高等代数课件 第七章
《高等代数》第七章 线性变换
线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时
即
们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使
高等代数课件
(r ) a1r1 a2r2 arrr (r1) a1,r11 ar,r1r ar1,r1r1 an,r1n
(n ) a1n1 arnr ar1,nr1 annn
这表明关于这个基的矩阵是
A1 O
A3 A2
|W关于W的基1, 2, …, r 的矩阵
定理7.3.3 设V是数域F上的一个n维向量空间, {1, 2, …, n} 是V的一个基, 对于V的每个线性变换, 让它对应于它关于基{1, 2, …, n}的矩阵A. 如此建立的对应关系是L(V)到Mn(F)的一个同构 (保持加法和纯量乘法的双射). 而且如果变换,分别对应于矩阵A,B, 则变换,的乘积对应于矩阵A,B的乘积AB. (保持乘法)
例 6 接例4. V3是L与H的直和. 取L上的一个非零向量1作为它
的基, 取H上的两个正交单位向量2, 3作为它的基, 那么1, 2, 3组
V3的一个基. 关于这个基的矩阵是
1 0
0
0 cos sin
0 sin cos
应该地, 如果V是它的子空间W1, W2, … , Ws的直和, 且每一个都 是的不变子空间. 用这些子空间的基组V的一个基. 则关于这个基
定理7.1.2 设是向量空间V到W的一个线性映射. 则有 (i) 是单射Im()=W. (i) 是满射Ker()={0}.
两个线性映射的合成映射是线性映射. 设U, V, W是数域F上的向量空间, : UV, :VW是线性映射. 则合成映射:VW是U到W线性映射.
如果线性映射:VW有逆映射 1, 则 1是从W到V的线性映 射.
(n ) a1n1 a2n2 annn
其中, (a1j, a2j,…, anj, )是(j )关于基1, 2, …, n的坐标 j=1,2, …,n,. 它们是唯一确定的. 以它为第j列, 做成一个矩阵:
高等代数课件(北大版)第七章-线性变换§7.3
1,2, ,n A B
∴ + 在基 1, 2 , , n下的矩阵为A+B.
§7.3 线性变换的矩阵
② 1,2, ,n 1,2, ,n 1,2, ,n B 1, 2, , n B
1,2, ,n AB
∴ 在基 1, 2 , , n下的矩阵为AB.
③ k 1,2, ,n k 1 , ,k n k 1 , ,k n k 1 , , n
k 1, 2, , n k 1,2, , n A 1,2, ,n kA
∴ k 在基 1, 2 , , n下的矩阵为 kA.
§7.3 线性变换的矩阵
④ 由于单位变换(恒等变换) E对应于单位矩阵E.
所以, E
与 AB=BA=E 相对应.
因此,可逆线性变换 与可逆矩阵A对应,且 逆变换 - 1 对应于逆矩阵 A- 1.
x1
,
n
A
x2
xn
1, 2 ,
y1
,n
y2
1, 2 ,
yn
x1
,
n
A
x2
xn
由于 1, 2 ,
, n线性无关,所以
y1 x1
y2
=A
x2
.
yn xn
§7.3 线性变换的矩阵
4.同一线性变换在不同基下矩阵之间的关系
定理4 设线性空间V的线性变换 在两组基
显然,1,2 , ,n 也是一组基,且 在这组基下的
矩阵就是B.
§7.3 线性变换的矩阵
(3)相似矩阵的运算性质 ① 若 B1 X 1A1X , B2 X 1A2 X , 则 B1 B2 X 1( A1 A2 )X , B1B2 X 1( A1A2 )X . 即, A1 A2 B1 B2 , A1 A2 B1B2 .
高等代数第7章线性变换[1]PPT课件
换, 使"aV, 有 (A+B)(a) =A(a)+B(a).
1、A + B 也是V的一个线性变换.
