、无耗传输线,终端断短路时在电压波腹点处,相当于。A:并联谐振B:串联谐振C:纯电感D:纯电容 6、在微波视距通信设计中,为使接收点场强稳定,希望反射波的成分 _________。 A:愈小愈好B:愈大愈好C:适当选择D:不确定 7、传输线的工作状态与负载有关,当负载开路时,传输线工作在何种状态?( ) A.混合波 B.行波 C.驻波 D.都不是 8、可以导引电磁波的装置称为导波装置,传播不受频率限制的导波装置是( ) A. 方波导 B.同轴线 C. 圆波导 D.以上都可以 9.天线是发射和接收电磁波的装置,其关心的主要参数为( ) A.增益 B.驻波比 C. 方向图 D.以上都是 10、在规则金属波导中波的传播速度比无界空间媒质中传播的速度。A:快B:慢C:相等D:无法确定 三、简答题(每题6分,共24分) 1、对均匀传输线的分析方法通常有哪两种?各自特点是什么? 2

《微波技术与天线》傅文斌-习题标准答案-第章

《微波技术与天线》傅文斌-习题答案-第章

————————————————————————————————作者:————————————————————————————————日期: 2

17 第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将1.0

最新微波技术与天线 考试重点复习归纳

第一章 1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。 2.均匀传输线方程, 也称电报方程。 3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。 1101 0010110 cos()sin()tan() ()tan()cos()sin() in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++ 2p v f πλβ===/2处的阻抗相同, 称为λ/2重复性z1 终端负载 221021101()j z j z j z j z Z Z A e z e e Z Z A e ββββ----Γ===Γ+ 1 10 1110 j Z Z e Z Z φ-Γ= =Γ+ 终端反射系数 均匀无耗传输 线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性 4. 00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ 111ρρ-Γ= + 1 111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示 5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1; ② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗 6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2β z 此时传输线上任意一点z 处的输入阻抗为 0()tan in Z Z jZ z β= ① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。 ③ 传输线上各点阻抗为纯电抗, 在电压波节点处Z in =0, 相当于串联谐振, 在电压波腹点处|Z in |→∞, 相当于并联谐振, 在0<z <λ/4内, Z in =jX 相当于一个纯电感, 在λ/4<z <λ/2内, Z in =-jX 相当于一个纯电容,从终端起每隔λ/4阻抗性质就变换一次, 这种特性称为λ/4阻抗变换性。 短路线ls l 110arctan()2s X l Z λπ= 开路线loc 0cot() 2c oc X l arc Z λ π= 9.无耗传输线上距离为λ/4的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特 性称之为λ/4阻抗变换性。 10.负载阻抗匹配的方法 基本方法:在负载与传输线之间接入一个匹配装置(或称匹配网络),使其输入阻抗等于传输线的特性阻抗Z 0. 对匹配网络的基本要求:简单易行、附加损耗小、频带宽、可调节以匹配可变的负载阻抗。 实现手段分类:串联λ/4阻抗变换器法、支节调配器法 (1)因此当传输线的特性阻抗 01 Z = 时, 输入端的输入阻抗Z in =Z 0, 从而实现了负载和传输 线间的阻抗匹配(2)串联

《微波技术与天线》傅文斌-习题答案-第2章

第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将 1.0

微波技术与天线实验4利用HFSS仿真分析矩形波导

实验3:利用 HFSS 仿真分析矩形波导 一、 实验原理 矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。 图1 矩形波导 1) TE 模,0=z E 。 cos cos z z mn m x n y H H e a b γππ-= 2 cos sin x mn c z n m x n y E H b a b j k e γπππωμ-= 2 sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=- 2sin cos z x mn c m m x n y H H e k a a b γλπ ππ-= 2cos sin z y mn c n m x n y H H e k b a b γλπ ππ-= 其中,c k =2 2 m n a b ππ???? ? ????? +而mn H 是与激励源有关的待定常数。 2) TM 模 Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模, m, n 不能同时为零,否则全部的场分量为零。 mn TM 和mn TE 模具有相同的截止波数计算公式,即

c k (mn TM )=c k (mn TE ) = 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

微波技术与天线实验3利用ADS设计集总参数匹配电路

一、实验目的 学会用ADS进行集总参数匹配电路设计。 二、实验步骤 1、打开“ADS(Advanced Design System)”软件:点击图标。 2、点击“Close”键,关闭Getting start with ADS窗口(如图1)。 图1 3、在“Advanced Design System 2009(Main)”窗口中点击“File>New Project”(如图2), 图2 在“New project”窗口中的“C:\users\default\”后输入“matching”,点击“OK”(如图3)。

