七年级数学下册 3.1认识百万分之一同步练习 北师大版
北师大版七年级数学下册教案_第三章_生活中的数据
第三章 生活中的数据 3.1 认识百万分之一一、复习提问1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。
2.什么叫科学记数法?把下列各数用科学记数法来表示:(1)2500000 (2)753000 (3)205000000 四、随堂练习:几吨的百万分之一是多少吨?是多少克? 五、继续探索新知识,用科学计数法表示绝对值较小数 1. 正的纯小数的科学记数法表示: (1)学生填空:551010100001.0-==(2)总结规律:n-=1001......0.0:一般地把一个绝对值小于1的数也可以表示成na 10⨯的形式,其中101 a ≤,n 为负整数,n 等于非零的数前面的连续零的个数。
1、例:大多数花粉的直径约为20微米到50微米,这相当于多少米?解:因为1微米=610-米,所以大多数花粉的直径为61020-⨯米到61050-⨯米,即5102-⨯米到5105-⨯米。
2、做一做(1)你能在科学计算器上表示出12109.2⨯吗?7102.7-⨯呢?(2)在显微镜下,人体内一种细胞的截面图的形状可以近似地看成圆,它的直径约为61056.1-⨯米,利用科学计算器求出这种细胞的截面图的面积。
3、练习:把下列各数用科学记数学法表示: (1)0.000 000 001 65;(2)0.000 36微米,相当于多少米? (3)600纳米,相当于多少米? 小结1、1米=1000毫米、1毫米=1000微米、1微米=百万分之一米,即610-米。
2、把较小的数表示成科学记数法,小数点向右移动几位,就写成10的负几次方。
3、用科学记数法表示绝对值较小的数也是将它写成na 10⨯米的形式,其中a 也是大于或等于1且小于10的一个数,不同的地方是此时10的指数n 变成了负整数。
3.2近似数与有效数字 (一)通过学生的练习,加深对近似数的理解,并讲解例题1、2 (二)练习: 1、判断下列各数,哪些是准确数,哪些是近似数(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;( )(2)检查一双没洗过的手,发现带有各种细菌80000万个;( ) (3)张明家里养了5只鸡;( )(4)1990年人口普查,我国的人口总数为11.6亿;( ) (5)小王身高为1.53米;( )(6)月球与地球相距约为38万千米;( ) (7)圆周率π取3.14156( )2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:(1)四舍五入到十分位___________ (2)四舍五入到百分位_________ (3)四舍五入到个位____________一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 在上题中,小明得到的近似数分别精确到哪一位。
3.1认识一百万分之一
3.1认识⼀百万分之⼀3.1认识百万分之⼀年级:七年级学科:数学执笔:张娜课型:新授审核:市⼆中樊丽时间:2008.12.18【学习⽬标】:知识⽬标:借助⾃⼰熟悉的事物,从不同⾓度对百万分之⼀进⾏感受,发展学⽣的数感,能⽤科学记数法表⽰百万分之⼀等较⼩的数据。
能⼒⽬标:通过实际⽣活中熟悉事物所涉及的数据的估计、⽐较及观察和动⼿操作测量等过程,进⼀步体验、感受较⼩的数,增强数感及对数的正确解释能⼒、运⽤能⼒。
情感⽬标:促进学⽣善于观察周围现实世界,体验“数”⽆处不在,让每个学⽣在相互交流中获益。
【学习重点】:如何让学⽣从⾝边较熟悉的事物出发,从多⾓度对较⼩的数进⾏感受、描述、估测,建⽴对较⼩数据认识的数感,并学会⽤科学记数法进⾏表⽰。
【学习难点】:如何描述百万分之⼀的⼤⼩;并正确⽤科学记数法正确表⽰绝对值⼩于1的数据。
【学习⽅法】:⾃学探究,合作交流,反馈提升【学习过程】:⼀.创设情境、提出问题:1.借助课件出⽰引导性材料⼆⼗⼀世纪世界上诞⽣了⼀门新学科,这就是“纳⽶技术”。
纳⽶是⼀种长度单位,它⽤来表⽰⼀种很微⼩的长度,1纳⽶是1毫⽶的百万分之⼀,是1⽶的⼗亿分之⼀,1纳⽶相当于1根头发丝的六万分之⼀。
直径为1纳⽶的球与乒乓球相⽐,相当于乒乓球与地球相⽐。
(展⽰课件)看了之后你都想说点什么?同学之间可以相互交流。
2、画⼀画按要求作图。
⾸先思考,根据所学的知识,你能够在本⼦上画出⼀⽶的百分之⼀吗?画出⼀⽶的千分之⼀呢?你能画出⼀⽶的百万分之⼀吗?它与⼀⽶⽐较是不是很⼩呢?点明课题《认识百万分之⼀》。
(板书课题:认识百万分之⼀)⼆.⾃学探究1、⾃学感受新知⽣活中到处都存在着这样较⼩的数,⽼师收集到了实际⽣活中碰到⼀些很⼩的数,⽐如存在于⽣物体内的某种细胞的直径约为百万分之⼀⽶,即1微⽶;计算机的存储器完成⼀次存储的时间⼀般以百万分之⼀秒或⼗亿分之⼀秒为单位;彩票中特等奖的可能性只有百万分之⼀。
你们能不能列举出⼀些这样的数据?请⼩组为单位交流⼀下你收集的⽣活中的较⼩的数。
北师大版七下3.1 认识百万分之一(含答案)--
3.1 认识百万分之一姓名________一、填空题:(每题6分,共30分)1.某种花粉的直径是35μm,用科学记数法表示为___________m。
2.用科学记数法表示:0.00034=______________,-0.000 007 304=_____________。
3.4.6×10-6有_______位小数,9.036×10-4有____________位小数。
4.用科学记数法表示的数-5.3×10-5的原数是_________________。
5.1本100页的书大约0.5cm厚,则一张纸厚____________m.(用科学记数法表示)二、选择题:(每题6分,共30分)6.一块100×100m2的足球场,它的百万分之一大约有()A.一只拇指头大B.一只手掌心大C.一本数学课本大D.一床被单大7.光的速度约为300 000 000m/s,用手电筒照射30m外的小明,打开手电筒,光线多长时间能照射到小明身上?()A.一千分之一sB.一百万分之一sC.十万分之一s;D.一万分之一s8.将10g的糖放入99 990g的水中,溶液的浓度是()A.10-6B.10-5C.10-4D.10-39.1mL的水大约可以滴10滴,1杯水约250mL,一滴水占一杯水的()A.4×10-4B.4×10-5C.4×10-6D.4×10-310.纳米技术是21世纪新兴技术,纳米是一个长度单位,1 纳米等于1m的10亿分之一,关系式:1纳米=10n m中,n应该是()A.10B.9C.8D.-10三、解答题:(每题10分,共40分)11.一种塑料颗粒是边长为1mm的小正方体,它的体积是多少立方米?(用科学记数法表示)若用这钟塑料颗粒制成一个边长为1m的正方体塑料块,要用多少个颗粒?12.一块700mm2的芯片上能集成10亿个元件,每一个这样的元件约占多少平方毫米?约多少平方米?(用科学记数法表示)13.一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Ф1,外径Ф2的长分别为3.2cm、4.0cm,则这种保鲜膜的厚度约为多少厘米?( 取3.14)14.现有一满杯浓度为10%的糖水深液100mL,第一次从中倒出10mL,溶液后再用水加满,充分混合后形成新的糖水溶液100mL,第二次再从中倒出10mL,溶液后用开水加满,充分混合后又形成新的糖水溶液,……,如此反复操作下去。
七年级数学下册 第三章 生活中的数据教案 北师大版
第三章生活中的数据●课时安排6课时第一课时●课题§3.1 百万分之一有多小●教学目标(一)教学知识点1.借助自己熟悉的事情,从不同角度对百万分之一进行感受.2.能用科学记数法表示百万分之一等较小的数据.(二)能力训练要求1.通过自己熟悉的事物体会百万分之一,发展数感,培养从较小数据中获取信息的能力.2.提高运用现代工具处理数学问题的能力.(三)情感与价值观要求1.培养学生合作交流的意识,在合作交流的过程中体验学习数学的兴趣.2.鼓励学生积极参与各种教学环节,并从中获得成就感,获得数学活动的经验.●教学重点1.用熟悉的事物理解较小的数;2.用科学记数法表示较小的数.●教学难点通过测量、计算,能对含有较小数字的信息作出适当的估计.●教学方法探索—交流法教师引导学生试着用身边熟悉的事物去认识百万分之一,并通过小组活动,合作交流大家对较小的数的感受,从而学会用计算器和科学记数法表示比较小的数.●教具准备(一)演示文稿:幻灯片一:猜一猜幻灯片二:议一议幻灯片三:做一做幻灯片四:读一读(二)同桌的两位同学要有一台科学计算器●教学过程Ⅰ.提出问题,引入新课[师]我们在上学期曾感受过比较大的数100万有多大.但在我们生活中还存在有比较小的数.例如:(1)存在于生物体内的某种细胞的直径约为百万分之一米,即1微米.(2)某原子的直径约为一百亿分之二米.(3)计算机的存储器完成一次存储的时间一般以百万分之一秒或十亿分之一秒的单位.(5)为迎“五一”,一商场特设特等奖为100万的抽奖活动.凡在本商场购满100元都有抽奖机会,中特等奖的概率为百万分之一,即0.000001!!(5)人的头发丝的直径大约为0.00007米,这个数已经很小了,但还有更小的如纳米,1纳米=10亿分之一米.所以,在我们的生活中有很多这样的数,我们如何借助于我们身边的熟悉的事物感受、认识这些比较小的数呢?Ⅱ.联系身边熟悉事物,感受较小的数1.猜一猜(演示文稿:幻灯片一)·已知在现存的动物中最大的是生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸.这种动物长达33米,体重超过150吨.·你觉得它体重的百万分之一会和下列哪一种动物相近呢?(1)大象 (2)老虎 (3)公鸡(4)小松鼠1=0.00015吨=0.15千克[师生共析]蓝鲸体重的百万分之一即为:150吨×1000000=150克,所以它体重的百万分之一和小松鼠相近.·已知大象是世界上最大的陆栖动物,它的体重可达好几吨,下面哪个动物的体重相当于大象体重的百万分之一?(1)袋鼠 (2)啄木鸟 (3)蜜蜂[师生共析]通过体重对比,可发现大象体重的百万分之一大约是几克,这相当于一只蜜蜂的体重.(通过上面两个例子,在体重的对比中体会百万分之一)2.议一议(演示文稿:幻灯片二)活动一:珠穆朗玛峰是“世界屋脊”,它的海拔高度约为8848米.·它高度的千分之一是多少?相当于几层楼的高度?·它高度的百万分之一是多少?你认为会比一支圆珠笔高吗?你能直观形象地描述这个长度吗?活动二:我校操场面积大约有2500平方米,计算它的万分之一的面积.·你认为这个面积能近似地容纳下列哪种动物?(1)小狗 (2)公鸡 (3)小鸟 (4)知了·它面积的百万分之一,你觉得能容纳多大动物呢?活动三:天安门广场的面积约为44万米2,计算它的百分之一的面积,并用自己的语言对结果进行描述,它的万分之一呢?百万分之一呢?[师]下面就上面的三个活动,分组讨论,从中直观体验百万分之一.(教师应注意观察学生的表现,如是否积极参与活动;在活动中能否与同伴合作;能否用自己熟悉的事物对百万分之一描述) [生]活动一:珠峰的千分之一是8.848米,相当于三层楼的高度;而珠峰的百万分之一约是0.88 cm ,不会比圆珠笔高,因为和刻度尺比较一下,它还不到1 cm.[生]活动二:我校操场面积的万分之一为0.25 m 2,即1 m 2的四分之一,能放下一条宠物狗,而它的百万分之一只有0.0025 m 2即25 cm 2,这么小的面积只能放下一只知了. [生]活动三:天安门广场面积的百分之一为4400 m 2,不到咱们学校操场的两个的面积;它的万分之一是44 m 2,不到咱们一个教室的面积;它的百万分之一是0.44 m 2,还不如我们的课桌面积大.[师]我们通过上面几个例子,已能结合我们身边的事物对百万分之一等较小的数据进行体会,但是我们注意到了表示较小的数据例如十亿分之一,百万分之一较烦,有没有方便的办法呢?[生]用科学记数法可以很方便地表示一些绝对值较大的数.用科学记数法是不是也可以表示绝对值较小的数呢?我觉得是可以的.例如0.0001=100001=4101=10-4; 0.000 000 001=9101=10-9; ×7101×10-7. a ×10n 的形式,其中|a |也是大于等于1且小于10的一个数,不同的地方是此时10的指数n[师生共析]例1 大多数花粉的直径约为20到50微米,这相当于多少米呢?解:因为1微米=10-6米所以20微米=20×10-6米=2×10-5米30微米=30×10-6米=3×10-5米答:大多数花粉的直径约为2×10-5到3×10-5米.例2 估计下列事物的大小(1)一只猫的体长大约是多少千米?(2)一个鸡蛋的重量约多少吨?解:(1)一只猫的体长大约是35厘米=35×10-2米=35×10-2×10-3×10-4千米(2)一个鸡蛋的重量约为60克=60×10-3千克=60×10-3×10-3吨=6×10-5吨3.做一做(演示文稿:幻灯片三)×109×1012×10-7×10-10呢?×10-6米,利用科学计算器求出这种细胞的面积.(3)百万分之一米(即10-6米)又称1微米,1X纸大约有多少微米厚?(4)人体内一种细胞的直径为1微米,多少个这种细胞首尾连接起来能达到1毫米?(教师可鼓励学生联想正整数指数幂的输入方式,自己探索如何使用计算器来从事科学记数法的计算.)×109在计算器上表示步骤:按下AC/ON键,显示屏显示出“0”,先按1,.,2,9,5,输入1.295,然后按下“EXP”键,计算器进入科学记数状态,最后输入“9”,显示屏显示“”×109.[师]很好×1012.×10-7如何表示呢?[生]也是先输入“7.2”,再按“EXP”键,接着按“+/-”键,输出“7”,显示屏上显示出“”×10-7.×10-10.下面接着看第(2)个问题[生]用科学计算器求出细胞的面积为:××10-6÷2)2≈×10-12(平方米)×10-2×10-2×10-2米=5×10-5米,因为1微米=10-6米,所以5×10-5米=5×10-5×106=50微米.即一X纸的厚度是50微米.(4)解:1毫米=10-3米 1微米=10-6米10-3÷10-6=103(个)所以有1000个直径为1微米的细胞首尾连起来能达到1毫米.4.读一读(演示文稿,幻灯片四)[师]同学们在收看电视或者阅读报刊杂志时,经常会注意到“纳米”技术在科学、生活方面的应用,“纳米”是什么意思呢?下面我们一块阅读一段资料,你就会对“纳米”和“纳米技术”有所了解.(演示文稿,幻灯片四,即课本P27的“读一读”) 读完后,大家可以互相交流读后的感受.[生]纳米是一种十分微小的长度单位,1纳米=10亿分之一米,即10-9米.[师]你能用身边的事物描述它有多小吗?[生]它相当于一根头发丝的直径的七万分之一.[生]直径为1纳米的球与乒乓球相比,相当于乒乓球与地球相比.[师]“纳米技术”是怎样的一项技术呢?[生]纳米技术是指在0.1至100纳米X围内,通过直接操纵和安排原子、分子来创造新物质,它将对人类的未来产生深远的影响.