因为对于所有的a,bV和数k,lP,有
(A+B)(ka+lb) = A(ka+lb ) +B(ka+lb ) = kA(a)+lA(b)+kB(a)+lB(b) = k (A+B)(a)+l (A+B)(b)
精选
2、乘法适合结合律,即 (AB)C = A(BC)
因为映射的合成满足结合律 3、乘法不满足交换律,即一般地
AB BA 如求微分变换D 与求积分变换J , 有
DJ = E ,但一般地 JD E 4、单位变换的作用 AE = EA = A 5、零变换的乘法 OA = AO = O
精选
二、线性变换的加法及其性质
精选
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
其中 (-A)(a)= -A(a), 从而
(A - B) = (A+ (-B)) 3、分配律 A(B+C) = AB +AC
(A+B)C = AC+BC
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换精选.a f (t)dt
二、线性变换的简单性质
高等代数【北大版】7.9
LLLLL
0 ≠ 0. ( J aE )k 1 = M O O 0 1 0 L 0
k ∴ J 的最小多项式为 ( x a ) .
§7.9 最小多项式
6.(定理13) A ∈ P n×n与对角矩阵相似 (定理13)
A 的最小多项式是 上互素的一次因式的积. 的最小多项式是P上互素的一次因式的积 上互素的一次因式的积
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量 §5 对角矩阵 §6线性变换的值域与核 §7不变子空间 §8 若当标准形简介 §9 最小多项式 小结与习题
§7.9 最小多项式
一,最小多项式的定义 二,最小多项式的基本性质
§7.9 最小多项式
二,最小多项式的基本性质
1.(引理1)矩阵 的最小多项式是唯一的 (引理1 矩阵A的最小多项式是唯一的 的最小多项式是唯一的. 都是A的最小多项式 的最小多项式. 证:设 g1 ( x ), g2 ( x ) 都是 的最小多项式 由带余除法,g1 ( x ) 可表成 由带余除法,
g1 ( x ) = q( x ) g2 ( x ) + r ( x )
∴ g1 ( x ) h( x ), g2 ( x ) h( x ).
从而
g ( x ) h( x ).
的最小多项式. 故 g( x ) 为A的最小多项式 的最小多项式
§7.9 最小多项式
推广: 若A是一个准对角矩阵 是一个准对角矩阵
A1 A2 O As
且 Ai 的最小多项式为 gi ( x ), i = 1,2,..., s 则A的最小多项式是为 [ g1 ( x ), g2 ( x ),..., g s ( x )]. 的最小多项式是为 两两互素, 特别地,若 g1 ( x ), g2 ( x ),..., g s ( x ) 两两互素,即
高等代数课件(北大版)第七章-线性变换§7.7
若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1
高等代数 讲义 第七章
(στ ) δ
= σ (τδ )
D( f ( x )) = f ′( x )
J ( f ( x ) ) = ∫ f ( t )dt
x
(2) Eσ = σ E = σ ,E为单位变换 (3)交换律一般不成立,即一般地,
( DJ ) ( f ( x ) ) = D ∫0 f ( t ) dt
x
στ ≠ τσ .
2.线性变换保持线性组合及关系式不变,即
若 β = k1α1 + k2α 2 + L + krα r , 则 σ ( β ) = k1σ (α1 ) + k2σ (α 2 ) + L + krσ (α r ).
例4. 闭区间 [a , b]上的全体连续函数构成的线性空间
C ( a , b ) 上的变换
σ ( X ) = AX , τ ( X ) = XB ,
∀X ∈ P n×n
则 σ ,τ 皆为 P n×n 的线性变换,且对 ∀X ∈ P n×n , 有
(στ )( X ) = σ (τ ( X )) = σ ( XB ) = A( XB ) = AXB , (τσ )( X ) = τ (σ ( X )) = τ ( AX ) = ( AX ) B = AXB .
= σ (τ (α )) + σ (τ ( β )) = (στ )(α ) + (στ )( β ), (στ )( kα ) = σ (τ ( kα )) = σ ( kτ (α )) = kσ (τ (α )) = k (στ )(α )
§7.1 线性变换的定义
2.基本性质
(1)满足结合律:
例1. 线性空间 R[ x ]中,线性变换
高等数学上册第七章课件.ppt
y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
高等代数第七章
同样可验证 rA , A 为 n n 的线性变换. 注意:
A l A rA
1 2 + 1 n 1 L 2! ( n1)!
