气体火焰切割工艺及参数 (2)
火焰切割工艺
![火焰切割工艺](https://img.taocdn.com/s3/m/b418336f9b6648d7c1c746d6.png)
数控火焰切割工艺气割精度是指被切割完的工作几何尺寸与其图纸尺寸对比的误差关系,切割质量是指工件切割断面的表面粗糙度、切口上边缘的熔化塌边程度、切口下边缘是否有挂渣和割缝宽度的均匀性等。
一、气割前的准备工作被切割金属的表面,应仔细地清除铁锈、尘垢或油污。
被切割件应垫平,以便于散放热量和排除熔渣。
决不能放在水泥地上切割,因为水泥地面遇高温后会崩裂。
切割前的具体要求如下。
①检查工作场地是否符合安全要求,割炬、氧气瓶、乙炔瓶(或乙炔发生器及回火防止器)、橡胶管、压力表等是否正常,将气割设备按操作规程连接好。
②切割前,首先将工件垫平,工件下面留出一定的间隙,以利于氧化铁渣的吹除。
切割时,为了防止操作者被飞溅的氧化铁渣烧伤,必要时可加挡板遮挡。
③将氧气调节到所需的压力。
对于射吸式割炬,应检查割炬是否有射吸能力。
检查的方法是:首先拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门。
这时,将手指放在割炬的乙炔过气管接头上,如果手指感到有抽力并能吸附在乙炔进气管接头上,说明割炬有射吸能力,可以使用;反之,说明割炬不正常,不能使用,应检查修理。
④检查风线,方法是点燃火焰并将预热火焰调整适当。
然后打开切割氧气阀门,观察切割氧流(即风线)的形状,风线应为笔直、清晰的圆柱体并有适当的长度。
这样才能使工件切口表面光滑干净,宽窄一致。
如果风线不规则,应关闭所有的阀门,用通针或其他工具修整割嘴的内表面,使之光滑。
预热火焰的功率应根据板材厚度不同加以调整,火焰性质应采用中性焰。
二、钢板表面预处理钢板从钢铁厂经过一系列的中间环节到达切割车间,在这段时间里,钢板表面难免产生一层氧化皮。
再者,钢板在轧制过程中也产生一层氧化皮附着在钢板表面。
这些氧化皮熔点高,不容易燃烧和熔化,增加了预热时间,降低了切割速度;同时经过加热,氧化皮四处飞溅,极易对割嘴造成堵塞,降低了割嘴的使用寿命。
所以,在切割前,很有必要对钢板表面进行除锈预处理。
常用的方法是抛丸除锈,之后喷漆防锈。
气焊与气割
![气焊与气割](https://img.taocdn.com/s3/m/3889640979563c1ec5da7133.png)
第四节电石和乙炔发生器(站)的 使用安全要求 一、电石的使用安全要求 (一)电石的物理化学性质及毒性 1、电石与水的化合作用 2、电石的分解速度 3、硅铁杂质 4、电石的毒性
(二)电石发生爆炸失火的原因 (三)对电石运输、储存和使用 的安全要求 1、电石的运输 2、电石的储存 3、电石的使用 二、乙炔发生器(站)的使用要 求
(一)乙炔发生器的种类和构造 (二)乙炔发生器着火爆炸的原因 和分类 (三)乙炔发生器的安全装置 阻火装置、防爆泄压装置和指示装 置。 1、回火防止器 2、泄压膜 3、安全阀
4、压力表 四、乙炔发生器安全使用要求 1、乙炔发生器的布置原则 2、使用前的准备工作 3、工作
能够进行氧乙炔切割的金属的五个 条件: 条件: (1)金属在氧气中的燃点应低于其 ) 熔点。 熔点。 (2)气割时金属氧化物的熔点应低 ) 于金属的熔点。 于金属的熔点。 (3)金属在切割氧流中的燃烧应是 ) 放热反应。 放热反应。 (4)金属的导热性不能太高。 )金属的导热性不能太高。 (5)阻碍气割的杂质要少。 )阻碍气割的杂质要少。
中性焰有三个显著的区域:焰芯、内焰 和外焰。 1、焰芯:白而亮,轮廓清晰。温度 800~1200 ℃ 。 2、内焰:内焰处在焰芯前2~4mm部位 燃烧最剧烈,温度最高,可达 3100~3150 ℃ 。火焰具有还原性。 3、外焰:外焰火焰进行第二阶段的燃烧, 生产CO2和水。温度为1200~2500 ℃。 中性焰应用最广泛,一般用于焊接碳素 钢、紫铜和低合金钢等。
二、气焊与气割的安全特点 气焊气割的主要危险是火灾与爆 炸。防火防爆是气焊气割的主要 任务。 任务。
第二节 *
气焊气割火焰及工艺 参数的选择
一、气焊气割火焰 (一)焊接切割的火焰分类 氧—乙炔焰具有很高的温度(约 3200℃),加热集中,是气焊气割中主 要采用的火焰。氧—乙炔焰根据氧和乙 炔混合比的不同,可分为中性焰、碳化 焰和氧化焰。 (二)中性焰
气体火焰切割工艺及参数
![气体火焰切割工艺及参数](https://img.taocdn.com/s3/m/b038131e6edb6f1aff001f13.png)
气体火焰切割工艺及参数影响气割过程的主要参数影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有:①切割氧的纯度;②切割氧的流量、压力及氧流形状;③切割氧流的流速、动量和攻角;④预热火焰的功率;⑤被切割金属的成分、性能、表面状态及初始温度;⑥其他工艺因素。