例如:采用纳米技术,可以在一块方糖大小的磁盘上存放一个国家图书馆的信息;应用纳米技术还可以制造出“纳米医生”,它微小到可以注入人体血管中.“润物细无声”统产品“旧貌换新颜”,把纳米颗粒或纳米材料添加到传统材料中,可改进或获得一系列的功能.纳米的世界丰富多彩,离我们却并不遥远,感兴趣的同学可以查查资料或请教一些专家.Ⅲ.课后小结[师]下面,同学们谈一下你这节课有何收获和体会.[生]我们借助自己身边熟悉的事物,从不同角度对百万分之一进行感受,特别认识了“微米”“纳米”这些更小的长度单位,并且还知道它们和我们的生活紧密相连.[生]我还学会了用科学记数法表示较小的数,在计算器上如何表示用科学记数法表示的数.…●板书设计§3.1 百万分之一有多小一、感受百万分之一二、科学记数法2.议一议较小的数:a×10n(1≤|a|<10,n为负整数)4.读一读×109×10-10第二课时●课题§近似数与有效数字(一)●教学目标(一)教学知识点1.了解近似数的概念,并按要求取近似数.2.体会近似数的意义及在生活中的作用.(二)能力训练要求能根据实际问题的需要选取近似数,收集数据.(三)情感与价值观要求进一步体会数学的应用价值,发展“用数学”的信心和能力.●教学重点1.体会和感受生活中的近似数和精确数,明白测量的结果都是近似数.2.能按要求对一个数四舍五入取近似数.●教学难点合理地对一个数四舍五入取近似值.●教学方法实验——讲——练相结合通过测量实验体会生活中存在着近似数和精确数,经过讲解和练习能将一个数按要求取近似值.●教具准备1.收集不同形状的树叶制成标本.3.最小单位是厘米的刻度尺和最小单位是毫米的刻度尺.●教学过程Ⅰ.创设情景,引入新课[师]在我们学习和生活中,经常会遇到一些数据.例如:(1)小明班上有45人;(2)吐鲁番盆地低于海平面155米;(3)某次地震中,伤亡10万人;(4)小红测得数学书的长度为21.0厘米.而这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数.凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?[生]我认为第(1)个中的数据是精确的,而第(2)、(3)、(4)中的数据都是近似的.[师]很好.下面我们接着来做一个实验,进一步体验近似数的意义和在生活中的作用.Ⅱ.引入新课,获得直观的体验——测得树叶的长度[师]同学们在下面收集了不少的树叶,把这些树叶制成标本的时候,要求必须在标本中注明每片树叶的长度,下面我们就以同桌为一小组,用你准备好的最小刻度是厘米和最小刻度是毫米的刻度尺测量你收集到的树叶的长度,并读取数据.(教师可以让学生交流,讨论读取数据的方法,同时给予指导,让同学们体验到测量读取的数据是有误差的.)[师]在同学们测量的过程中,同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图3-1所示:图3-1(1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?(2)谁的测量结果更精确一些?说说你的理由.[生]小明用的刻度尺最小单位是厘米,这片树叶的长度约为6.8厘米,其中6是精确的,8是估计的,即是近似的;小颖用的刻度尺最小单位是毫米,她测量的结果可以读成6.78厘米,其6和7都是精确的,而8是估计的,即是近似的.[生]从刚才这位同学的分析,很容易看出小颖测量的结果要比小明的更精确一些.[师]同学们分析得很精细,同桌的小明和小颖共收集了12片树叶,测得刚才那片树叶的长度的值分别约为6.8厘米和6.78厘米.在这一收集数据的过程中,哪些数据是精确的,哪些数据是近似的呢?[生]他们一共收集了12片树叶,这个数据是精确的,而测量的树叶的长度的值是近似的.[师]大家还可以用你的刻度尺测量一下桌子的长度、厚度,数学课本的长度、厚度,又可以读出一些数据,它们是精确的还是近似的?[生]我测得我的课桌的长度是80.5厘米,它是近似的.[生]我测得课桌的长度是80.45厘米,它也是近似数.……[师]由此,我们可知测量得出的结果都是近似的,例如珠峰的高度是8848米,是测量得出的,它是近似数.在生活中,除了测量的结果是近似数以外,还有没有其他数据也是近似的?[生]有,例如方便面袋子上写着:总净含量110克,数据110克是近似的.[生]饮料桶标注的净含量是350 mL也是近似数[生]天气预报中报到今天的最高气温是28℃,“28℃”这个数据也是近似数.[生]咱们这本教科书字数是202千字,“202千字”这个数据也是近似的.[师]真棒.同学们能列举生活中这么多的近似数据,说明同学们平时很留心观察一些事物,这一点很值得肯定.图3-2(1)上面的数据,哪些是精确的?哪些是近似的?(2)举例说明生活中哪些数据是精确的?哪些数据是近似的?[生](1)2000年第五次人口普查表明,我国人口总数为12.9533亿,人口总数为12.9533亿这个数据是近似数.[师]为什么呢?(Why?)[生]因为我国地域辽阔,客观条件就决定了在人口普查的过程中是无法或难以得到精确数据的.[师]的确如此.在测量过程中,我们难以得到精确数据,尽管现在科技的发展,有了更为精密的仪器.在人口普查中,由于客观条件等的限制,也难以或无法取到精确值.[生]第二幅图是精确值.[生]第三幅图中,年级共有97人是精确值,而买门票大约需要800元是近似值.“800元”也是近似值,但这个近似值不是无法或难以得到精确数据,而是根据实际情况要估算一下大约需多少钱,无需得到精确值.你还能举出生活中一些例子说明哪些数据是精确的?哪些数据是近似的吗?[生]小明的身高是1.58米,体重40公斤,年龄14岁,这些数据都是近似数.[生]小明今天上了6节课,是精确的.[生]一条草鱼重2.854 千克,这个数据也是近似数.[生]我们班有25个女生,这个数据是精确数.……[师]我们了解了生活中存在着这么多的近似数和精确数,下面我们来看一看如何根据具体情况和要求采用四舍五入法求一个数的近似数.例1 小明量得课桌长为1.025米,请按下列要求取这个数的近似数:(1)四舍五入到百分位;(2)四舍五入到十分位;(3)四舍五入到个位.[分析]用四舍五入法求一个数的近似数,关键是看四舍五入到哪一位,看这一位后面一位的数够五不够五,来决定取舍,特别注意近似数1.0,末尾的0不能随意去掉.解:(1)四舍五入到百分位为1.03米;(2)四舍五入到十分位为;(3)四舍五入到个位为1米.例2 小丽与小明在讨论问题小丽:如果你把7498近似到千位数,你就会得到7000.小明:不,我有另外一种解答方法,可以得到不同的答案.首先,将7498近似到百位,得到7500,接着把7500近似到千位,就得到了8000.小丽:……你怎样评价小丽和小明的说法呢?[生]小丽的说法是正确的因为一个数近似到千位,要一次做完,看百位上的数决定四舍五入,而不能先近似到百位,再近似到千位.例3 中国国土面积约为9596960千米2,美国和罗马尼亚的国土面积约为9364000千米2(四舍五入到千位)和240000千米2(四舍五入到万位).如果要将中国国土面积与它们相比较,那么中国国土面积分别四舍五入到哪一位时,比较起来的误差可能会小些?[分析]对数据进行比较是培养数感的一个重要方面.在对数据进行比较时,有时可以根据需要选择各自的近似数进行比较.在选择近似数时,一般数据要四舍五入到同一数位,这样出现较大误差的可能性会小一些.解:当与美国的国土面积比较时,可将中国国土面积四舍五入到千位,得到9597000千米2,因为它们同时四舍五入到了千位,这样比较起来误差会小一些.类似地,当与罗马尼亚国土面积相比较时,可以将中国国土面积四舍五入到万位,得到9600000千米2.Ⅲ.课时小结[师]通过这节课的学习,你有何体会和收获呢?[生]我们知道了测量所得的数据都是近似数.[生]生活中既有精确的数据,也有近似的数据,因此我们的生活丰富多彩.[生]能根据具体情况和要求求一个数的近似数.[生]用四舍五入法取近似数时,不能随便将小数末尾的零去掉.例如 2.03取近似数,四舍五入到十分位,得到近似数2.0,不能把零去掉.……●板书设计§近似数和有效数字(一)一、生活中的数据——近似数和精确数−测量所得的结果都是近似的(测量树叶的长度)−→二、根据具体情况,采用四舍五入求一个数的近似数.(师生共析,由学生板演)第三课时●课题§近似数和有效数字(二)●教学目标(一)教学知识点1.了解有效数字的概念,能按要求取近似数,特别是较大数据的有效数字.2.体会近似数的意义及在生活中的作用.(二)能力训练要求能根据实际问题的需要选取近似数,收集数据.(三)情感与价值观要求进一步体会数学的应用价值,发展“用数学”的信心和克服困难的勇气.●教学重点1.知道一个近似数是精确到哪一位,有几个有效数字.2.会对一个数四舍五入取近似值.●教学难点较大数据有效数字的讨论.●教学方法自主学习法学生在明确有效数字概念的基础上,自主探索,根据实际需求,准确地求出近似数.●教具准备1.盛溶液的烧杯.Ⅰ.创设情景,引入新课[师]我们先来看投影片(出示投影片§3.2.2 A)1.下面由四舍五入得到的近似数,分别四舍五入到哪一位?(1)根据第五次人口普查资料表明,我国人口总数达13亿;(2)小明测得课桌的长度约为65 cm;(3)小红身高约1.60 m.×106 m.2.几位同学用最小刻度是厘米的尺子,分别对一X桌子的边长进行测量,其结果分别如下:122.2 cm,122.2 cm,122.3 cm,132.2 cm,122.35 cm,其中四位同学对桌子的边长进行计算,你认为谁的计算结果较为合理?[师生共析]1.(1)13亿是四舍五入到了亿位;(2)65 cm是四舍五入到了个位;(3)1.60 m是四舍五入到了百分位;×106 m×106这个近似数四舍五入到“7”在“”中所在的数位,即万位.[注]利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.2.五次测量结果中,132.2厘米显然是错误的.因尺子的最小刻度为厘米,所以122.35厘米中的0.05厘米是无效的,应记为122.3厘米,因此桌子的边长应为:43.1223.1222.1222.122+++≈122.3(厘米)[注]尺子的最小刻度是厘米,就决定了我们读出的数能精确到哪一位,也就知道这个数中哪几个数字是有效数字.[提出问题]如何准确地定义有效数字呢?[师]这节课我们就来学习有效数字.Ⅱ.讲授新课对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有数字都叫做这个数的有效数字.[师生共析]我们再来看投影片(§3.2.2 A)中的第1题.我们已经知道一个近似数四舍五入到哪一位.我们就说它精确到哪一位,我们不妨把第1题的要求改一下,改成“下面的近似数,精确到哪一位?有几个有效数字?”下面同学们讨论一下,该如何解答.[生](1)13亿精确到了亿位,有两个有效数字1,3.(2)65 cm精确到了个位,有两个有效数字6,5.(3)1.60 m精确到了百分位,有三个有效数字1,6,0.×106和6.37百万的意义相同,精确到了万位,有三个有效数字6,3,7.[师]这位同学回答得太棒了.×106为什么只有三个有效数字?[师]我请一个同学来解答你的问题.[生]因为有效数字的定义是对于一个近似数,从左边第一个不是零的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字.所以 6.37百万,它精确到了万位,即“7”在“”所在的数位,从左边起第一个不是零的数是 6.因此从6起到精确到的数位7止,共有三个有效数字6,3,×106也同样有三个有效数字6,3,7.[生]老师,这样一具体解释,我明白了.1.60 m精确到了百分位,它的有效数字应从左边第一个不是零的数字“1”起,到所精确到的数位“0”止,共有三个有效数字1,6,0.[师]所以,根据有效数字的定义可知:①左边第一个不是零的数字前面的零,不是有效数字;四舍五入所得的0和中间的0,都是有效数字.②精确度决定近似数的个数即有效数字个数,有效数字的个数不同,其精确度也不同.下面我们来看又一个实际问题:我这儿有一个烧杯,里面盛了一些液体(如图3-3),按要求取图中溶液体积的近似数,并指出每个近似数的有效数字.图3-3(1)四舍五入到1毫升;(2)四舍五入到10毫升.下面我请一位同学观察液面的高度,并把他观察到的结果放大到黑板上,由液面的高度就可读出溶液体积的近似数.同时,同学们一块看一下这位同学观察的方法是否正确.[生]观察时眼睛要正对液面,这样就能读到比较准确的数.[生]把刻度放大的结果如图3-3(2)所示.(然后再请一位同学验证一下结果)[师]很好.下面我们就按要求读取图中溶液体积的近似数.[生]解:(1)由图可知,四舍五入到1毫升,就得到近似数17毫升,这个数有2个有效数字,分别是1,7.(2)四舍五入到10毫升,就得到近似数20毫升,这个数的有效数字是2.例4(课本P82)根据中国统计信息网公布的2000年中国第五次人口普查资料表明,我国人口总数为1295 330 000人.请按要求分别取这个数的近似数,并指出近似数的有效数字.(数据来源.).(1)精确到百万位;(2)精确到千万位;(3)精确到亿位;(4)精确到十亿位.×105.而根据有效数字的定义可知,从左边第一个不是零的数“1”起,到所精确到的数位“3”止,共有两个有效数字,末尾作为补位的零不是有效数字.[生]任何近似数都可用科学记数法来表示吗?[师]都可用科学记数法表示,但一般情况下,较大的数用科学记数法表示.[生]如果把125000精确到百位,得到近似数还是125000,这个近似数是否必须写成科学记数法的形式?×105.×105“0”能不写吗?“0”×105中是百位上的数,即是一个有效数字必须写上.[师]很好.同学们能互相提出并解决问题,我们总结一下,求一个较大数据的近似数要注意两点:①取到的近似数最好写成科学记数法的形式;②末尾作为补位的零不是有效数字,下面我们就来完成例4吧.(由学生板演)×109.这个数有4个有效数字,分别是1,2,9,5.×109,这个数有3个有效数字,分别是1,3,0.×109.这个数有2个有效数字,分别是1,3.(4)精确到十亿位,就得到近似数1000000000,用科学记数法记作1×109,这个数的有效数字是1.Ⅲ.随堂练习(课本P83)0.008905 cm,请按下面的要求分别取这个数的近似数,并指出近似数的有效数字:(1)精确到0.001 cm;(2)精确到0.0001 cm;(3)精确到0.00001 cm.解:(1)0.009 cm,有效数字是9;(2)0.0089 cm,有效数字是8,9;(3)0.00891 cm,有效数字是8,9,1.2.下面各数都是由四舍五入法得到的近似数,它们分别精确到哪一位?各有几个有效数字?(1)珠穆朗玛峰海拔高度是;(2)某种药王一粒的质量为.解:精确到了0.01米(或1厘米),有6个有效数字;(2)精确到了,有3个有效数字.Ⅳ.课时小结[师]这节课,同学们的收获一定很大,谁能总结一下呢?[生]我首先知道了一个近似数四舍五入到哪一位,就说它精确到哪一位.[生]通过这节课的学习,能根据题目的要求求一个数的近似数,并且知道它有几个有效数字,特别是对于比较大的数据.[生]在我们的实际生活中,收集到的数据多是近似数,通过这节课的学习,我知道了如何按要求收集近似数.……Ⅴ.课后作业课本P83●板书设计§近似数和有效数字一、近似数的精确度对于四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.二、有效数字对于一个近似数,从左边第一个不是零的数起,到精确到的数位止,所有的数字叫做这个数的有效数字.三、例题3.世界新生儿图第一环节情境引入活动内容:教师提问:(1)我们已经学习过的统计图有哪几类?(2)它们各有什么特点?(3)你在报刊、杂志中还见过其他类型的统计图吗?展示一些常见的统计图:。