图3 4、默认窗口中的选项(如图4(a)),关闭窗口“Schematic Wizard:1”,进入 “[matching-prj]untitled1(Schematic):1”窗口(如图4(b))。 图4(a) 图4(b) 5、找到“Smith Chart Matching”,并点击(如图5)。

图5 点击“Palette”下的“Smith chart”图标,弹出“Place SmartComponent:1”窗口,点击“OK”按钮(如图6(a))。在操作窗口中点击出一个smith chart,然后点击鼠 标右键选择“End Command”(如图6(b))。 图6 (a)

图6(b) 6、点击“Tools>Smith Chart”(如图7(a)),出现“Smith Chart Utility”以及 “SmartComponent Sync”窗口,点击“Smartcomponent Sync”窗口中的“OK”(如 图7(b))。 图7 (a)

《微波技术与天线实验》2

《微波技术与天线实验》课程实验报告 实验二: 学院通信工程 班级13083414 学号13041403 姓名李倩 指导教师魏一振 2015年11 月12 日

实验名称:集总参数滤波器设计 1.实验目的 (1)通过此次实验,我们需要熟悉集总参数滤波器软件仿真过程,且通过亲自实验来进一步熟悉MWO2003 的各种基本操作。 (2)本次实验我们需要用到MWO2003 的优化和Tune 等工具,要求熟练掌握MWO 提供的这些工具的使用方法和技巧。 2.实验内容 设计一个九级集总参数低通滤波器,要求如下: 通带频率范围:0MHz~400MHz 增益参数S 21:通带内0MHz~400MHz S 21 >--0.5dB 阻带内600MHZ以上S 21 <-50dB 反射系数S 11:通带内0MHz~400MHz S 11 <-10dB 3.实验结果 实验电路原理结构图:

运行结果: 4.思考题 (1)如果要你设计的是高通滤波器,与前面相比,需要变化那几个步骤? 带宽和截止频率参数的设计、结构图的设计需要改变,所以原理图属性设置、画结构图、元件参数设置、参数优化步骤需要改变。 首先需要改变电路图的结构,如下图

将原来的电容接地改成电感接地。 之后在优化参数进行重新设置。也就是将原来0~400MHZ的优化条件改成400MHZ~MAX的频率范围。原来的600~MAX的改为0~600MHZ的频率范围。如下图

之后重复上述仿真可以得到如下结果 可见这样设计并不是十分的完美,在0~300MHZ内基本满足条件,在之后增益略微有偏差。反射系数在某个区域内比较符合。 (2)你在优化设计过程中,那些参量调解对优化结果影响最大?(最敏感)在优化过程中,电容c1和c0的参量调节对优化结果影响最大。

微波技术与天线习题

6.1 简述天线的功能。 天线应有以下功能: ①天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统, 其次要求天线与发射机或接收机匹配。 ②天线应使电磁波尽可能集中于确定的方向上, 或对确定方向的来波最大限度的接受, 即天线具有方向性。 ③天线应能发射或接收规定极化的电磁波, 即天线有适当的极化。 ④天线应有足够的工作频带。 6.2 天线的电参数有哪些? 方向图参数:主瓣宽度,旁瓣电平,前后比 方向系数 天线效率 增益系数 极化和交叉极化电平 频带宽度 输入阻抗与驻波比 有效长度

6.3 按极化方式划分, 天线有哪几种? 按天线所辐射的电场的极化形式可将天线分为线极化天线、圆极化天线和椭圆极化天线。 6.4 从接收角度讲, 对天线的方向性有哪些要求? 接收天线的方向性有以下要求: ①主瓣宽度尽可能窄, 以抑制干扰。但如果信号与干扰来自 同一方向, 即使主瓣很窄,也不能抑制干扰; 另一方面, 当来波方向易于变化时, 主瓣太窄则难以保证稳定的接收。因此, 如何选择主瓣宽度, 应根据具体情况而定。 ②旁瓣电平尽可能低。如果干扰方向恰与旁瓣最大方向相同, 则接收噪声功率就会较高, 也就是干扰较大; 对雷达天线而言, 如果旁瓣较大, 则由主瓣所看到的目标与旁瓣所看到的目标会在显示器上相混淆, 造成目标的失落。因此, 在任何情况下, 都希望旁瓣电平尽可能的低。 ③天线方向图中最好能有一个或多个可控制的零点, 以便 将零点对准干扰方向,而且当干扰方向变化时, 零点方向也随之改变, 这也称为零点自动形成技术。