其中切割氧流起着主导作用。
切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。
因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。
⑴切割氧的纯度氧气的纯度是影响气割过程和质量的重要因素。
氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。
氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。
一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%。
⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。
由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。
因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。
⑶切割氧压力随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大。
但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。
切割氧压力对切割速度的影响大致相同。
如图2所示。
由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。
用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。
气割工艺参数气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。
⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数。
《气割与气焊》
![《气割与气焊》](https://img.taocdn.com/s3/m/5aa4f427192e45361066f58c.png)
钳工基本技能学习资料Ⅰ(气割与气焊)气焊与气割是利用可燃气体与助燃气体混合燃烧所释放出的热量作为热源进行金属材料的焊接或切割。
由于乙炔气与氧气混合燃烧产生的温度最高,所以目前气焊、切割中应用最广的一种可燃气体。
一、切割和气焊用的焊接材料1、氧气――氧气本身不能燃烧,但能帮助其他可燃物质燃烧。
2、氧气的纯度对气割与气焊的质量、生产率以及氧气本身的消费量有直接的影响。
使用时氧气纯度不应低于98.5%。
3、乙炔――是电石和水相互作用分解而得到的可燃气体。
4、乙炔与氧气混合燃烧时产生的火焰温度为3000~3300℃,因此足以迅速融化金属进行切割和焊接。
5、注意事项:乙炔是一种具有爆炸性的危险气体,乙炔与空气或氧气混合而成的气体也具有爆炸性。
乙炔与铜或银长期接触后会生存一种爆炸性的化合物,所以凡事与乙炔接触的器具设备禁止用银或纯铜制造,只准用铜的质量分数不超过70%的铜合金制造。
乙炔能够大量溶解于丙酮溶液中,这样我们就可以利用这个特性,将乙炔装入乙炔瓶内(乙炔瓶内装有丙酮溶液和活性炭)储存、运输和使用。
6、气焊丝焊丝的化学成分基本上是与被焊接金属化学成分相同,有时为了获得较好的焊缝质量在焊丝中加入其他合金元素。
牌号、用途见表17、气焊溶剂――气焊过程中,被加热的溶化金属极易与周围空气中的氧或者火焰中的氧化合生成氧化物,使焊缝产生气孔和夹渣等缺陷。
为了防止金属的氧化以及消除已经形成的氧化物,在焊接有色金属(铜和铜合金、铝和铝合金)、铸铁以及不锈钢等材料时通常采用气焊溶剂。
牌号、用途见表2用法:气焊溶剂可以在焊前直接撒在焊件坡口上,或者蘸在气焊丝上加如熔池。
二、气割1、气割设备与工具及连接:(1)气瓶―――氧气瓶、乙炔瓶(2)减压器、回火防止器、输送胶管、割炬1)氧气瓶:是储存和运输氧气的高压容器,瓶内氧气压力为15MPa,一般外表规定为蓝色,并用黑色标写“氧气”字样。
使用注意:开启氧气瓶阀时,不要面对出气口和减压器,以防伤人。
气焊气割火焰及工艺参数的选择
![气焊气割火焰及工艺参数的选择](https://img.taocdn.com/s3/m/23d13f274431b90d6d85c707.png)
第二节气焊气割火焰及工艺参数的选择一、气焊气割火陷气焊的火焰是用来对焊件和填充金属进行加热、熔化和焊接的热源;气割的火焰是预热的热源;火焰的气流又是熔化金属的保护介质。
焊接火焰直接影响到焊接质量和焊接生产率,气焊气割时要求焊接火焰应有足够的温度,体积要小,焰芯要直,热量要集中;还应要求焊接火焰具有保护性,以防止空气中的氧、氮对熔化金属的氧化及污染。
(一)焊接切割的火焰分类气焊气割的气体火焰包括氧—乙炔焰、氢氧焰及液化石油气体[丙烷(C3H8)含量占50%~80%,此外还有丁烷(C4H10)、丁烯(C4H8)等]燃烧的火焰。