2020-2021学年北师大版七年级数学下册 4.3.1探索三角形全等的条件(一) 同步练习题
2020-2021学年北师大版七年级数学下册第四章 4.3.1探索三角形全等的条件(一) 同步练习题A组(基础题)一、填空题1.如图,连接AD后,当AD=____,AB=____,BD=____时,可用“SSS”推得△ABD≌△DCA.连接BC后,当AB=____,BC=____,AC=____时,可用“SSS”推得△ABC≌△DCB.2.在△ABC与△DEF中,AC=DF,BC=EF,AB=DE,∠BAC=72°,∠F=32°,则∠ABC=____.3.(1)如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是____.(2)如图所示,建高楼时常需要用塔吊来吊建筑材料,而塔吊的上部都是三角形结构,这是应用了三角形的____.4.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C 作射线OC.由该做法得△MOC≌△NOC的依据是____.二、选择题5.如图,下列四个选项中所指两个三角形全等,其中正确的是( ),①) ,②) ,③) ,④)A.①②B.①④C.②④D.③④6.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是( )A.AC=DB B.AC=BC C.BE=CE D.AE=DE7.如图,以△ABC的顶点A为圆心,BC的长为半径作弧;再以顶点C为圆心,AB的长为半径作弧,两弧交于点D;连接AD,CD.由作法可得:△ABC≌△CDA的根据是( )A.SAS B.ASA C.AAS D.SSS8.如图,已知AB=AC.BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC9.如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( ) A.△ABC≌△BAD B.∠CAB=∠DBAC.OB=OC D.∠C=∠D三、解答题10.如图,点A,C,B,D在同一直线上,AC=BD,AM=CN,BM=DN,试说明:AM∥CN.11.如图,点A,D,C,B在同一条直线上,AD=BC,AE=BF,CE=DF.求证:AE∥BF.B组(中档题)一、填空题12.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x=____.13.如图,五边形ABCDE中有等边三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE 的度数为____.二、解答题14.(1)如图,AD=BC,AB=DC.求证:∠A+∠D=180°.(2)如图,已知AD=BC,OD=OC,O为AB的中点,说出∠C=∠D的理由.C组(综合题)15.(1)如图,AB=AE,BC=ED,CF=FD,AC=AD.求证:∠BAF=∠EAF.(2)如图,已知线段AB,CD相交于点O,AD,CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.参考答案2020-2021学年北师大版七年级数学下册第四章 4.3.1探索三角形全等的条件(一) 同步练习题A组(基础题)一、填空题1.如图,连接AD后,当AD=DA,AB=DC,BD=CA时,可用“SSS”推得△ABD≌△DCA.连接BC后,当AB=DC,BC=CB,AC=DB时,可用“SSS”推得△ABC≌△DCB.2.在△ABC与△DEF中,AC=DF,BC=EF,AB=DE,∠BAC=72°,∠F=32°,则∠ABC=76°.3.(1)如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是127°.(2)如图所示,建高楼时常需要用塔吊来吊建筑材料,而塔吊的上部都是三角形结构,这是应用了三角形的稳定性.4.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C 作射线OC.由该做法得△MOC≌△NOC的依据是SSS.二、选择题5.如图,下列四个选项中所指两个三角形全等,其中正确的是(C),①) ,②) ,③) ,④)A.①②B.①④C.②④D.③④6.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是(A)A.AC=DB B.AC=BC C.BE=CE D.AE=DE7.如图,以△ABC的顶点A为圆心,BC的长为半径作弧;再以顶点C为圆心,AB的长为半径作弧,两弧交于点D;连接AD,CD.由作法可得:△ABC≌△CDA的根据是(D)A.SAS B.ASA C.AAS D.SSS8.如图,已知AB=AC.BD=DC,那么下列结论中不正确的是(C)A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC9.如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是(C) A.△ABC≌△BAD B.∠CAB=∠DBAC.OB=OC D.∠C=∠D三、解答题10.如图,点A ,C ,B ,D 在同一直线上,AC =BD ,AM =CN ,BM =DN ,试说明:AM ∥CN.解:∵AC =BD , ∴AB =CD.在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,AM =CN ,BM =DN ,∴△ABM ≌△CDN(SSS). ∴∠A =∠NCD.∴AM ∥CN(同位角相等,两直线平行).11.如图,点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,CE =DF.求证:AE ∥BF.证明:∵AD =BC ,∴AC =BD. 在△ACE 和△BDF 中,⎩⎪⎨⎪⎧AC =BD ,AE =BF ,CE =DF.∴△ACE ≌△BDF(SSS), ∴∠A =∠B , ∴AE ∥BF.B 组(中档题)一、填空题12.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x =3.13.如图,五边形ABCDE 中有等边三角形ACD ,若AB =DE ,BC =AE ,∠E =115°,则∠BAE 的度数为125°.二、解答题14.(1)如图,AD =BC ,AB =DC.求证:∠A +∠D =180°.证明:连接AC.∵AD =CB ,AB =CD ,AC =CA , ∴△ABC ≌△DCA. ∴∠BAC =∠ACD. ∴AB ∥CD.∴∠BAD +∠D =180°.(2)如图,已知AD =BC ,OD =OC ,O 为AB 的中点,说出∠C =∠D 的理由.解:∵O 为AB 中点, ∴OA =OB.在△BOC 和△AOD 中, ⎩⎪⎨⎪⎧BC =AD ,OC =OD ,OB =OA ,∴∠C =∠D.C 组(综合题)15.(1)如图,AB =AE ,BC =ED ,CF =FD ,AC =AD.求证:∠BAF =∠EAF.证明:在△ACF 和△ADF 中, ⎩⎪⎨⎪⎧AC =AD ,CF =DF ,AF =AF ,△ACF ≌△ADF(SSS). ∴∠CAF =∠DAF.在△ABC 和△AED 中,⎩⎪⎨⎪⎧AB =AE ,BC =ED ,AC =AD ,∴△ABC ≌△AED(SSS).∴∠CAB =∠DAE.∴∠BAF =∠EAF.(2)如图,已知线段AB ,CD 相交于点O ,AD ,CB 的延长线交于点E ,OA =OC ,EA =EC ,请说明∠A =∠C.解:连接OE. 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧QA =OC ,EA =EC ,OE =OE ,∴∠A=∠C.。
北师大版七年级下册数学《资源与评价》答案
义务教育课程标准实验教科书数学 七年级 下册 北京师范大学出版社练习册答案第一章整式的乘除1.1 整式1.(1)C 、D 、F ;(2)A 、B 、G 、H ;(3)A 、B ;(4)G ;(5)E 、I ;2.125r π;3.3343R a π-; 4.四,四,-13ab 2c,-13,25 ;5.1,2;6.13a 3b 2c ;7.3x 3-2x 2-x ;8.11209,10200a a ;9.D ;10.A ; 11.•B ;12.D ;13.C ;14.12222VV V V +;15.a=27;16.n=32;四.-1. 1.2 整式的加减1.-xy+2x 2y 2; 2.2x 2+2x 2y; 3.3; 4.a 2-a+6; 5.99c-99a; 6.6x 2y+3x 2y 2-14y 3; 7.39π-+; 8.3217210n n n n aa a a +++--+-; 9.D; 10.D; 11.D; 12.B; 13.C; 14.C; 15.B; 16.D; 17.C ;18.解:原式=126ax +,当a=-2,x=3时, 原式=1. 19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)-32a b -]=13922a b -,当a=10,b=8时,上车乘客是29人.21. 解:由3xyx y=+,得xy=3(x+y),原式=87-.22. 解:(1)1,5,9,即后一个比前一个多4正方形.(2)17,37,1+4(n-1).四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,所以(2)中的用绳最短,(3)中的用绳最长.1.3 同底数幂的乘法1.10m n+,96;2.2x 5,(x+y)7;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.•B ; 9.D ;10.D ; 11.B ;12.(1)-(x-y)10;(2)-(a-b-c)6;(3)2x 5;(4)-x m13.解:9.6×106×1.3×108≈1.2×1015(kg). 14.(1)①424103333⨯⨯=,②436135555⨯⨯=. (2)①x+3=2x+1,x=2 ②x+6=2x,x=6. 15.-8x 7y 8;16.15x=-9,x=-35-. 四.105.1.4 幂的乘方与积的乘方1.24219a b c ,23n a +;2.2923(),4p q a b + ;3.4 ;4.628a ;5.331n n x y +-; 6.1,-1;7.6,108; 8.37;9.A 、D;10.A 、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2)m nb a 4412-;(3)0.18.(1)241 (2).10042575325431002521.原式=19991999499431999(3)(25)32534325⨯+-+=-+=-⨯⨯+, 另知19993的末位数与33的末位数字相同都是7,而199925的末位数字为5,∴原式的末位数字为15-7=8. 四.400.1.5 同底数幂的除法1.-x 3,x ;2.2.04×10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7.13;8.2;9.3,2,2; 10.2m=n;11.B; 12.B ;13.C;14.B;15.C;16.A;17.(1)9;(2)9;(3)1;(4)61()n x y --+ ;18.x=0,y=5;19.0;20.(1)201; (2)41.21.22122()22x x x x m --+=+-=-; 四.0、2、-2.1.6 整式的乘法 1.18x 4y 3z 2;2.30(a+b)10;3.-2x 3y+3x 2y 2-4xy 3;4.a 3+3a;5.-36;•6.•a 4-16;7.-3x 3-x+17;8.2,39.n na b -;10.C;11.C;12.C;13.D;14.D;15.D;16.B ;17.A ; 18.(1)x=218;(2)0; 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩;20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=0,21.由题意得35a+33b+3c-3=5,∴35a+33b+3c=8,∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11, 22.原式=-9,原式的值与a 的取值无关. 23.∵21222532332n n n n n +++⨯⨯-⋅⋅,=212125321232n n n n ++⨯⨯-⋅⋅,=211332n n +⋅⋅.∴能被13整除. 四.125121710252⨯=⨯=N ,有14位正整数.1.7 平方差公式(1)1.36-x 2,x 2-14; 2.-2a 2+5b;3.x+1;4.b+c,b+c;5.a-c,b+d,a-c,b+d ;6.3239981,;7.D;8.C;9.D;10.16a -1;11.5050 ;12.(1)52020423+--x x x ,-39 ; (2)x=4;13.原式=200101;14.原式=1615112(1)222-+=.15.这两个整数为65和63.四.略.1.7 平方差公式(2)1.b 2-9a 2;2.-a-1;3.n-m;4.a+b ,1;5.130+2 ,130-2 ,16896;6. 3x-y 2;7.-24 ;8.-15;9.B;10.D;11.C;12.A;13.C;14.B.15.解:原式=4216194n m -. 16.解:原式=16y 4-81x 4;17.解:原式=10x 2-10y 2. 当x=-2,y=3时,原式=-50. 18.解:6x=-9,∴x=23-. 19.解:这块菜地的面积为:(2a+3)(2a-3)=(2a)2-9=4a 2-9(cm 2),20.解:游泳池的容积是:(4a 2+9b 2)(2a+3b)(2a-3b),=16a 4-81b 4(米3).21.解:原式=-6xy+18y 2,当x=-3,y=-2时, 原式=36. 