另一方面, 由 n 0 知
1 2 1 n 1 )n 0, ( 2! ( n1)!
即下述线性变换 幂零:
【例2】 设 E 3 为欧氏空间中 一切几何向量(有向线 段)所 构 成的三维线性空间, 为其中选定的一个 平面. 如图, 对于此空间中任何一个向量 , 我们用 R ( ) 表示向量 以平面 镜面的镜像 . 验证 R 为 E 3 的线性变换 , 且 R1 R .
【验证】 如图, 为平面 的法向; R ( ) 2 P ( ) ( ) 2 P ( ) ( 2 P )( ); R 2 P 为线性变换; P ( )
【定义1】 对于 , (V ), 我们如下定义它们的 乘积 : ( )( ) ( ( ))( V ), 即 : ( ) ( ( )).
【线性变换乘积的性质】 (如下有 , , (V ); k , l )
(3) dim (V ) n 2 ;
2. 线性变换代数*
(如下有 , , (V ); k , l ) ( )(k ) ( ( k )) (k ( )) k ( ( )) k ( )( ).
(2) ( ) ( ); (3) ( ) , ( ) ; (4) ( 为单位线性变换); (5) 0; (6) ( k ) ( k ) k ( ).
高等代数 第7章欧式空间 7.1 欧氏空间的定义及性质
x, y
x y
例 求向量 1,2,2,3与 3,1,5,1的夹角.
18 2 解 cos 3 261. 非负性 当 x 0时, x 0;当 x 0时, x 0; 2. 齐次性 x x ; 3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时, 称 x 为单位向量 .
2 当 x 0, y 0时, arccos
(4)[ x , x ] 0, 且当x 0时有[ x , x ] 0.
则称V(R)关于这个数积构成一个欧氏空间。这里 x,y为任意向量,k为任意实数。
数积的性质: (1)(x ,ky)=k(x , y) (2) (x , y+z )=(x , y)+( x , z ) (3) (x , )=0
欧氏空间的定义及性质
定义:设V(R)是实数域R上的线性空间,
在V(R)中定义了一个叫做数积的运算,即 有一定的法则,按照这个法则,对V(R)中 的任意两个向量x,y,都能确定R中唯一一个实 数,称之为x与y的数积,记作(x,y),如果这个 运算具有性质:
(1) ( 2) ( 3)
x, y y, x ; x, y x, y; x y, z x, z y, z ;
n (4) k i i 1
, l
i j 1 i
n
n,m ki l j ( i i 1, j 1
,
i
j
)
向量的长度及性质
定义2 令
x
x, x
2 2 2 x1 x2 xn ,
称 x 为n 维向量 x的长度 或 范数 .
高等代数讲义ppt第七章 线性变换
(4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。
线性变换
§3 线性变换的矩阵
例4 设 A 是n维线性空间V的一个线性变换, A3=2E, B =A2-2A+2E, 证明:A,B都是可逆变换。
线性变换
§3 线性变换的矩阵
§3 线性变换的矩阵
定理1 设1, 2 , , n是线性空间V的一组基, 对V中任意n个向量 1,2 , ,n 存在唯一的线性变换 A∈L(V) 使任的何像得元,素只都要可选以取是适基当
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A(0) 0, A( ) A()
性质2 线性变换保持线性组合与线性关系式不变。
性质3 线性变换把线性相关的向量组变成线性相关的向量组。
注意: 线性变换可能把线性无关的向量组变成线性相关的 向量组。
例3 设 1,2, ,r 是线性空间V的一组向量,A 是V的一个线
线性变换的加法满足以下运算规律:
(1) A + ( B + C ) = ( A + B ) + C
(2) A + B = B + A
线性变换
§2 线性变换的运算
定义2 设 A∈L(V),k∈P,对k与 A 的数量乘积 kA 定义为:
(kA) k A, V
结论2 对∀A ∈L(V),k∈P 有 kA∈L(V)。
Amn AmAn , (Am )n Amn, m, n N
高等代数07向量空间
本征值和本征向量
定义1 定义1 中一个数,如果存在 中非零向量ξ 设λ是F中一个数 如果存在 中非零向量ξ,使得 中一个数 如果存在V中非零向量 (1) )=λξ σ(ξ)=λξ . 那么λ就叫做σ的一个本征值, 叫做σ 那么 λ 就叫做 σ 的一个本征值 , 而 ξ 叫做 σ 的属于本 征值λ的一个本征向量. 征值λ的一个本征向量.