乙炔与氧混合燃烧形成的火焰,称为氧—乙炔焰。
氧—乙炔焰具有很高的温度(约3200℃),加热集中,因此,是气焊气割中主要采用的火焰。
氢与氧混合燃烧形成的火焰,称为氢氧焰。
氢氧焰是最早的气焊利用的气体火焰,由于其燃烧温度低(温度可达2770℃),且容易发生爆炸事故,未被广泛应用于工业生产,目前主要用于铅的焊接及水下火焰切割等。
液化石油气燃烧的温度比氧-乙炔火焰要低(丙烷在氧气中燃烧温度为2000~2850℃)。
液化石油气体燃烧的火焰主要用于金属切割,用于气割时,金属预热时间稍长,但可以减少切口边缘的过烧现象,切割质量较好,在切割多层叠板时,切割速度比使用乙炔快20%~30%。
液化石油气体燃烧的火焰除越来越广泛地应用于钢材的切割外,还用于焊接有色金属。
国外还有采用乙炔与液化石油气体混合,作为焊接气源。
乙炔(C2H2)在氧气(O2)中的燃烧过程可以分为两个阶段,首先乙炔在加热作用下被分解为碳(C)和氢(H2),接着碳和混合气中的氧发生反应生成一氧化碳(CO),形成第一阶段的燃烧;随后在第二阶段的燃烧是依靠空气中的氧进行的,这时一氧化碳和氢气分别与氧发生反应分别生成二氧化碳(CO2)和水(H2O)。
上述的反应释放出热量,即乙炔在氧气中燃烧的过程是一个放热的过程。
氧—乙炔火焰根据氧和乙炔混合比的不同,可分为中性焰、碳化焰和氧化焰三种类型,其构造和形状如图2—2所示。
关于气割的知识
![关于气割的知识](https://img.taocdn.com/s3/m/05deb52c192e45361166f50d.png)
关于气割的知识气割气割的工艺参数主要有预热火焰能率、切割氧气压力、切割速度、割嘴倾角及其与工件表面的距离等。
1、预热火焰能率预热火焰能率主要取决于割炬和割嘴的大小。
气割是应根据工件的厚度选择割炬型号和嘴号,火焰能率过大,会造成上且口边缘塌边或产生细竹状毛边。
特别是气割薄板时,火焰能率过大,会使整个切割而熔化,不仅切口不平整,而且下口边缘会形成熔滴,清查十分困难,甚至会出现边割边焊的现象。
如果火焰能率太小,则会导致预热时间长、切割速度慢、切割面粗燥甚至割不透等。
2、切割氧气压力切割氧气的压力主要根据切割厚度确定。
氧气压力太小切割过程缓慢,切口粘渣,甚至个不透;氧气压力过大,不但浪费氧气,而且切口增宽、表面粗糙,如果切割场所尘灰较多,还会因此溅起更多的飞灰,恶化作业环境。
3、切割速度切割速度也是影响切口质量的一个重要参数。
通常情况下切割速度随切割厚度的增加而减慢。
但是在相同的工艺条件下,切割速度太慢,相当于增加了火焰能率,因此会出现上切口塌边等类似火焰能率过大产生的缺陷;而切割速度太快,则会造成拖量多大甚至割不透。
4、割嘴倾角气割时,通常割嘴应垂直于工件表面。
但直线切割厚度小于20mm的工件时,割嘴可向后(与切割方向相反)倾斜20o-30o,这样可消除或减少后拖量,提高切割速度与质量。
当直线或曲线切割厚度大于20mm的工件时,割嘴应垂直于工件表面。
5、割嘴与工件表面的距离割嘴与工件表面之间的距离应视火焰能率及工件的厚度面定。
一般以焰新距工件表面2-4mm为宜。
但在切割较厚的工件时,火焰能率较大,各最于工件表面的距离可适当增大些,以防止切口边熔化以及因各最过热核飞溅的熔渣堵塞碰嘴可引起回火(在氧气作用下,火焰在乙炔输气管内倒燃的现象)。
气焊与气割设备的安全使用焊与气割设备主要由气瓶、减压器、焊炬、割炬及橡胶软管等组成。
一、常用气瓶的安全使用用于气焊与气割的氧气瓶和氢气瓶属于压缩气瓶,乙炔气瓶属于溶解气瓶,石油气瓶属于液化气瓶。
气割的工艺
![气割的工艺](https://img.taocdn.com/s3/m/6c4eb20e2a160b4e767f5acfa1c7aa00b52a9d04.png)
气割的工艺气割是一种使用氧气和可燃气体进行金属切割的工艺。
它是通过高温火焰将金属加热至熔点或燃点,然后利用高速氧化反应产生的庞大热量将金属切割开来。
气割广泛应用于金属加工和焊接行业,因其操作简单、成本低廉以及对不同类型的金属切割效果良好而备受青睐。
气割主要包括预热、燃烧和割缝三个步骤。
首先,通过火焰喷嘴向金属工件喷射预热火焰,将金属加热至一定温度,以便提高气割速度和切割质量。
然后,在预热的金属表面上喷射可燃气体和氧气混合物,形成燃烧火焰。
这时,可燃气体在与氧气接触的同时发生火焰燃烧,产生大量热量。
最后,燃烧火焰的高温和高速氧化作用将金属表面氧化并快速蒸发,形成割缝,并在火焰喷嘴的喷射压力下将金属切割开来。
气割的工艺特点主要有以下几个方面:1. 多用于中小型金属切割:气割适用于对中小型金属进行切割,如铁、铝、不锈钢等。
对于厚度较大的金属,气割可以通过提高预热温度和增加切割速度来进行切割。
2. 切割速度快:气割的切割速度相对较快,因为它使用的是高温高速氧化反应产生的巨大热量进行切割。
然而,切割速度也受到金属种类、厚度和切割质量要求等因素的影响。