一变:解:由题得:M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)=(-4x)2-(3y)2-(16x 2-18xy+24xy-27y 2)=16x 2-9y 2-16x 2-6xy+27y 2=18y 2-6xy. 四.2n+1.1.8 完全平方公式(1) 1.19x 2+2xy+9y 2,12y-1 ;2.3a-4b,24ab,25,5 ;3.a 2+b 2+c 2+2ab-2ac-2bc;4.4ab,-2,1x;5.±6;6.x 2-y 2+2yz-z 2;7.2cm;8.D; 9.B ; 10.C; 11.B ; 12.B ; 13.A;14.∵x+1x =5 ∴(x+1x )2=25,即x 2+2+21x=25 ∴x 2+21x =23 ∴(x 2+21x )2=232 即4x +2+41x =529,即441x x+=527.15.[(a+1) (a+4)] [(a+2) (a+3)]=(a 2+5a+4) (a 2+5a+6)= (a 2+5a)2+10(a 2+5a)+24=43210355024a a a a ++++. 16.原式=32a 2b 3-ab 4+2b. 当a=2,b=-1时,原式=-10. 17.∵a 2+b 2+c 2-ab-bc-ca=0∴2(a 2+b 2+c 2-ab-bc-ca)=0∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(a 2-2ac+c 2)=0即(a-b)2+(b-c)2+(a-c)2=0 ∴a-b=0,b-c=0,a-c=0 ∴a=b=c.18.左边=[(a+c)2-b 2](a 2-b 2+c 2)=(a 2+b 2+c 2)(a 2-b 2+c 2) =(a 2+c 2)2-b 4=44a c ++2a 2c 2-b 4=444a b c ++.四.ab+bc+ac=-21.1.8 完全平方公式(2) 1.5y;2.500;2;+2000+4;.3.2;4.3a;6ab;b 2;5.-6;6.4;7.2xy;2xy;8.2641,81x x ,4;9.D ; 10.D ; 11.B ; 12.B; 13.C; 14.B; 15.解:原式 =2a 4-18a 2.16.解:原式 =8x 3-2x 4+32.当x=-21时,原式=8732.17.解:设m=,则=m-1,=m+1,则A=(m-1)(m+1)=m 2-1,B=m 2.显然m 2-1<m 2,所以A<B.18.解:-(x 2-2)2>(2x)2-(x 2)2+4x,-(x 4-4x 2+4)>4x 2-x 4+4x,-x 4+4x 2-4>4x 2-x 4+4x, -4>4x,∴x<-1. 19.解:由①得:x 2+6x+9+y 2-4y+4=49-14y+y 2+x 2-16-12, 6x-4y+14y=49-28-9-4, 6x+10y=8,即3x+5y=4,③由③-②×③得:2y=7,∴y=3.5, 把y=3.5代入②得:x=-3.5-1=-4.5,∴ 4.53.5x y =-⎧⎨=⎩20.解:由b+c=8得c=8-b,代入bc=a 2-12a+52得,b(8-b)=a 2-12a+52,8b-b2=a 2-12a+52,(a-b)2+(b-4)2=0,所以a-6=0且b-4=0,即a=6,b=4, 把b=4代入c=8-b 得c=8-4=4.∴c=b=4,因此△ABC 是等腰三角形.四.(1)20012+(2001×2002)2+20022=(2001×2002+1)2.(2) n 2+[n(n+1)]2+(n+1)2=[n(n+1)]2.1.9 整式的除法 1.33m a b -; 2.4b; 3.273x -2x+1; 4.3213222x y x y --; 5.-10×1010; 6.-2yz,x(答案不惟一); 7.3310258z y x -; 8.3; 9.x 2+2; 10.C; 11.B; 12.D; 13.A; 14.C; 15.D; 16.(1)5xy 2-2x 2y-4x-4y ; (2)1 (3)2x 2y 2-4x 2-6; 17.由5171m m n +-=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩;∴2139nm--==. 18.a=-1,b=5,c=-15, ∴原式=25187111(15)[15()]15555⨯⨯÷-⨯⨯-=÷=.19. 13b a =⎧⎨=⎩;20.设除数为P,余数为r,则依题意有:80=Pa+r ①,94=Pb+r ②,136=Pc+r ③,171=Pd+r ④,其中P 、a 、b 、c 、•d 为正整数,r ≠0 ②-①得14=P(b-a),④-③得35=P(d-c)而(35,14)=7 故P=7或P=1,当P=7时,有80÷7=11…3 得r=3而当P=1时,80÷1=80余0,与余数不为0矛盾,故P ≠1∴除数为7,余数为3. 四.略.单元综合测试1.332311,0.1;(),26x y z a a a b x+--+, 2.3,2; 3.1.23×510-,-1.49×710;4.6;4;332222;0.533x y x y y x --++-; 5.-2 6.单项式或五次幂等,字母a 等; 7.25; 8.4002;9.-1;10.-1; 11.36;12.a=3,b=6,c=4 ;13.B ; 14.A ; 15.A ;16.A ; 17.C ; 18.D;19.由a+b=0,cd=1,│m │=2 得x=a+b+cd-12│m │=0 原式=27716244x x --, 当x=0时,原式=14-. 20.令111111,1232002232003a b +++=++++=, ∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1=12003.21.∵222222222222121211221221(5)(5)2555x x y y x y x y x y x y ++=+++=2211221221(5)5()x y x y x y x y ++-∴22221210(5)155(5)350y y +=+⨯-= ∴22125y y +=35. 22.1234567162536496481100x x x x x x x ++++++ =(3)3(2)3(1)1⨯-⨯+⨯=123×3-12×3+1=334.第二章 平行线与相交线2.1余角与补角1.×、×、×、×、×、√;2.(1)对顶角(2)余角(3)补角;3.D;4.110°、70°、110°;5.150°;6.60°;7.∠AOE 、∠BOC ,∠AOE 、∠BOC ,1对;8.90°9.30°;10.4对、7对;11.C;12.195°;13.(1)90°;(2)∠MOD=150°,∠AOC=60°;14.(1)∠AOD=121°;(2)∠AOB=31°,∠DOC=31°;(3)∠AOB=∠DOC;(4)成立;四.405°.2.2探索直线平行的条件(1)1.D;2.D;3.A;4.A;5.D;6.64°;7.AD 、BC ,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.BE ∥DF (答案不唯一);10.AB ∥CD ∥EF;11.略;12.FB ∥AC ,证明略. 四.a ∥b,m ∥n ∥l.2.2探索直线平行的条件(2)1.CE 、BD ,同位角;BC 、AC ,同旁内角;CE 、AC ,内错角;2.BC ∥DE (答案不唯一);3.平行,内错角相等,两直线平行;4.C;5.C;6.D;7.(1)∠BED ,同位角相等,两直线平行;(2)∠DFC ,内错角相等,两直线平行;(3)∠AFD ,同旁内角互补,两直线平行;(4)∠AED ,同旁内角互补,两直线平行;8.B;9.C;10.B;11.C;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长DC 到H ); 四.平行,提示:过E 作AB 的平行线.2.3平行线的特征1.110°;2.60°;3.55°;4.∠CGF ,同位角相等,两直线平行,∠F ,内错角相等,两直线平行,∠F ,两直线平行,同旁内角互补;5.平行;6.①②⇒④(答案不唯一);7.3个 ;8.D;9.C;10.D;11.D;12.C;13.证明略;14.证明略;四.平行,提示:过C 作DE 的平行线,110°.2.4用尺规作线段和角(1)1.D;2.C;3.D;4.C;5.C;6.略;7.略;8.略;9.略; 四.(1)略(2)略(3)①A ②61. 4.4用尺规作线段和角(2)1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略; 四.略.单元综合测试1.143°;2.对顶角相等;3.∠ACD 、∠B ;∠BDC 、∠ACB ;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD 、∠AOC;11.C;12.A;13.C;14.D;15.A;16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;第三章 生活中的数据 3.1 认识百万分之一 1,1.73×104- ;2,0. ; 3,4×107-; 4,9×103- ; 5,C; 6,D;7,C ; 8,C; 9,C;10,(1)9.1×108-; (2)7×105- ;(3)1.239×103- ;11,6101=106- ;106个. 3.2 近似数和有效数字1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49×104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. A;6、C;7. B ;8. D ;9. A ;10. B;11.有可能,因为近似数1.8×102cm 是从范围大于等于1.75×102而小于1.85 ×102中得来的,有可能一个是1.75cm ,而另一个是1.84cm ,所以有可能相差9cm. 12.13×3.14×0.252×6=0.3925mm 3≈4.0×10-10m 313.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了.四:1,小亮与小明的说法都不正确.3498精确到千位的近似数是3×1033.3 世界新生儿图1,(1)24% ;(2)200m 以下 ;(3)8.2%; 2,(1)59×2.0=118(万盒); (2)因为50×1.0=50(万盒),59×2.0=118(万盒),80×1.5=120 (万盒),所以该地区盒饭销量最大的年份是2000年,这一年的年销量是120万盒; (3)50 1.059 2.080 1.53⨯+⨯+⨯=96(万盒);答案:这三年中该地区每年平均销售盒饭96万盒.3.(1)王先生 2001年一月到六月每月的收入和支出统计图(2)28:22:27:37:30:29;4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;(2)平均成绩是8(3)5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:(2)每年的总消费数是增加了(3)6.(1)大约扩大了:6000-500=5500(km)26000÷500=12.(2)1960~1980年间,上海市市区及郊县的土地面积没有大的变化,说明城市化进程很慢.(3)说明郊县的部分土地已经划为上海市区,1980年以后,上海市区及郊县的土地总面积和几乎不变,这说明1980年以后上海市区及郊县的土地总面积总和几乎不变,这说明1980年以后上海市在未扩大土地总面积的前提下,城市化进程越来越快,城市土地面各占总土地面积的比例越来越大(如浦东新区的开发等).7,(1)由统计图知道税收逐年增加,因此2000年的税收在80到130亿元之间(2)可获得各年税收情况等(3)只要合理即可.单元综合测试1. 10-9;2. 106;3.333×103;3. 0.;4. 170, 6 ;5.百 , 3.3×104;6. 1.4×108, 1.40×108;7.0.36 0.4;8.1.346×105;9.A,10.B,11.C,12.C,13.A,14.D,15.B,16.C,17.B,18.B19. 0.24与0.240的数值相等,在近似数问题上有区别,近似数位不同:0.24近似到百分位(0.01);0.240近似到千分位(0.001).有效数字不同:0.24有两个有效数字2、4;0.240有三个有效数字2、4、0.20. (1)精确到0.0001,有四位有效数字3、0、1、0;(2)精确到千位,有三位有效数字4、2、3;(3)精确到个位,有三位有效数字3、1、4. 21. 82kg=82000 g,∴100000082000=8.2×10-2(g).22. 1000104005⨯=6104=4×10-6(kg).答:1 粒芝麻约重 4×10-6kg. 23. 西部地区的面积为32×960=640万 km 2=6.40×106 km 2,精确到万位. 24. 可用条形统计图:28届答:该飞机需用 2.53×102 h 才能飞过光 1 s 所经过的距离. 26. (1)树高表示植树亩数,从图中可看出植树面积逐年增加.(2)2000年植树约 50 万亩; 2001年植树约75 万亩; 2002年植树约110 万亩; 2003年植树约155 万亩; 2004年植树约175 万亩; 2005年将植树约225 万亩. (3)2000年需人数约 5 万; 2001年需人数约 7.5 万; 2002年需人数约 11 万; 2003年需人数约 15.5 万; 2004年需人数约 17.5 万; 2005年需人数约 22.5 万.第四章 概率 4.1 游戏公平吗 1.1或100% , 0; 2.61;3.相同;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A;11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1;(4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D; 10. C; 11.B ;12.B; 13.C; 14.C; 15.D ;16.D ;17.(1)P=13;(2)P=13;(3)P=23;(4)P=23.18.∵P(甲获胜)=310,P(乙获胜)=25.∴这项游戏对甲、乙二人不公平,若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等. 19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个 21.P 1P 2; 四.