定义2 定义2 是数域F上一个 阶矩阵,行列式 设A=(aij)是数域 上一个 阶矩阵 行列式 是数域 上一个n阶矩阵 行列式: x-a11 (x)=det(xIfA(x)=det(xI-A)= -a21 -an1 叫做矩阵A的特征多项式. 叫做矩阵A的特征多项式. -a12 … -a1n -a2n x-ann
命题 7.3.3 设数域F上的向量空间V的一个线性变换σ关于V 的一个取定的基的矩阵是A,那么σ可逆必要且只要A可逆,并且 σ-1关于这个基的矩阵就是A-1.
不变子空间
定义 V的一个子空间W说是在线性变换σ之下不变(或稳 的一个子空间W说是在线性变换σ之下不变( ),如果 定),如果 σ (W ) W . 如果子空间W在σ之下不变,那么W就叫做σ的一个不 如果子空间W 之下不变,那么W就叫做σ 变子空间. 变子空间.
命题 7.1.1 设V和W是数域F上向量空间,而σ:V→W是一个线性 映射.那么V的任意子空间在σ之下的像是W的一个子空间,而W 的任意子空间在σ之下的原像是V的一个子空间.
命题 7.1.2 设V和W是数域F上向量空间,而σ:V→W是一个线 性映射,那么 Im(σ)=W. (Ⅰ) σ是满射 (Ⅱ) σ是单射 Ker(σ)=|0|.
推论 7.6.3 令σ是数域F上n维向量空间V的一个线性变换. 如果σ的特征多项式fσ(x)在F内有n个单根,那么存在V的一个 基,使σ关于这个基的矩阵是对角形式.
高等代数--第七章 线性变换_OK
是 则
A,向量 在基 1,2,,n下的坐标 A 在基 1,2,,n 下的坐标 ( y1
(x1, x2 ,, xn , y2 ,, yn )
)
可以按公式
y1 x1
y2
A
x2
yn xn
计算
32
证明
由假设
x1
(1,2 ,,n )
x2
.
xn
于是
33
A (A 1, A 2,
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
A () (x12 , x22 , x32 )
判断 A 是否是一个线性变换
11
例7 定义在闭区间[a,b]上的全体连续函数组成
实数域上一线性空间,以C(a,b)代表. 在这个空间 中,变换
J ( f (x))
x
f (t)dt
a
是一线性变换.
12
简单性质:
1.设A 是V的线性变换,则
A (0) 0,A () A ().
1
1
.
1 0 1 2 0 1 1 2
43
我们可以得到
2
1
k
1
11 1k 1
1 1
1 0 1 2 0 1 1 2
1 11 k 2 1 1 2 0 1 1 1
1 k 1 2 1 k 1 k . 1 2 k 1 1 k k 1
高等代数【北大版】7.2
β = k1σ (ε 1 ) + k2σ (ε 2 ) + + knσ (ε n ),
即有 σ ( k1ε 1 + k 2ε 2 + + k nε n ) = β .
∴ σ 为满射 为满射.