3. 切割质量较高:气割可以满足对切割质量的要求,切缝宽度较小(通常为2-6毫米),表面质量较好,适用于一些对切割精度和切割表面质量要求较高的场合。
4. 适用范围广:气割可以适用于不同种类的金属切割,比如碳钢、合金钢、铸铁、铝合金等。
然而,对于一些反应性较强的金属,如钛合金等,气割可能会引起割缝上的氧化、腐蚀等问题。
5. 操作简便,成本低廉:气割设备操作相对简单,不需要复杂的设备和技术,适用于一些简单的加工场所。
而且,气割使用的是空气和可燃气体,成本相对较低,比如使用乙炔气体等可燃气体。
然而,气割也存在一些局限性和不足之处。
例如,气割切割速度相对较慢,不适用于对切割速度要求较高的场合。
此外,气割切割的材料厚度也有一定限制,对于特别厚的材料,可能需要采用其他切割工艺。
火焰切割技术参数
![火焰切割技术参数](https://img.taocdn.com/s3/m/6b9322f4f111f18583d05ae8.png)
>0.03
2
1.4
30-50
1.6
14-17
350-380
0.25-0.45
>0.03
3
1.6
50-70
1.9
16-19
300-240
0.3-0.5
>0.04
4
1.8
70-90
2.2
18-25
260-200
0.3-0.5
>0.04
5
2.0
90-120
2.4
24-32
210-170
0.4-0.6
>0.04
6
2.4
120-160
2.9
31-42
180-140
0.5-0.8
>0.05
割嘴切割性能及基本参数表(乙炔切割)
割嘴号(#)
切割氧孔径(mm)
切割厚度(mm)
割缝半径(mm)
预热时间(s)
切割速度(mm/min)
气体压力
氧气
乙炔
0
0.8
5-10
1
10-13
600-450
0.2-0.4
>0.03
70-90
2.2
24-32
260-200
0.3-0.5
>0.04
6
2.0
90-120
2.4
31-42
210-170
0.4-0.6
>0.04
7
2.4
120-160
2.9
40-60
180-140
0.5-0.8
>0.05
8
2.8
气割操作的步骤和方法
![气割操作的步骤和方法](https://img.taocdn.com/s3/m/42b1bbf628ea81c758f5785d.png)
提示:气割主要包括气割前准备、火焰的调整、气割和气割后清理等几个操作步骤。
各步骤的操作内容及操作要点主要有以下方面内容。
应该说明的是,对于采用其他种类燃气的气体火焰气割,如氧,丙烷气割、氧一液化石油气气割等,其操作步骤与氧乙炔焰气割基本一样,但由于火焰温度略低,因此预热时间要稍长,切割速度要稍慢些。
一气割主要包括气割前准备、火焰的调整、气割和气割后清理等几个操作步骤。
各步骤的操作内容及操作要点主要有以下方面内容。
应该说明的是,对于采用其他种类燃气的气体火焰气割,如氧,丙烷气割、氧一液化石油气气割等,其操作步骤与氧乙炔焰气割基本一样,但由于火焰温度略低,因此预热时间要稍长,切割速度要稍慢些。
一般气割下料可按以下方法及步骤操作:1)气割前准备。
将工件表面的油污和铁锈清理干净,并将工件垫起一定的高度,使工件下面留有一定间隙,以利于熔渣的吹出。
根据图样尺寸及形状的要求,在待加工钢板上利用划线工具划出下料线。
根据所切割板料的厚度,通过表2-10选用割炬的型号、割嘴的号码及形式(如气割料厚10mm的Q235钢板可选用G01-30型割炬,2号环形割嘴),然后检查割炬是否正常。
检查割炬的方法如图8-2所示。
旋开割炬氧气调节阀,使氧气流过混合气室喷嘴,这时将手指放在割炬的乙炔进气管口上,如果手指感到有吸力,证明割炬正常,若无吸力或有推力,则证明割炬不正常,必须进行修理或更换。
2)火焰的调整。
调整火焰时,先微量打开氧气阀,再少量打开乙炔阀,使可燃混合气体从割炬中喷出,然后用左手握住割炬中部,使割嘴背向人体,右手点燃割炬,再用右手握住割炬,调整氧气与乙炔阀门,使预热火焰为中性焰。
判断氧乙炔焰性质最简便实用的方法,就是观察氧乙炔焰燃烧的形状。
中性焰的长度适中,明显可见焰心、内焰和外焰三部分(图8-3a);碳化焰较长,而且明亮,内焰比较突出(图8-3b);氧化焰的长度较短,内、外焰无明显界限,亮度较暗(图8-3c)。
图8-2 检查割炬的方法图8-3 观察调整预热火焰1-焰心2-内焰3-外焰在预热火焰调至中性焰后,可反复试放切割氧,同时调节混合气调节阀,以保证氧乙炔焰在切割过程中也能保持为中性焰。
气体火焰切割工艺
![气体火焰切割工艺](https://img.taocdn.com/s3/m/a77f6313fc4ffe473368ab24.png)
MT/T587-1996“液压支架结构 件制造技术条件
• 表3、剪切板料的切断面对板料表面垂直度 公差
板厚 δ≤16 16<δ≤25 简图 垂直度公差 0.4 1
MT/T587-1996“液压支架结构 件制造技术条件