(1)321; (2) 161 ; (3)摊主至少赚187.5元; 4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110; 四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有: (0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), …… (5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种, 其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种, 故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试1.不确定, 0,1;2. 41 , 131 , 133;3. 53;4. 红, 白;5.2 ① ② ③1;6.= ; 7;32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C; 17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21.两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨. 明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨.19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101×451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91.22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 . 23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE ,△ABE ,△ADC ,•△ABC;10.3 , △AEC ,△AEB ,△AED;11.0<BC<10 12.2 , 5cm ,6cm ,8cm ;6cm ,8cm ,13cm ;13.2;14.•15cm 或18cm ; 15. 7cm<a<12cm;16.学校建在AB ,CD 的交点处.理由:任取一点H ,利用三角形三边关系. 四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°; 9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°. 16.45°,70°,115°;17.解:因为AB ∥CD ,AD ∥BC ,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC 中,∠1+∠2+∠C=180°,而∠1=∠A+∠D ,∠2=∠B+∠E ,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM 中,∠C+∠1+∠2=180°,而∠1=∠A+∠D ,∠2=∠DBE+∠E ,故结论成立.如图(3)所示,在△MNE 中,∠1+∠2+∠E=180°,∠1=∠B+∠D ,∠2=∠A+∠C ,•故结论仍成立.5.1 认识三角形(3)1.(1)AD;AD,BD ;(2)BF ,AC ,ACE ,AE ,ADC ,AD ,DEC ,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略;四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE,△EOD,△AOD,△ABD,△ACD,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ; 12.略四.5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF ≌△DEC ,△ABC ≌△DEF ,△BCF•≌△EFC . 证明:∵AB ∥DE ,∴∠A=∠D .在△ABF 和△DEC 中,,,,AB DE A D AF DC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DEC (SAS ).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°, ∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE, (2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE,又∵AC=BC , ∴△ACD≌△CBE ,∴CE=AD,CD=BE .∴DE=CE-CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD (或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE, ∴AD=CE,CD=BE ,∴DE=CD-CE=BE -AD .5.5 ~5.6 作三角形~~利用三角形全等测距离 1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求; 5.共6个,如图所示:....3.55A 2B 2C 2C 1B 1A 136︒53.53 6.C ;7.略;8.在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长. 9.(1)由△APB ≌△DPC ,所以CD=AB .(2)由△ACB ≌△ECD 得DE=AB .目的是使DE ∥AB ,可行. 10.因为△A ′OB ′≌△AOB ,所以AB=A ′B ′. 11.解:(1)AE=CF (OE=OF ;DE ∥BF 等等)(2)因为四边形ABCD 是长方形,所以AB=CD ,•AB ∥CD ,∠DCF=∠BAF , 又因为AE=CF , 所以AC-AE=AC-CF , 所以AF=CE ,所以△DEC ≌△BFA .12.提示:连接EM ,FM ,需说明∠EMF=∠BMC=180°即可 四.(1)FE=FD; (2)(1)中的结论FE=FD 仍然成立.在AC 上截取AG=AE ,连结FG .证△AEF ≌△AGF 得∠AFE=∠AFG ,FE=FG .由∠B=60°,AD 、CE 分别是∠BAC ,∠BCA 的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE 及FC 为公共边. 可证△CFG ≌△CFD , 所以FG=FD ,所以FE=FD .5.7 探索直角三角形全等的条件(HL )1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS 或ASA ; (2)AAS ; (3)SAS 或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE .理由是∠ACD=∠AED=90°,∠CAD=•∠EAD , 所以∠ADC=∠ADE (直角三角形两锐角互余).8.C 9.△ADE ≌△CBF ,△DEG ≌△BFG ,△ADG ≌△CBG 10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE ≌△ACD ,△ADF ≌△AEF ,•△BDF ≌△CEF ,根据的方法分别为AAS ,HL ,HL 或SAS 或AAS 或ASA 或SSS .13.解:因为△ABD ≌△CBD ,所以∠ADB=∠CDB .又因为PM ⊥AD ,PN ⊥CD ,所以PM=•PN . 14.提示:先说明△ADC ≌△BDF ,所以∠DBE=∠DAC ,所以∠ADB=∠AEF=90°,• 所以BE ⊥AC .15.△ABF ≌△DEA ,理由略.16.先证Rt △ACE ≌Rt △BDF ,再证△ACF ≌△BDE; 17. 需证Rt △ADC ≌Rt △AEC四.(1)由于△ABC 与△DEF 是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC ≌△DEF ,所以∠A =∠D ,在△ANP 和△DNC 中,因为∠ANP =∠DNC ,所以∠APN =∠DCN ,又∠DCN =90°,所以∠APN =90°,故AB ⊥ED .(2)答案不唯一,如△ABC ≌△DBP ;△PEM ≌△FBM ;△ANP ≌△DNC 等等.以△ABC ≌△DBP 为例证明如下:在△ABC 与△DBP 中,因为∠A =∠D ,∠B =∠B ,PB =BC ,所以△ABC ≌△DBP .单元综合测试1.一定,一定不;2.50°;3.40°; 4.HL;5.略(答案不惟一);6.略(答案不惟一); 7.5;8.正确;9.8;10.D; 11.C; 12.D; 13.C; 14.D; 15.A; 16.C; 17.C;.18.略;19.略;20.合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B =∠C . 21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE =BF =CD ,AF =BD =CE ,事实上,因为△ABC 与△DEF 都是等边三角形,所以∠A =∠B =∠C =60°,∠EDF =∠DEF =∠EFD =60°,DE =EF =FD ,又因为∠CED +∠AEF =120°,∠CDE +∠CED =120°,所以∠AEF =∠CDE ,同理,得∠CDE =∠BFD ,所以△AEF ≌△BFD ≌△CDE (AAS ),所以AE =BF =CD ,AF =BD =CE ,(2)线段AE ,BF ,CD 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF ,BD ,CE 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠; (2)118022180-2x y ∠=︒-=︒,∠; (3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系 6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm; 12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量; (2)(3)略 14.(1)(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数.6.2 变化中的三角形 1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36; (2)(3)当x 每增加1时,y 增加3;(4)y=36,表示三角形; 13.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个; 14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化 1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D; 9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19;10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5×2=7元;55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。
七年级新北师大版数学同步练习全套
目录(A面)第一章丰富的图形世界 .......................... A3-A10 1.1 生活中的立体图形................................... A3-A4 1.2 展开与折叠......................................... A5-A6 1.3 截一个几何体....................................... A7-A8 1.4 从三个方向看物体的形状 ............................ A9-A10第二章有理数及其运算 ......................... A11-A29 2.1 有理数........................................... A11-A12 2.2 数轴............................................. A13-A14 2.3 绝对值........................................... A15-A16 2.4 有理数的加法......................................... A17 2.5 有理数的减法..................................... A18-A19 2.6 有理数的加减混合运算............................. A20-A22 2.7 有理数的乘法..................................... A23-A24 2.8 有理数的除法........................ A2错误!未定义书签。
2.9 有理数的乘方......................................... A26 2.10 科学记数法.......................................... A27 2.11 有理数的混合运算............... A2错误!未定义书签。
初中七年级数学下册《认识百万分之一》
认识百万分之一作业单
议一议
2、珠穆朗玛峰的海拔高度约为8844米.
它高度的千分之一是多少?相当于几层楼的高度?
它高度的万分之一是多少呢
它高度的百万分之一是多少?你能直观地描述这个长度吗?
2、天安门广场的面积约为44万平方米,
计算它的百分之一的面积,
它的万分之一、
百万分之一呢?你能直观地描述这个面积吗?
做一做,仿照例子完成下列填空
5100=5.1×1000=5.1×10 3
510=5.1×()=5.1×10()
51=5.1×()=5.1×10()
5.1=5.1×()=5.1×10()
0.51=5.1×()=5.1×10()
0.051=5.1×()=5.1×10()
0.0051=5.1×()=5.1×10()
思考:在上述变化中,小数点的位置发生了怎样的变化?结果怎样变化?