§7.2 线性变换的运算
其次, 其次,任取 α , β ∈ V , 设 α = ∑ aiε i , β = ∑ biε i ,
1
(α + β ) = σ
1 1
1
1
1
1
1
1
1
σ 1 ( kα ) = σ 1 k ( σσ 1 ) (α ) = σ 1 k σ ( σ 1 (α ) )
= σ 1 σ k σ 1 ( α )
§7.2 线性变换的运算
= σ 1 ( α ) + σ 1 ( β )
( (
(
(
)))
)
((
)
))
= k σ 1 (α ) = kσ 1 (α )
线性变换的加法与数量乘法构成数域P上的一个线性 线性变换的加法与数量乘法构成数域 上的一个线性 空间,记作 L(V ). 空间,
§7.2 线性变换的运算
四, 线性变换的逆
1.定义
为线性空间V的线性变换 若有V的变换 的线性变换, 设 σ 为线性空间 的线性变换,若有 的变换 τ 使
στ = τσ = E
§7.2 线性变换的运算
2.基本性质
(1)满足交换律:σ + τ = τ + σ )满足交换律: (2)满足结合律:(σ + τ ) + δ = σ + (τ + δ ) )满足结合律: 为零变换. (3) 0 + σ = σ + 0 = σ , 0为零变换 ) 为零变换 (4)乘法对加法满足左,右分配律: )乘法对加法满足左,右分配律:
高等代数第七章线性变换
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。
高等代数课件(北大三版)--第七章-线性变换
尤其,向量空间V 在σ之下旳象是W 旳一种
子空间,叫做σ旳象, 记为 Im( ),
即 Im( ) (V ).
另外,W 旳零子空间 { 0 } 在σ之下旳原象是 V 旳一种子空间,叫做σ旳核,
记为 Ker( ),
即 Ker( ) { V | ( ) 0}.
定理7.1.2 设V和W是数域F向量空间,而是一种线 性映射,那么 :V W (i) σ是满射 Im( ) W (ii) σ是单射 Ker( ) {0} 证明 论断(i)是显然旳,我们只证论断(ii) 假如σ是单射,那么ker(σ)只能是具有唯一旳零向量. 反过来设ker(σ) = {0}.
轻易证明上面旳两个条件等价于下面一种条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0,对③进行数学归纳,能够得到:
(1) (0) 0
(2) (a11 ann ) a1 (1) an (n )
例1 对于 R 2 旳每历来量 x1, x2 定义 x1, x1 x2 , x1 x2 R3
x1
(1
,
2
,,
n
)
x2
.
xn
因为σ是线性变换,所以
( ) x1 (1) x2 (2 ) xn (n )
(2)
x1
(
(1),
(
2
),,
(
n
))
x2
.
xn
将(1)代入(2)得
x1
(
)
(1,
2
,,
n
)
A
x2
.
xn
最终,等式表白, ( )关于(1,2 ,n ) 旳坐标所构成 旳列是
高等代数(第7章)
例如,零变换将线性无关的向量组变成线性相关 的向量组.
§7.2 线性变换的运算
设V是数域P上的线性空间, 、是V的两个线 性变换. 1.线性运算 (1)加法: 与的和定义为 ( +)()=()+() ( V) (2)数量乘法:数域P中的数k与的数量乘法定义为 (k)( ) =k(()) ( V) (3) 负变换:的负变换 -定义为 (-)()= - () ( V) 结论:线性空间V上的线性变换的全体,对于如上定 义的加法与数乘运算构成数域P上的线性空间.即
例2 设是几何空间中一个固定的非零向量, 将每个 向量变到它在上的内射影的变换
( , ) ( ) ( , ) .
( )
是一个线性变换.
2.线性变换的简单性质 设 是数域P上线性空间V的一个变换. (i)(0)=0, (-)= - (), V. (ii)(k11+…+ kmm)= k1(1) +…+ km(m) i V, ki P (i=1,2,…,m) (iii) 设i V, (i=1,2,…,m) .若 1,2,…,m线性相关,则 (1),(2),…,(m)线性相关;反之不然.
线性变换被基向量的像唯一确定!
定理1: 设1, 2,…,n是数域P上n维线性空间V 的一组 基, 1,2,…,n是V中任意n个向量,则存在唯一的线性 变换使 (j)= j , j=1,2,…,n.
证明:(i)存在性
x i i V , 定义V的变换: x i i .