• 8、零件未注尺寸公差、形位公差 8.1顶板、主筋板尺寸公差见表4 表4
基本尺寸 500-1000 >1000-2500 >2500-4000 >4000 尺寸公差 ±2 ±2.5 ±3 ±3.5
• 表5、未注形位公差
板厚 δ≤12 δ>12 直线度 平面度 被測面长度L 任1000长度内 δ≤1000 δ>1000 1.5L/1000 1.5 1.5 但不得大于5 L/1000 1 1 但不得大于5
影响火焰切割质量的三个基本要 素(气体、切割速度、割嘴高度)
• 一、气体 • 1、氧气 • 氧气是可燃气体燃烧时所必须的,以便达 到钢材的点燃温度提供所需的能量;另外, 氧气是钢材被预热达到然点后进行燃烧所 必须的。
表1、机加工余量
长宽比 L/b 板厚 加工种 类 刀检 长宽比 L/b 板厚 表面粗 糙度 Ra12.5 δ≤20 L/b≤10 δ≤20 20<δ <50 δ≥50 δ≤20 10<L/b≤15 20<δ <50 最大加工余量 2 3 L/b≤10 20<δ <50 3-4 δ≥50 δ≤20 4 3 4-5 10<L/b≤15 20<δ <50 5 δ≥50 δ≤20 5 L/b>15 20<δ <50 δ≥50 δ≥50 δ≤20 L/b>15 20<δ <50 δ≥50
气体火焰切割工艺
林州重机集团股份有限公司
气割
利用可燃气体与氧气混合燃烧的火焰热能将工 件切割处预热到一定温度后,喷出高速切割氧流, 使金属剧烈氧化并放出热量,利用切割氧流把熔 化状态的金属氧化物吹掉,而实现切割的方法。 金属气割的过程实质是铁在纯氧中的燃烧过程, 而不是熔化过程。 • 气割过程是预热-燃烧-吹渣过程,并不是 所有金属都能满足这个过程要求。
气体火焰切割工艺及参数
![气体火焰切割工艺及参数](https://img.taocdn.com/s3/m/50afe6a1be23482fb5da4c77.png)
气体火焰切割工艺及参数影响气割过程的主要参数影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有:①切割氧的纯度;②切割氧的流量、压力及氧流形状;③切割氧流的流速、动量和攻角;④预热火焰的功率;⑤被切割金属的成分、性能、表面状态及初始温度;⑥其他工艺因素.其中切割氧流起着主导作用。
切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。
因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。
⑴切割氧的纯度氧气的纯度是影响气割过程和质量的重要因素。
氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。
氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。
一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%.⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。
由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。
因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。
⑶切割氧压力随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大.但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。
切割氧压力对切割速度的影响大致相同。
如图2所示。
由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙.用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。
气割工艺参数气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。
⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数.气割时一般选用中性焰或轻微的氧化焰。
气体火焰切割技
![气体火焰切割技](https://img.taocdn.com/s3/m/68a92a26360cba1aa911dac9.png)
气体火焰切割技术1 •坡口的气割焊接之前常需要对钢板的接头处开坡口,坡口切割方法有手工切割和机械切 割两种。
在设备条件好的情况下,可采用机械切割,如采用坐标式切割机、平面 四边形切割机或专为切割坡口用的切割设备等。
采用机械方法切割的坡口,只要把熔渣清理干净,不需要进行任何的机械加工就可进行焊接。