0.000051=5.1×10()
练一练
1、用科学记数法表示下列结果.
银原子的直径为0.0003微米,相当于多少米?
2、一个小立方块的边长为0.01米,
(1)这个小立方块的体积为多少立方米?(用科学记数法表示)
(2)用多少个这种小立方块才能摆成体积为1 米3的大正方体?
课后思考:有计算器的同学你能在科学计算器上表示1.259×109和2.9×1012吗?7.2×10-7和1.0×10-10呢?。
7下课时分层答案
第一章 整式的运算 .............................................................................................................................3 总第 1 课时——§1.1 整式 ............................................................................................................3 总第 2 课时——§1.2.1 整式的加减(第 1 课时).....................................................................3 总第 3 课时——§1.2.2 整式的加减(第 2 课时).....................................................................4 总第 4 课时——§1.3 同底数幂的乘法 ......................................................................................4 总第 5 课时——§1.4.1 幂的乘方与积的乘方(第 1 课时) ....................................................4 总第 6 课时——§1.4.2 幂的乘方与积的乘方(第 2 课时) ....................................................5 总第 7 课时——§1.5 同底数幂的除法 ........................................................................................5 总第 8 课时——§1.6.1 整式的乘法(第 1 课时) ....................................................................5 总第 9 课时——§1.6.2 整式的乘法(第 2 课时) ....................................................................6 总第 10 课时——§1.6.3 整式的乘法(第 3 课时) ..................................................................6 总第 11 课时——§1.7.1 平方差公式(第 1 课时) ..................................................................6 总第 12 课时——§1.7.2 平方差公式(第 2 课时) ..................................................................7 总第 13 课时——§1.8.1 完全平方公式(第 1 课时) ..............................................................7 总第 14 课时——§1.8.2 完全平方公式(第 2 课时) ..............................................................7 总第 15 课时——§1.9.1 整式的除法(第 1 课时) ..................................................................8 总第 16 课时——§1.9.2 整式的除法(第 2 课时) ..................................................................8 第二章 平行线与相交线 .....................................................................................................................8 总第 17 课时——§2.1 余角与补角 ..............................................................................................8 总第 18 课时——§2.2.1 探索直线平行的条件(第 1 课时) ...................................................9 总第 19 课时——§2.2.2 探索直线平行的条件(第 2 课时) ..................................................9 总第 20 课时——§2.3 平行线的特征 ..........................................................................................9 总第 21 课时——§2.4 用尺规作图作线段和角 ........................................................................10 第三章 生活中的数据 .......................................................................................................................10 总第 22 课时——§3.1 认识百万分之一 ...................................................................................10 总第 23 课时——§3.2.1 近似数和有效数字(第 1 课时) ...................................................10 总第 24 课时——§3.2.2 近似数和有效数字(第 2 课时) ...................................................10 总第 25 课时——§3.3 世界新生儿图 ....................................................................................... 11 第四章 概率 ....................................................................................................................................... 11 总第 26 课时——§4.1.1 游戏公平吗(第 1 课时) ............................................................... 11 总第 27 课时——§4.1.2 游戏公平吗(第 2 课时) ............................................................... 11 总第 28 课时——§4.2 摸到红球的概率 ................................................................................... 11 总第 29 课时——§4.3 停留在黑砖上的概率 ...........................................................................12 第五章 三角形 .................................................................................................................................12
认识百万分之一
存在于生物体内的某种细胞的直径约 为百万分之一米,即1微米。
1微米 = 10-6米
(3)计算机的存储器完成一 次存储的时间一般以百万分之 一秒或十亿分之一秒为单位.
例2 大多数花粉的直径约为20到50微米,这相当于多少米?
解:∵ 1 微米 = 10 −6 米 ∴ 20微米 = 20 ×10−6 米 = 2 ×10×10−6米 = 2×10−5米。 50微米 =50 ×10 −6 米 =5 ×10 ×10 −6米 =5 ×10 −5米。
150吨×10-6 = 150×1000×10-6 千克 = 0.15千克
合作交流 试一试
何知道一张纸有多少微米厚?
感悟与反思:
通过具体的情境,从不同的角度感受了百万分之一。 学会了用科学记数法表示和计算一些较小的数据。 体会了估测微小事物的方法和策略。
作业:
一.完成课本习题3.1。 二.收集有关百万分之一的事例,完
不能忽略的百万分之一!
臭氧层是大气圈平流层中的一个臭氧含量相对较高的气体层,虽然它 只占大气总质量的百万分之一,在最密集的地方其浓度也低于十万分 之一,但由于臭氧层具有强烈的吸收紫外线的功能,可以有效地保护 地球生物免遭杀伤,得以生存和发展,因而它是地球上亿万种生命和 人类的守护神。研究表明,地球上的臭氧层是地球演化至近5亿年形 成的,是大气层圈中十分脆弱的气体层。如果臭氧层一旦消失,地球 上的生态环境将返回至4.5亿年前的生态环境,包括人类在内的千万种 陆地生物将面临灭绝,这是多么可怕的情景啊!
它的百万分之一:
44米2
1
1
0.01= 100
=10 2
1
1
0.001=1000
=10 3
1
0.000 000 001=10 9
七年级下3.1《生活中的数据——认识百万分之一》
答:7.2 Байду номын сангаасxp
+/- 7
(2)在显微镜下,人体内一种细胞的形状可以 近似地看成圆,它的直径约为1.56 ×10-6米 利用科学计算器求出这种细胞的面积。
答:3.14×(0.78×10-6)2=1.910376×10-12
小结
通过这节课的 学习活动你有哪 些收获?
作业:
课本P77 习题3.1知 识技能第1题第2题
大象是世界上最大的陆栖动物, 它的体重大约是几吨,下面哪个动物 的体重相当于大象体重的百万分之 0.2千克 200千克 5~6克 1.5千克 一
回顾科学计数法
•1、科学计数法的形式
n a×10
2.a什么要求?n有什
么要求?
1. 1260000000=
2.
6= 6.67×10
导学四
怎样用科学记数法表示日常 生活中遇到的非常小的数呢? 1000 000 000 = 1.0 × 109
导学二
•自学课本“议一议” 通过小组合作学习 回答课本问题.
(1)珠穆朗玛是世界第一高峰,它的海拔 约为8848米。它高度的千分之一
8.848米
是
相当于
。
层楼的高度。 厘
3
它高度的百万分之一是 0.8848 米 。 你能直观描述这个长
度 约是一本英语书的厚度
。
(2)天安门广场的面积 2,计算它的 约为44万米 百分之一的面积,并用 自己的语言对结果进行 描述。它的万分之一、 百万分之一呢?
第三章 生活中的数据
1 认识百万分之一
七年级数学组
学习目标
•1.借助自己熟悉的事物,从不 同的角度对百万分之一进行感 受,发展数感. •2会用科学计数法表示百万分之 一等较小的数据. •3.借助科学计算器进行有关科 学计数法的计算.
北师大版七年级下册知识点梳理及典型例题
第一章整式考点分析:本章的内容以计算为主,故大部分的分值落在计算题,属于基础题,同学们要必拿哦!占15—20分左右一、整式的有关概念1、单项式:数与字母乘积,这样的代数式叫单项式。
单独一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式: 几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数 叫多项式的次数。
6、整式:单项式与多项式统称整式。
(分母含有字母的代数式不是整式) 练习一:(1)指出下列单项式的系数与指数各是多少。
a )1( (2)指出下列多项式的次数及项。
二、整式的运算(一)整式的加减法:基本步骤:去括号,合并同类项。
(二)整式的乘法 1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
数学符号表示:练习三:判断下列各式是否正确。
432)2(y x mn32)3(rπ32)4(-252)1(523-+n m y x 4232372)2(ab z y x +-()()(),________________________________)()()())(4________________________________,,2)3________________________________,,)2________________________________,,2)16623222844333改正:改正:改正:改正:x x x x x m m m b b b a a a =-=-∙-∙-=+=+=∙()()()()________________________________)()())(4________________________________,))(3________________________________]))[(2________________________________,,))(12244241222443243284444改正:改正:改正:改正:m m m n n a a a x x b bb a a a ===-====--⨯⨯+3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
数学初一下3.1认识百万分之一练习1