仍是线性变换
()()=(()) ( V)
运算律: (i)()= () (ii) (+) = + , (+)+= +(+) (iii)k()=(k)= (k) 注意:线性变换的乘积一般是不可交换的,即 . 例1 在P22中,定义线性变换、 、为
高等代数第7章线性变换PPT课件
特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示
法
标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易证上面的两个条件等价于下面一个条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0 ,对③进行数学归纳,可以得到:
(1) (0) 0
x1
A
x2
.
xn
综合上面所述, 我们得到坐标变换公式:
定理7.3.1 令V是F上一个n 维向量空间,σ是 V的一个线性变换,而σ关于V的一个基 {1, 2 ,, n} 的矩阵是
a11
A
a21
a12
a22
a1n a2n
an1 an2 ann
如果V中向量ξ关于这个基的坐标是 (x1, x2 ,, xn,) 而σ(ξ)的坐标是 ( y1, y2 ,, yn,)
例6 取定F的一个n元数列 a1, a2,, an , 对于 F n
的每一向量 x1, x2,, xn , 规定
a1x1 a2 x2 an xn F
则,σ是 F n到F的一个线性映射(这个线性映射也叫做 F上一个n元线性函数或 上F n一个线性型).
例7 对于F[x] 的每一多项式 f(x),令它的导数
因而(9)成立。
三、线性变换的多项式
线性变换的乘法满足结合律:
对于任意 , , L(v), 都有
( ) ( ).
因此, 我们可以合理地定义一个线性变换σ的n次
幂
n
n
这里n是正整数。
我们再定义
0
这里ι表示V到V的单位映射,称为V的单位变换。这样 一来,一个线性变换的任意非负整数幂有意义。
加法: : ( ) ( ) 数乘: k : k ( ) ,
那么 和 k 都是V 的一个线性变换.
证明 令 ,那么对于任意 a,b F 和任意
, V ,
(a b) (a b) (a b) a ( ) b () a ( ) b () a( ( ) ( )) b( () ()) a( ) b().
做σ与τ的积,并且简记作στ 。除上面的性质外,还 有:
(9)
( ) ,
(10)
( ) ,
(11)
(k ) (k ) k(),
对于任意 k F, , , L(v) 成立。
证明 我们验证一下等式(9)其余等式可以类 似地验证。设 V. 有
( )( ) (( )( )) ( ( ) ( )) ( ( )) ( ( )) ( ) ( ) ( )( ),
第七章 线性变换
7.1 线性映射 7.2线性变换的运算 7.3 线性变换和矩阵 7.4 不变子空间 7.5 特征值和特征向量 7.6 可以对角化矩阵
课外学习8:一类特殊矩阵的特征值
7.1 线性映射
一、内容分布 7.1.1 线性映射的定义、例. 7.1.2 线性变换的象与核.
二、 教学目的 1.准确线性变换(线性映射)的定义,判断给定的法
射影的性质, : 是 V到3 V的3一个线性映射.
例3 令A是数域F上一个m × n矩阵,对于n元
列空间的 F m 每一向量
规定: , 则
x1
x2
xn
是一个m×1矩阵,即是空间 F m的一个向量,σ
是 F到n F的m一个线性映射.
例4 令V 和W是数域F 上向量空间. 对于V 的每 一向量ξ令W 的零向量0与它对应,容易看出这是V 到W的一个线性映射,叫做零映射.
进一步,设 f (x) a0 a1x an xn.
是F上一个多项式,而 L(V ), 以σ代替x,以 a0
代替 a0 ,得到V的一个线性变换
a0 a1 an n.
这个线性变换叫做当 x 时f (x)的值,并且
记作 f ( ).
(1)因为对于任意 V , a0( ) a0,
我们也可将 a0 简记作 a0,这时可以写
f ( ) a0 a1 an n.
(2)带入法:如果 f (x), g(x) F[x], 并且
(x) f (x) g(x) (x) f (x)g(x).
那么根据L(V )中运算所满足的性质,我们有
( ) f ( ) g( ) ( ) f ( )g( ).