在成批生产中,采 用机械方法切割坡口的经济效益更为显著。
由于手工切割坡口设备简单(采用普通气割设备),方便灵活,对于组合的 部件和结构较复杂的零件以及单件生产,手工切割比较方便、有效。
但手工切割 坡口的质量在很大程度上受切割技术熟练程度的影响。
对于重要构件或受压容器 的焊接坡口,在没有把握的情况下最好不用手工切割。
焊接结构中常见的焊接坡口有 V 形、丫形、X 形(带钝边或不带钝边)、U 形,如图1所示。
其中V 形和丫形坡口当单侧坡口角度大于30°时,通常不易 气割,需把坡口面置于背面进行切割。
图】 焊接结构中常见的坡口形式在正确掌握切割参数和操作技术的条件下, 气割坡口的质量良好,可直接用 于工件装配和焊接。
(1)V 形坡口的气割用机械方法切割单面V 形坡口时,可采用两把割炬同时进行切割。
一把割炬 垂直于被切割金属表面,另一把割炬与切割表面成一定角度。
调整好割炬倾角后, 一般用半自动气割机或手扶式半自动气割机进行切割。
垂直的割炬在前移动,倾 斜的割炬在后面移动。
须按实际切割厚度选定割嘴号码和气割参数。
也可用手工方法切割单面 V 形坡口。
单割炬切割V 形坡口的示意见图2。
气割前OG ©X 形(S 带盹边X形(e) U 形先按坡口尺寸划好线,然后将割嘴按坡口角度找好,以往后拖或向前推的操作方法进行切割,切割速度稍慢,预热火焰功率应适当增加,切割氧的压力也应稍大些。
图2 单割矩切割V形坡口的示竜为了得到宽窄一致和角度相等的切割坡口,可将割嘴靠在扣放的角钢上进行切割,如图3所示。
为了更好地控制切割坡口的角度,还可将割嘴安装在角度可调的滚轮架上(一般是自制的),这样可以进一步保证切割质量,而且操作灵活〔见图3(c)〕。
气割的基本操作
![气割的基本操作](https://img.taocdn.com/s3/m/5e25f9d8bcd126fff6050ba1.png)
气割的基本操作一、气割工艺参数的选择气割工艺参数主要包括气割氧压力、气割速度、预热火焰能率、割嘴与割件的倾斜角度、割嘴与割件表面的距离等。
1.气割氧压力氧气压力的选择一般是随割件厚度的增大而加大,或随割嘴代号的增大而加大。
当割厚度小于 100 mm 时,其氧气压力的选用可参照表2—10。
在割件厚度、割嘴代号、氧气纯度均已确定的条件下,气割氧压力的大小对气割质量不直接的影响。
如果氧气压力不够,氧气供应不足,会造成金属燃烧不完全,气割速度降低不能将熔渣全部从割缝处吹除,使割缝的背面留下很难清除的挂渣,甚至还会出现割不透自现象。
如果氧气压力太高,则过剩的氧气对割件有冷却作用,使割口表面粗糙,割缝加大气割速度减慢,氧气消耗量也增大。
2.气割速度气割速度主要取决于割件的厚度。
割件越厚,割速越慢。
切割厚度大断面的工件,还多增加横向摆动。
但是,割速太慢,会使割缝边缘不齐,甚至产生局部熔化现象,割后清渣目难。
割件越薄,割速越快。
但是,割速也不能过快。
否则,会产生很大的后拖量或割不透玛象。
速度是否正确主要根据割缝的后拖量来判断。
所谓"后拖量"是指气割面上的4割氧流轨迹的始点、终点在水平方向上的距离,如图2—35 所示。
割时产生后拖量的主要原因如下∶(1)切口上层全属在燃烧时产生的气体冲淡了气割氧气流,使下层金属燃烧缓慢。
(2)下层金属无预热火焰的直接作用,因而使火焰不能充分地对下层金属加热,使集件下层不能剧烈燃烧。
(3)删件下层金属离割嘴距离较远,氧流射线直径增大,吹除氧化物的动能降低。
(4)割速太快,来不及将下层金属氧化而造成后拖量。
的后拖量是不可避免的,尤其是在气割厚钢板时更为显著。
因此,采用的气割速月以割缝产生的后拖量较小为原则,以保证气割质量。
气割速度的选择见表2—10。
3. 预热火焰能率火焰的作用是把金属割件加热至能在氧气流中燃烧的温度,并始终保持这个温度同时使钢材表面的氧化皮剥离和熔化,便于气割氧射流与铁化合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体火焰切割工艺及参数影响气割过程的主要参数影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有:①切割氧的纯度;②切割氧的流量、压力及氧流形状;③切割氧流的流速、动量和攻角;④预热火焰的功率;⑤被切割金属的成分、性能、表面状态及初始温度;⑥其他工艺因素。
其中切割氧流起着主导作用。
切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。
因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。
⑴切割氧的纯度氧气的纯度是影响气割过程和质量的重要因素。
氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。
氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。