数学初一下3.1认识百万分之一练习1本卷须知1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2、选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一.选择题一个100×100M2的足球场,它的百万分之一大约有〔〕A.一只拇指头大B.一只手掌心大C.一本数学课本大D.一床被单大【解析】∵100×100M2=104M2,∴104×10-6M2=10-2M2=102CM2,又∵一只手掌心大的面积大约是102CM2∴应选B光的速度约为300000000米/秒,用手电筒照射30米外的小明,打开手电筒,光线多长时间能照射到小明身上〔A〕【解析】∵300000000米/秒=3×108米/秒,∴30÷〔3×108〕=10-7〔秒〕又∵10-7秒等于一千万分之一秒,∴应选AA.一千万分之一秒B.一百万分之一秒C.十万分之一秒D.一万分之一秒地球的半径约为6400KM,一间教室的长度大约是地球半径的〔〕【解析】∵6400KM=6.4×103KM=6.4×106M,而6.4×106M÷106=6.4M,又∵一间教室的长度大约是7M,∴应选CA.一万分之一B.十万分之一C.一百万分之一D.一千万分之一1ML的水大约可以滴10滴.1杯水约250ML,一滴水占一杯水的〔〕【解析】∵250ML×10=2500〔滴〕=2.5×103〔滴〕,∴1÷〔2.5×103〕=4×10-4,∴应选AA.4×10-4B.4×10-5C.4×10-6D.4×10-3××5.纳米技术是21世纪新兴的技术,纳米是一种长度单位,1纳米等于1米的10亿万分之一,关系式:1纳米=10-N米中,N应该是〔B〕【解析】∵1纳米等于1米的10亿万分之一,即1纳米=10-9米,又∵1纳米=10-N米,∴N=9∴应选BA.10B.9C.8D.-10一根标杆长5.2×10-2米,那么它的长用小数表示为〔〕【解析】∵5.2×10-2=5.2×0.01=0.052〔米〕,∴应选CA.5.2米B.52米C.0.52米D.0.052米到2003年末,每百户城镇居民家庭拥有汽车5.1×10-1辆,即为〔〕【解析】∵5.1×10-1辆=0.51,∴应选CA.51B.5.1C.0.51D.0.051人体中一种细胞的形状近似圆形,其直径约为0.00000156米,用科学计数法表示为〔C〕【解析】∵0.00000156=1.56×10-6,∴应选CA.156×10-8B.15.6×10-7C.1.56×10-6D.1.56×10-5珠穆朗玛峰的高度为8844.43米,那么它的百万分之一相当于〔〕【解析】∵8844.43×10-6=8.84443×10-3〔米〕=0.884443〔厘米〕,∴应选DA.一根头发的直径B.一支铅笔的长度C.一根香烟的长度D.一元硬币的厚度中国的万里长城全长约为14700里,下面哪种物体的长度大约相当于长城的百万分之一〔〕【解析】∵14700里=14700×500=7350000〔米〕,7350000×10-6=7.5〔米〕,又∵一个文具盒的长度大约为20厘米左右,一层楼的高度大约在3米左右,一节火车的长度大约在10米左右,∴应选BA.一个文具盒的长度B.两层楼的高度C.十层楼的高度D.30节火车的长度甲型H1N1流感病毒的直径大约是0.000000081米,用科学计数法表示为〔B〕【解析】∵0.000000081米=8.1×10-8米,∴应选BA.8.1×10-9米B.8.1×10-8米C.81×10-9米D.0.81×10-7米老师在黑板上写了这样一个数:2.02×10-7,并告诉大家,这是用科学计数法记出的数,那么他原来的数是〔〕【解析】∵2.02×10-7=0.000000202,∴应选CA.0.0000000202B.20200000C.0.000000202D.0.00000202肥皂泡的厚度为0.0000007米,一间教室的长度是7米,那么肥皂泡的厚度是一间教室的长度的〔〕【解析】∵0.0000007÷7=10-7,∴应选AA.一千万分之一B.一百万分之一C.十万分之一D.十万分之一在哺乳动物的细胞核中,每单倍体含DNA0.000000000003G,把这个数字用科学计数法表示出来应该是〔〕【解析】∵0.000000000003G=3×10-12,∴应选CA.3×10-11B.0.3×10-11C.3×10-12D.0.3×10-12某资料显示:一个水分子的质量大约是3×10-26KG,那么8个水分子的质量用科学计数法表示为〔〕【解析】∵3×10-26×8=2.4×10-25,∴应选BA.0.24×10-26KGB.2.4×10-25KGC.2.4×10-26KGD.2.4×10-24KG小刚对一些换算单位不是很清楚,于是小亮考了小刚这样一道题:1微米不等于下面中的〔〕【解析】∵1微米=10-6米=10-5分米=10-3毫米,∴应选CA.10-6米B.10-5分米C.10-4分米D.10-3毫米纳米是一种长度单位,1纳米=109 米,某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉直径为〔〕【解析】∵35000×10-9=3.5×10-5〔米〕,∴应选CA.3.5×10米B.3.5×104-米C.3.5×105-米D.3.5×109-米用科学记数法表示180000的结果是〔〕【解析】∵180000=1.8×105,∴应选BA.18×104B.1.8×105C.0.18×106D.1.8×1062003年10月15日,中国“神舟”五号载人飞船成功发射,圆了中国人千年的飞天梦,航天员杨利伟乘飞船在约21小时内环绕地球14圈,其长度约为591000000千米,用科学记数法表示为〔〕【解析】∵591000000〔千米〕=5.9×108〔千米〕,∴应选BA.5.91×107千米B.5.91×108千米C.5.91×109千米D.5.91×1010千米北京鸟巢体育馆占地面积大约是200×300米2,它的百万分之一大约有〔A〕【解析】∵200×300=6×104,6×104×10-6=6×10-2〔米2〕=600〔厘米2〕,而一本《全程训练》练习本的长大约为30厘米,宽大约为20厘米,那么面积大约为600厘米2,∴应选AA.一本《全程训练》练习本大B.一床被单大C.一个篮球场大D.无法估计二.填空题微生物很小,支原体直径只有0.1微米,这相当于__10-7__米.【解析】∵1微米=10-6米,∴0.1微米=0.1×10-6米=10-7米一个小正方体的边长为0.005米,那么它的体积为_1.25×10-7__米3〔用科学计数法表示〕,如果用这种小正方体块8×106_个,就可以摆成体积为1米3的大正方体.【解析】∵一个小正方体的体积=0.0053=〔5×10-3〕3=1.25×10-7,∴1÷〔1.25×10-7〕=8×106某种新型高速计算机的存储器完成一次存储时间大约为二十亿分之一秒.用科学计数法表示二十亿分之一秒为_5×10-10_秒.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为3.397×107万元、【解析】33970000=3.397×10000000=3.397×107据重庆市统计局公布的数据,2017年一季度全市实现国民生产总值约为7840000万元,那么7840000万元用科学计数法表示为_7.84×106_万元.【解析】7840000=7.84×1000000=7.84×106【三】解答题在庞大的生物世界里,要数微生物的个体最小.就细菌来说,细菌中最普遍的是杆菌,它们的平均长度为2微米,有人推算1500个杆菌头尾衔接起来,仅有一粒芝麻长;那么,一粒芝麻大约长多少米?杆菌的平均宽度只有0.5微米,据估计大约有70个杆菌肩并肩地排成横队,只有当一根头发丝的宽度,那么,一根头发丝大约宽多少分米呢?现在一个人身高1.8米,请你估计一下大约需要多少杆菌头尾衔接起来才能达到这个人的身高?【解】:一粒芝麻大约为3×10-3M,一根头发丝大约为3.5×10-5DM,9×105个.平均一年365天,每天24小时,每小时3600秒,每天86400秒,每年31536000秒.你能算出每年秒数的百万分之一是多少吗?【解】31536000×10-6=31.536〔秒〕答:每年秒数的百万分之一是31.536秒.世界上面积最小的国家梵蒂冈仅有0.44平方千米,而我们平时做操时每人需要用2平方米,请计算梵蒂冈能容纳多少百万人同时做操?【解】0.44平方千米=4.4×105平方米,〔4.4×105〕÷2=2.2×105,2.2×105×10-6=0.22〔百万人〕答:梵蒂冈能容纳0.22百万人同时做操.用科学计数法表示以下各数.〔1〕人体红细胞的直径大约为0.0000077米;〔2〕流感病毒的直径大约为0.00000008米;【解】:〔1〕0.0000077=7.7×10-6〔米〕〔2〕0.00000008=8×10-8〔米〕百分之一米又称1微米人体内红细胞的直径大约为7.5微米,〔1〕10000个红细胞首尾连接起来能达到多少毫米?〔2〕1立方毫米的血液中大约有500万个红细胞,把这500万个红细胞首尾连接起来能达到多少毫米?解:〔1〕7.5×10-6×10000=0.075〔米〕=75〔毫米〕〔2〕7.5×10-6×5000000=37.5〔米〕=37500〔毫米〕计算机完成2万次存储的时间为0.02秒,那么完成1次的时间为多少秒?【解】:0.02÷20000=10-6=1 1000000〔秒〕答:完成1次的时间为百万分之一秒.在男子的1立方毫米的血液中,大约有5000000个红细胞,求每个红细胞的体积大约是多少立方毫米?〔结果用科学计数法表示〕【解】:∵1÷5000000=2×10-7〔毫米3〕∴每个红细胞的体积大约是2×10-7立方毫米.1厘米3的氢气重大约为0.00009克,一块橡皮重45克.〔1〕用科学计数法表示1厘米3的氢气重量;〔2〕1厘米3的氢气重是这块橡皮重量的百万分之几?【解】:〔1〕0.00009=9×10-5〔克〕〔2〕∵9×10-5÷45=2×10-6∴1厘米3的氢气重是这块橡皮重量的百万分之二.很多物质是由原子构成的,原子是很小的粒子,它的质量非常小,不易表示,科学家们采用相对原子质量,以1.66×10-27千克作为标准,如氢原子的质量是1.647×10-27千克,氢的相对原子质量约等于1;碳原子的质量为1.993×10-26千克,碳的相对原子质量约等于12.〔1〕氧原子的质量是2.657×10-26千克,你能算出氧的相对原子质量吗?〔2〕假设铁的相对原子质量是56,铁原子的质量大约是多少千克?【解】:〔1〕∵〔2.657×10-26〕÷〔1.66×10-27〕≈16∴氧的相对原子质量是16.〔2〕∵1.66×10-27×56=9.296×10-26〔千克〕∴铁原子的质量大约是9.296×10-26千克在“百万分之一到底有多大”一节中,我们知道一粒大米大约是0.022克,现在请你计算:我国现有13亿人口,按每人每天三餐计算,假设每人每餐节约一粒米,请问全国人民一年〔按365天计算〕大约能节约多少吨大米?如果用载重5吨的汽车来运输这些大米,需要多少辆车才能一次装完?【解】∵0.022×1.3×109×365=1.0439×1010〔克〕=1.0439×107〔千克〕=10439〔吨〕.∴10439÷5≈2088〔辆〕.答:全国人民一年〔按365天计算〕大约能节约10439吨大米;如果用载重5吨的汽车来运输这些大米,需要2088辆车才能一次装完.。
北师大版数学七年级下册 认识三角形同步练习(Word版含答案)
4.1.2 认识三角形 北师大版一、单选题1.下列长度(单位:cm )的三条线段,能组成三角形的是( ) A .2,3,5 B .2,5,8 C .5,5,2 D .5,5,10 2.在△ABC 中,已知AB =3,BC =4,则AC 的长可能是( )A .1B .4C .7D .9 3.若三角形的两边a 、b 的长分别为3和4,则其第三边c 的取值范围是( ) A .3<c <4 B .2≤c ≤6 C .1<c <7 D .1≤c ≤7 4.若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个 5.如图,△1、△2、△3是△ABC 的外角,若△1:△2:△3=4:3:2,则△ABC 的度数为( )A .60°B .80°C .90°D .100°6.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得100m,90m PA PB ==,那么点A 与点B 之间的距离不可能是( )A .20mB .120mC .180mD .200m 7.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a ﹣3|+(b ﹣7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7B .7<c <10C .3<c <7D .4<c <108.如图所示,由三角形两边的和大于第三边,可得到的结论是( )A .AB AD BC +>B .PD CD BP +>C .AB AC BC +>D .BP CP AC +>9.已知△ABC 的三条边分别为a ,b ,c ,化简|a +b ﹣c |﹣|b ﹣a ﹣c |+|a ﹣b +c |( ) A .3a ﹣b +c B .a +b ﹣c C .a ﹣b ﹣c D .﹣a +3b ﹣3c二、填空题10.不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.11.已知a ,b ,c 是△ABC 的三边,化简:|a +b -c |+|b -a -c |=________.12.一个三角形的一个外角是它相邻内角的2倍,是不相邻某个内角的4倍,则这个三角形的各内角度数为________________.13.在ABC 中,AM 是BC 边上的中线,已知AB ﹣AC =5,且AMC 的周长是20,则ABM 的周长是________.14.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是_________.三、解答题15.已知三角形三边长分别为a ,b ,c ,其中a ,b 满足(a ﹣8)2+|b ﹣6|=0,求这个三角形的第三边长c 的取值范围.16.已知a ,b ,c 分别为ABC 的三边,且满足32a b c +=-,26a b c -=-.(1)求c 的取值范围;(2)若ABC 的周长为12,求c 的值.17.如图所示,OE 是△AOB 的平分线,OD 是△BOC 的平分线,△AOB=90º, △EOD=60º,求△BOC 的度数18.如图,已知AB△CD,△DAE=△CAB,△ACB=△EFC,请说明AD△BC.参考答案:1.C【解析】根据三角形的三边关系,A .2+3=5,不能组成三角形,不符合题意;B .2+5=7<8,不能组成三角形,不符合题意;C .5+5=10>2,5-5=0<2,能组成三角形,符合题意;D .5+5=10,不能组成三角形,不符合题意;故选C .2.B【解析】△AB =3,BC =4,△4−3<AC <4+3,即1<AC <7 .观察选项,只有选项B 符合题意.故选:B .3.C【解析】解:△三角形的两边a 、b 的长分别为3和4,△其第三边c 的取值范围是4334c -<<+ ,即17c << .故选:C4.C【解析】解:c 的范围是:5﹣3<c <5+3,即2<c <8.△c 是奇数,△c =3或5或7,有3个值.则对应的三角形有3个.故选:C .5.A【解析】解:设1∠、2∠、3∠的度数分别为4x 、3x 、2x ,则432360x x x ++=︒,解得,40x =︒,23120x ∴∠==︒,18012060∴∠=︒-︒=︒,ABC故选:A.6.D【解析】解:△P A=100m,PB=90m,△根据三角形的三边关系得到:PA PB AB PA PB-<<+,△10m190m<<,AB△点A与点B之间的距离不可能是20m,故选A.7.B【解析】解:根据题意得:a﹣3=0,b﹣7=0,解得a=3,b=7,因为c是最大边,所以7<c<7+3,即7<c<10.故选:B.8.C【解析】解:A、在△ABD中,AB AD BD+>,原结论不正确,故该选项不符合题意;+>,原结论不正确,故该选项不符合题意;B、在△PCD中,PD CD CP+>,正确,故该选项符合题意;C、在△ABC中,AB AC BC+>,原结论不正确,故该选项不符合题意;D、在△PBC中,BP CP BC故选:C.9.B【解析】解:△a、b、c分别为△ABC的三边长,△a+b−c>0,b−a−c<0,a−b+c>0,△|a+b−c|−|b−a−c|+|a−b+c|=a+b−c−(a+c−b)+a−b+c=a+b−c−a−c+b+a−b+c=a+b−c.故选:B.10.7【解析】解:设第三边长是c ,则9﹣4<c <9+4,即5<c <13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4, ∴c =7.故答案为:7.11.2a【解析】解:△,,a b c 是ABC ∆的三条边,△00a b c b a c +->--<,, △||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=. 故答案为:2a .12.30°,60°,90°【解析】解:设和它相邻的内角为x °,则x °+2x °=180°,解得x =60°,2x =120°,可求出与它不相邻的某个内角是30°,根据三角形内角和定理可知,另一个角为90°.则这个三角形的各内角度数为30°,60°,90°.故答案为:30°,60°,90°.13.25.【解析】解:△AMC 的周长是20,△AM+MC +AC =20,△AM 是BC 边上的中线,△BM =MC ,又△AB ﹣AC =5,△AB =5+AC , △ABM 的周长=AB +BM +AM =5+AC +MC +AM =5+20=25, 故答案为25.14.15【解析】解:设三角形的第三边为x ,则4<x <10, 又第三边x 为整数,则x 可以取5,6,7,8,9,所以三角形的周长最小值为3+7+5=15. 故答案为:15.15.214c <<【解析】△()2860a b -+-=,△80a -=,60b -=,△8a =,6b =,△a b c a b -<<+,△214c <<.故三角形第三边长c 的取值范围为:214c << 16.(1)2<c <6(2)3.5【解析】(1)△a ,b ,c 分别为△ABC 的三边,a +b =3c -2,a -b =2c -6, △3226c c c c ->⎧⎨-<⎩, 解得:2<c <6.故c 的取值范围为2<c <6;(2)△△ABC 的周长为12,a +b =3c -2, △a +b +c =4c -2=12,解得c =3.5.故c 的值是3.5.17.30°【解析】解:△OE平分△AOB,△AOB=90°,△1452BOE AOB∠=∠=︒,△OD是△BOC的平分线,△△BOC=2△BOD,△△EOD=60°,△15 BOD EOD BOE∠=∠-∠=︒,△△BOC=30°.18.见解析【解析】解:△△BCD=△ACD+△ACB,又△△BCD=△E+△EFC,△△ACD+△ACB=△E+△EFC,△△ACB=△EFC,△△ACD=△E,△AB△CD,△△CAB=△ACD,△△CAB=△DAE,△△E=△DAE,△AD△BC.。