6.8 有一长度为d l的电基本振子,载有振幅为I0、沿+y方向的时谐电 流,试求其方向函数, 并画出在xOy面、xOz面、yOz面的方向图。 F(θ) = sinθ,θ指辐射方向与y轴的夹角 xOy面

微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz(波长1m)至3000GHz(波长0.1m). 微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性. 与低频区别:趋肤效应,辐射效应,长线效应,分布参数。 微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。 集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。 这类电路所涉及电路元件的电磁过程都集中在元件内部进行。用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。 分布参数: 电路是指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 分布参数电路的实际尺寸能和电路的工作波长相比拟。 对于分布参数电路由传输线理论对其进行分析。 均匀传输线方程(电报方程): t t z i L t z Ri z t z u ? ? + = ? ?) , ( ) , ( ) , (, t t z u C t z Gi z t z i ? ? + = ? ?) , ( ) , ( ) , ( 传输线瞬时电压电流: ) cos( ) cos( ) , ( 2 1 z t e A z t e A t z u z zβ ω β ωα α- + + =- + )] cos( ) cos( [ 1 ) , ( 2 1 z t e A z t e A Z t z i z zβ ω β ωα α- + + =- + 特性阻抗: C j G L j R Z ω ω + + = (无耗传输线R=G=0.) 平行双导线(直径为d,间距为 D): d D Z r 2 ln 120 ε = 同轴线(内外导体半径a,b): a b Z r ln 60 ε = 相移常数: λ π ω β 2 = =LC 输入阻抗: ) tan( ) tan( 1 1 0z Z Z z Z Z Z Z inβ β + + = 反射系数:z j z j e e Z Z Z Z zβ β- -Γ = + - = Γ 1 1 1 ) ( 终端反射系数:1 | | 1 1 1 1 φj e Z Z Z Z Γ = + - = Γ

最新微波技术与天线总复习题讲解资料

微波技术与天线基础总复习题 一、填空题 1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。并 划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等 重要特点。 2、无耗传输线上的三种工作状态分别为: 、 、 。 3、传输线几个重要的参数: (1) 波阻抗: ;介质的固有波阻抗为 。 (2) 特性阻抗: ,或 ,Z 0=++ I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 . (3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。传输线输入阻抗的 特点是: a) b) c) d) (4) 传播常数: (5) 反射系数: (6) 驻波系数: (7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ; 工作在行驻波状态的条件是: 。 (8) 无耗传输线的特性阻抗0Z = , 输入阻抗具有 周期性,传输 线上电压与电流反射系数关系 ,驻波比和放射系数关系 。 4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。 5、负载获得最大输出功率时,负载与源阻抗间关系: 。 6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标 图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反 射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻 抗圆图或导纳圆图。阻抗圆图上的等值线分别标有 , 而 和 ,并没有在圆图上表示出来。导纳圆图可 以通过对 旋转180°得到。阻抗圆图的实轴左半部和右半

部的刻度分别表示或和或。圆图上的电刻度表示,图上0~180°是表示。 7、Smith圆图与实轴右边的交点为点。Smith圆图实轴上的点代表点,左半轴上的点为电压波点,右半轴上的点为电压波点。在传输线上电源向负载方向移动时,对应在圆图上应旋转。 8、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。 9、负载获得最大输出功率时,负载与源阻抗间关系: 10、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。 11、矩形波导的管壁电流的特点是:(1)、(2)、(3)。 12、模式简并现象是指, 主模也称基模,其定义是。单模波导是指;多模传输是。 13、圆波导中的主模为,轴对称模为,低损耗模为。 微带线的特性阻抗随着w/h的增大而。相同尺寸的条件下,εr越大, 特性阻抗越 14、微波元器件按其变换性质可分为、、三大类。 15、将由不均匀性引起的传输特性的变化归结为等效。 16、任意具有两个端口的微波元件均可看做为。 17、[Z]矩阵中的各个阻抗参数必须使用法测量; [Y]矩阵中的各参数必须用法测量; 18、同一双端口网络的阻抗矩阵[Z]和导纳矩阵[Y]关系是。 19、多口网络[S]矩阵的性质:网络互易有,网络无耗有,网络对称时有 .

相关文档
最新文档