一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%。
⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。
由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。
因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。
⑶切割氧压力随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大。
但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。
切割氧压力对切割速度的影响大致相同。
如图2所示。
由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。
用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。
气割工艺参数气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。
⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数。
气割时一般选用中性焰或轻微的氧化焰。
同时火焰的强度要适中。
应根据工件厚度、割嘴种类和质量要求选用预热火焰。
①预热火焰的功率要随着板厚的增大而加大,割件越厚,预热火焰功率越大。
氧-乙炔预热火焰的功率与板厚的关系见表1。
板厚/mm 火焰功率/L.min-13-25 4-8.325-50 9.2-12.550-100 12.5-16.7100-200 16.7-20200-300 20-21.7③使用扩散行割嘴和氧帘割嘴切割厚度200mm以下钢板时,火焰功率选大一些,以加速切口的前缘加热到燃点,从而获得较高的切割速度。
④切割碳含量较高或合金元素教多的钢材时,因为他们燃点较高,预热火焰的功率要大一些。
⑤用单割嘴切割坡口时,因熔渣被吹向切口外侧,为补充能量,要加大火焰功率。
气体火焰切割的预热时间应根据割件厚度而定,表2列出火焰切割选定预热时间的经验数据。
表2 气体火焰切割选定预热时间的经验数据⑵切割氧压力的选定切割氧压力取决于割嘴类型和嘴号,可根据工件厚度选择氧气压力。
切割氧气压力过大,易使切口变宽、粗糙;压力过小,使切割过程缓慢,易造成沾渣。
表3 切割氧气压力的推荐值在实际切割工作中,最佳切割氧压力可用试放“风线”的办法来确定。
对所采用的割嘴,当风线最清晰、且长度最长时,这时的切割压力即为合适值,可获得最佳的切割效果。
⑶切割速度切割速度与工件厚度、割嘴形式有关,一般随工件厚度增大而减慢。
切割速度必须与切口内金属的氧化速度想适应。
切割速度太慢会使切口上缘熔化,太快则后拖量过大,甚至割不透,造成切割中断。
在切割操作时,切割速度可根据熔渣火花在切口中落下的方向来掌握,当火花呈垂直或稍偏向前方排出时,即为正常速度。
在直线切割时,可采用火花稍偏向后方排出的较快的速度。
氧化速度快,排渣能力强,则可以提高切割速度。
切割速度过慢会降低生产率,且会造成切口局部熔化,影响割口表面质量。
机器切割速度比手工切割速度平均可提高20%,表4列出机械化切割时切割速度的推荐数据。
⑷割嘴到工件表面的距离割嘴到工件表面的距离是根据工件厚度及预热火焰长度来确定。
割嘴高度过低会使切口上线发生熔塌,飞溅时易堵塞割嘴,甚至引起回火。
割嘴高度过大,热损失增加,且预热火焰对切口前缘的加热作用减弱,预热不充分,切割氧流动能下降,使排渣困难,影响切割质量。
同时进入切口的氧纯度也降低,导致后拖量和切口宽度增大,在切割薄板场合还会使切割速度降低。
表4 机械切割时切割速度的推荐数据(5)切割倾角割嘴与割件间的切割倾角直接影响气割速度和后拖量。
切割倾角的大小主要根据工件厚度而定,工件厚度在30mm以下时,后倾角为20°~30°;工件厚度大于30mm时,起割是为5°~10°的前倾角,割透后割嘴垂直于工件,结束时为5°~10°的后倾角。
手工曲线切割时,割嘴垂直于工件。
割嘴的切割倾角与切割厚度的关系如图3所示。
气体火焰切割的工艺要点(1)气割前的准备工作被切割金属的表面,应仔细地清除铁锈、尘垢或油污。
被切割件应垫平,以便于散放热量和排除熔渣。
决不能放在水泥地上切割,因为水泥地面遇高温后会崩裂。
切割前的具体要求如下。
①检查工作场地是否符合安全要求,割炬、氧气瓶、乙炔瓶(或乙炔发生器及回火防止器)、橡胶管、压力表等是否正常,将气割设备按操作规程连接好。
②切割前,首先将工件垫平,工件下面留出一定的间隙,以利于氧化铁渣的吹除。
切割时,为了防止操作者被飞溅的氧化铁渣烧伤,必要时可加挡板遮挡。
③将氧气调节到所需的压力。
对于射吸式割炬,应检查割炬是否有射吸能力。