《认识百万分之一》教学案例
《3.1认识百万分之一》教学案例青岛第三十四中学刘淑华一、教材分析《3.1认识百万分之一》是北师版七年级下册第三章第一节,是全章知识的导入。
《课程标准》中对“统计与概率”部分做出了明确要求:“能通过收集数据、描述数据、分析数据的过程做出合理的决策”。
本章《生活中的数据》是学生在7至9年级学段中第二次接触统计知识,将在原来的基础上继续发展学生的数感。
本节课从实际情境出发,先让学生认识身边较小的数,再通过对比、测量等活动从长度、面积等方面感受百万分之一,最后尝试用科学记数法来表示,让学生继续体会估测数的方法和科学记数法的表示。
二、学情分析我们所面对的学生都是在城市中长大的,每天都要接触大量的数据信息,在七年级上册中,学生已经学习了《100万有多大》和《科学记数法》,对较大的数已经有了初步的体验,对用科学记数法表示大数的方法也有了一定的认识。
学生在生活中曾接触过许多较小的数据,在本节课中,教师借助丰富的生活背景,将生活中的数据呈现给学生,让他们加深体会数学知识在生活中的广泛应用。
教师在教学过程中应注意给学生充分的自由和空间,培养学生的探索能力和实践意识。
三、设计理念结合本课的教学内容,以实际问题为出发点,坚持以学生为本。
在课堂教学中,面向全体学生,确定学生的主体地位.教学中以知识为载体,让学生通过动脑、动手、动口,参与课堂教学,自己去探究、去发现,把学习数学变成做数学、发现数学的全过程,形成学生探究知识、运用知识、发展能力的课堂教学特点,同时使学生在这样的学习方式中掌握数学方法、学会学习、学会创新,并学会合作与分享,发展与伙伴合作的团队精神。
四、教学目标根据本节内容,以学生七年级上册的学习为知识基础,结合学生现有的年龄特征,确定本课教学目标如下:1.借助学生熟悉的事物,从不同角度对百万分之一进行感受,发展学生的数感。
2.学会估计百万分之一的方法,并能对数据信息做出合理的解释和推断。
3.能用科学记数法来表示较小的数据,并能用科学计算器进行相关计算。
北京版七年级下册数学电子课本可打印
北京版七年级下册数学电子课本微信搜索关注公众号:5068教学资料查看完整版电子课本可微信搜索公众号【5068教学资料】,关注后对话框回复【7】获取七年级电子课本资源。
七年级数学知识点1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p==2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=完全平方公式:(a+b)2(a-b)2常用公式:(x+m)(x+n)=4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余角和互为补角和6、两直线平行的条件:(角的关系线的平行)①相等,两直线平行;②相等,两直线平行;③互补,两直线平行.7、平行线的性质:两直线平行。
(线的平行8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)9、变量中的图象法,注意:(1)横、纵坐标的对象。
(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求平均值。
10、三角形(1)三边关系:角的关系)(2)内角关系:(3)三角形的三条重要线段:(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)(5)全等三角形的性质:(6)等腰三角形:(a)知边求边、周长方法(b)知角求角方法(c)三线合一:(7)等边三角形:11、会判轴对称图形,会根据画对称图形,(或在方格中画)12、常见的轴对称图形有:13、(1)等腰三角形:对称轴,性质(2)线段:对称轴,性质(3)角:对称轴,性质14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线(4)作角的平分线(5)作三角形15、事件的分类:,会求各种事件的概率(1)摸球:P(摸某种球)=(2)摸牌:P(摸某种牌)=(3)转盘:P(指向某个区域)=(4)抛骰子:P(抛出某个点数)=(5)方格(面积):P(停留某个区域)=16、必然事件不可能事件,不确定事件17、方法归纳:(1)求边相等可以利用(2)求角相等可以利用。
第四章-变量之间的关系 同步练习题-七年级下册(北师大版)
七年级数学下第三章变量之间的关系§3.1用表格表示变量间的关系➢知识导航一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
二、列表法采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
➢同步练习1.小明和他爸爸做了一个实验:由小明从一幢245m高的楼顶随手扔下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间有下面的关系:则下列说法错误的是( ) A、苹果每秒下落的路程不变; B.苹果每秒下落的路程越来越长C.苹果下落的速度越来越快;D.可以推测,苹果下落7s后到达地面2、赵先生手中有一张记录他从出生到24岁期间的身高情况表: 下列说法错误的是( )A.赵先生的身高增长速度总体上先快后慢;B.赵先生的身高在21岁以后基本不长了;C.赵先生的身高从0岁到24岁平均每年增高7.1cm;D.赵先生的身高从0岁到24岁平均每年增高5.1cm.3.小明的妈妈自小明出生时起每隔一段时间就给小明称一下体重,得到下面的数据: 从表中可以得到:小明体重的变化是随小明的________的变化而变化的,这两个变量中,________是自变量,_________是因变量,虽然随着年龄的增大,•小明的体重__________,但体重增加的速度越来越_________.4.据国家统计局统计,解放以来至2000年我国各项税收收入合计如下表:从表中可以得出:•解放以来我国的税收收入总体趋势是__________,•其中,_______年与5年前相比,增长百分数最大,_________年与5•年前相比增长百分数最小,算一算,2000年与1950年相比,税收收入增长了________倍.(保留一位小数)5.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势年 份 2006 2007 2008 … 入学儿童人数2 5202 3302 140…(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人. 6.2012年1~12月某地大米的平均价格如下表表示?月份 123456789101112平均价格(元/kg)2.3 2.4 2.4 2.5 2.4 2.2 2.0 1.9 1.8 1.8 1.9 2.0(1)表中列出的是哪两个变量之间的关系?哪个是自变量,哪个是因变量? (2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大? (3)该地哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下落?(4)从表中可以得该地大米平均价格变化方面的哪些信息?平均比年初降低了还是涨价了?体重(kg)515 20 23.5 26.3 293132.834.53637年份 1950 1955 1960 1965 1970 1975 1980 1985 1990 19952000税收收入(亿)48127203204281402571 •204028216038 125817.下表是佳佳往妹妹家打长途电话的几次收费记载:时间/分 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)你能帮佳佳预测一下,如果她打电话用时间是10分钟,则需付多少电话费?8.如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点数……(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?9.下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:降价(元) 5 10 15 20 25 30 35日销量(件)780 810 840 870 900 930 960(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?P DCB A(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少? (3)如果售价为500元时,日销量为多少?§3.2用关系式表示的变量间关系➢ 知识导航:关系式法关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
数学 七年级下册 北师大版 第三章 生活中的数据 课件3-06第三章复习题
6、精确度的两种形式(重点): 、精确度的两种形式(重点): (1)精确到哪一位 ) ( 2)有效数字 )
7、给一个近似数,正确指出精确到哪一位? 、给一个近似数,正确指出精确到哪一位? 有哪几个有效数字。(难点) 。(难点 有哪几个有效数字。(难点) 8、几点注意: 、几点注意: ( 1)两个近似数 与1.60表示的精确程度 )两个近似数1.6与 表示的精确程度 不一样。 不一样。 万与6.3精确到的数位不 (2)两个近似数 万与 精确到的数位不 )两个近似数6.3万与 同。
2、中国的国士面积约为 、中国的国士面积约为9596960平方千米美国 平方千米美国
和罗马尼亚的国士面积分别约为9364000(四舍 ( 和罗马尼亚的国士面积分别约为 五入到千位) 平方千米( 五入到千位)和240000平方千米(四舍五入到万 平方千米 )。如果要将中国国士面积与它们比较 如果要将中国国士面积与它们比较, 位)。如果要将中国国士面积与它们比较,那么 中国国士面积分别四舍五入到哪位时, 中国国士面积分别四舍五入到哪位时,比较起来 误差可能小一些? 误差可能小一些?
4、利用四舍五入法取一个数的近似数时, 利用四舍五入法取一个数的近似数时, 四舍五入到那一位, 四舍五入到那一位,就说这个近似数精 确到那一位。 确到那一位。 5、对于一个近似数,从左边第一个不是 对于一个近似数, 0的数起,到精确到的数(最后一位四舍 的数起, 的数起 到精确到的数( 五入所得的数)止,所有的数字都叫做 五入所得的数) 这个数的有效数字。 这个数的有效数字。
2.下列各数是用科学记数法表示的 2.下列各数是用科学记数法表示的, 下列各数是用科学记数法表示的, 请写出它们的原数: 请写出它们的原数:
1.295× 103 × =1295 -1.30× 109 =-1300000000 × 1.3× 105 =130000 × 1.02× 10-3 =0.00102 × -1.3× 10-5 =-0.000013 × 1.23× 10-6 =0.00000123 ×
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 认识百万分之一
同步练习14:
1,用科学记数法表示0.000173= .
2,有科学记数法表示的数为3.42×104-,则这个数用小数可表示为 .
3,用科学记数法表示0.4立方厘米= 立方米.
4,一本100页的书的厚度为0.9厘米,用科学记数法表示每一页纸的厚度约等于厘米.
5,6.3×104-用小数表示为()
A.-63 000
B.-0.00063
C.0.00063
D.0.000063
6,一根木杆长为5.2×102-米,则它的长为()厘米.
A.5.12B.512C.51.2D.0.051 7,到2003年末,每百户城镇居民家庭拥有家用汽车5.1×101-辆,即为()
辆
A.51
B.5.1
C.0.51
D.0.051
8,纳米是一种长度单位,1纳米=109-米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉直径为()
A.3.5×104米
B. 3.5×104-米
C. 3.5×105-米
D.3.5
×109-米
9,小明和小刚在课外阅读过程中看到这样一条信息:“肥皂泡厚度为0.0000007米”。
小明说:“小刚,我用科学记数法来表示肥皂泡的厚度,你能选出正确的一项
吗?”。
小刚给出的答案中正确的是()
A.0.7×106-
B.0.7×107-
C.7×107-
D.7×
106-
10,用科学记数法表示下列结果。
(1)最薄的金箔的厚度为0.000000091米;
(2)人的头发的直径约为0.00007米;
(3)空气的密度约为0.001239克/厘米3.
11,一个小立方块的边长为3×102-米,一个立方体的边长为3米,试问一个小立
方块的体积是大立方体体积的几分之几?试用科学记数法表示这个结果,如果
用这种小立方块堆成那样大的立方体,则需要这种小立方块多少个?
答案:1,1.7×104- 2,0.000342 3,4×107- 4,9×103- 5,C 6,
A 7,C
8,C 9,C
10, (1)9.1×108- (2)7×105- (3)1.239×103-
11,610
1=106- 106个
五分钟测试 1.认识百万分之一
常言说:“坐地日行八万里,巡天遥看一千河.”这说明即使我们不运动,而我们生活的地球在不停地运转,自转一周是一天,因此我们呆在家里就随着我们的地球行了八万里,这说明地球的周长大约是80000里合40000千米.它的千分之一是_________千米,它的万分之一是_________千米.你的家距学校有这么远吗?___________________. 你家距学校的距离是它的几倍?还是几分之几?
_________________________________________________________________________.
你弄清了地球的周长的万分之一大约有多少吗?结合你周围的某个距离或
某个物体的长度,来体会,并和同学进行交流.
若你家离学校4千米,一天走四次,多少天走的距离相当于绕地球一圈?
_____________________________________________________________.
参考答案
1.认识百万分之一40 4 略 2500。