检查的方法是:首先拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门。
这时,将手指放在割炬的乙炔过气管接头上,如果手指感到有抽力并能吸附在乙炔进气管接头上,说明割炬有射吸能力,可以使用;反之,说明割炬不正常,不能使用,应检查修理。
本文章更多内容:<<上一页- 1 - 2 - 3 - 4 - 5 - 下一页>>本文章共6789字,分5页,当前第3页,快速翻页:12345④检查风线,方法是点燃火焰并将预热火焰调整适当。
然后打开切割氧气阀门,观察切割氧流(即风线)的形状,风线应为笔直、清晰的圆柱体并有适当的长度。
这样才能使工件切口表面光滑干净,宽窄一致。
如果风线不规则,应关闭所有的阀门,用通针或其他工具修整割嘴的内表面,使之光滑。
预热火焰的功率应根据板材厚度不同加以调整,火焰性质应采用中性焰。
(2)手工气割的操作要点气割操作中,首先点燃割炬,随即调整火焰。
火焰的大小根据钢板的厚度进行调整,然后预热工件和进行切割。
1)火焰调整根据燃气与氧的混合比不同,切割火焰分为碳化焰、中性焰和氧化焰,如图4所示。
在使用乙炔的场合,氧与乙炔的体积比(O2/C2H2)为1.1~1.15时,形成的火焰为中性焰,由焰芯、内焰和外焰组成。
焰芯为C2H2与O2的混合气。
内焰为C2H2与O2发生一次燃烧的反应区,其反应式为C2H2 O2→2CO H2在内焰中距离焰芯2~3mm处,温度最高,约3100°C。
外焰是一次燃烧生成的CO和H2、空气中氧化合成而燃烧的区域,其反应式为2CO H2 1.5O2→2CO2 H2O火焰温度约2500°C。
外焰越长,保护切割氧流的效果越好。
O2/C2H2比值小于1.1时形成碳化焰,也有焰芯、内焰和外焰,内焰中存在未燃烧的碳,火焰长而软,温度也较低。
O2/C2H2比值小于1.15时形成氧化焰,只有焰芯和外焰两部分。
火焰短而挺直并伴随有“嘶、嘶……”声,最高温度可达约3300°C。
因火焰中存在过剩氧,具有氧化性。
气割时一般应调整火焰到中性焰,同时火焰的强度要适中。
一般不采用碳化焰,因为碳化焰会使切割边缘增碳。
调整好火焰后,应当放出切割氧,检查火焰性质是否有变化。
切割火焰过强时会出现以下问题:①切口上边缘熔塌,并粘有颗粒状熔滴;②切割面不平整,粗糙度变差;③切口下缘粘渣。
切割火焰过弱时会发生以下问题:①切割速度减慢,且易发生切割中断现象;②易发生回火;③后拖量增大。
应根据工件厚度、割嘴种类和质量要求确定预热和切割火焰,其要点如下:①预热和切割火焰的功率(乙炔流量、氧气流量)要随着钢板厚度增大而加大;②切割较厚钢板时,火焰宜用轻度碳化焰,以免切口上缘熔塌,同时也可使外焰长一些;③使用扩散形割嘴和氧帘割嘴切割厚度20mm以下钢板时,火焰功率应大一些,以加速切口前缘加热到燃点,从而获得较高的切割速度;④切割碳含量较高或合金元素含量较高的钢材时,因它们的燃点较高,预热火焰的功率要大一些;⑤用单割嘴切割坡口时,因熔渣被吹向切口外侧,为补充热量,要加大火焰的功率;⑥使用石油气或天然气作为燃气,因其火焰温度低,预热时间较长;在切割小尺寸零件等需频繁预热起割的场合,为提高切割效率,可把火焰调节成氧化焰,开始切割后再恢复到中性焰。
2)操作技术气割操作因个人的习惯不同,可以有所不同。
一般是右手把住割炬把手,以右手的拇指和食指把住预热氧的阀门,以便于调整预热火焰和当回火时及时切断预热氧气。
左手的拇指和食指把住开关切割氧的阀门,同时还要起掌握方向的作用。
其余三个手指平稳地托住混合室。
上身不要弯得太低,呼吸要有节奏;眼睛应注视和割嘴,并着重注视割口前面的割线。
这种气割方法为“抱切法”,一般是按照从右向左的方向切割。
开始切割时,先预热钢板的边缘,待切口位置出现微红的时候,将火焰局部移出边缘线以外,同时慢慢打开切割氧气阀门。
当有氧化铁渣随氧气流一起飞出时,证明已经割透,这时应移动割炬逐渐向前切割。
切割很厚的金属时,割嘴与被切割金属表面大约成10°~20°倾角,以便能更好地加热割件边缘,使切割过程容易开始。
切割厚度50mm以下的金属,割嘴开始应与被切割金属表面成垂直位置。
如果是从零件内廓开始切割,必须预先在被切割件上面作孔(孔的直径等于切割宽度)。
开始切割时,先用预热火焰加热金属边缘,直至加热到使其能在氧中可以燃烧的温度,即在割件表面层出现将要熔化的状态时,再放出切割氧进行切割。
切割时割嘴与被切割金属表面的距离应根据火焰焰心长度来决定,最好使焰心尖端距割件 1.5~3mm,绝不可使火焰焰心触及割件表面。
为了保证割缝质量,在全部气割过程中,割嘴到割件表面的距离应保持一致。
沿直线切割钢板时,割枪应向运动反方向倾斜20°~30°,这时切割最为有效。
但在沿曲线外轮廓切割时,割嘴必须严格垂直于切割金属的表面。
切割过程中,有时因割嘴过热和氧化铁渣的飞溅,使切割割嘴堵住或乙炔供应不及时,割嘴产生鸣爆并发生回火现象。
这时应迅速关闭预热氧气阀门,阻止氧气倒流入乙炔管内,使回火熄灭。