7.3 线性变换和矩阵
所以σ关于基 1,2的矩阵是
cos sin
sin cos
设 V2,它关于基 1,2 的坐标是 x1, x2 ,而
的坐标是 y1, y2 .那么
y1 y2
cos sin
sin cos
x1 x2
三、矩阵与线性变换
引理7.3.2 设V是数域F上一个n 维向量空间,
{1,2 ,,n} 是V的一个基,那么对于V 中任意
n个向量 1, 2 ,, n ,有且仅有 V 的一个线性变
换σ,使得:
(i ) i
i 1,2,n
证 设 x11 x22 xnn是V中任意向量.
我们如下地定义V到自身的一个映射σ: ( ) x11 x22 xnn
可证明,σ是V的一个线性变换。设
那么
y11 y22 ynn V
( ) ( ) () 0,
从而
ker( ) {0}.
所以 , 即σ是单射.
如果线性映射 :V W 有逆映射 1,那么是W
到V 的一个线性映射.
建议同学给出证明.
7.2 线性变换的运算
一、内容分布
7.2.1 线性变换的加法和数乘 7.2.2线性变换的积 7.2. 3线性变换的多项式
二、坐标变换
设V是F上一个n 维向量空间, {1, 2 ,,n}
是它的一个基, ξ关于这个基的坐标是 (x1, x2,, x而n ),
σ(ξ)的坐标是
( y1, y2,,问yn:).
( y1, y2,和, yn )
(x1, x2,, xn ), 之间有什么关系?
设
x11 x22 xnn
(2) (a11 ann ) a1 (1) an (n )
例1 对于R2 的每一向量 x1, x2 定义 x1, x1 x2 , x1 x2 R3
σ是 R2到 R3的一个映射,则σ是一个线性映射.
例2 令H是
一向量ξ,令
V3表中示经向过量原ξ点在的平一面个H平上面的.正对射于影V3.根的据每
那么
y1 x1
y2
A
x2
yn xn
例1 在 V2 内取从原点引出的两个彼此正交的
单位向量 1, 2 作为 V2 的基.令σ是将 V2的每一向量
旋转角θ的一个旋转. σ是 的V一2 个线性变换.我们有
1 1 cos 2 sin , 2 1 sin 2 cos.
f x与它对应,则这样定义的映射是F[x]到自身的一
个线性映射.
例8 令C[a, b]是定义在[a, b]上一切连续实函数
所成的R上向量空间,对于每一 f xCa,b, 规定
f
x
x
a
f
t dt
则 f x仍是[a, b]上一个连续实函数,且σ是 C[a,
b]到自身的一个线性映射.
二、线性变换的象与核
二、教学目的:
掌握线性映射的加法、数乘和积定义,会做运算. 掌握线性变换的多项式, 能够求出给定线性变换的多 项式.
三、重点难点:
会做运算.
一、线性变换的加法和数乘
令V是数域F上一个向量空间,V到自身的一个线 性映射叫做V 的一个线性变换.
我们用L(V)表示向量空间和一切线性变换所成的 集合,设 , L(v), k F, 定义
坐标. 3.已知线性变换关于某个基的矩阵,熟练地求出σ关于
另一个基的矩阵。 三、重点难点:
线性变换和矩阵之间的相互转换, 坐标变换, 相似矩阵。
一、线性变换的矩阵
设V是数域F上一个n维向量空间,令σ是V的一 个线性变换,取定V的一个基 1,2,,令n,
(1) a111 a212 an1n (2 ) a121 a222 an2n
则是否是一个线性变换(线性映射). 2.正确理解线性变换的象与核的概念及相互间的联系,
并能求给定线性变换的象与核. 三、 重点难点
判断给定的法则是否是一个线性变换(线性映射),求 给定线性变换的象与核.
一、线性映射的定义、例
设F是一个数域,V和W是F上向量空间. 定义1 设σ是V 到W 的一个映射. 如果下列条件被 满足,就称σ是V 到W 的一个线性映射:
一、内容分布 7.3.1 线性变换的矩阵 7.3.2 坐标变换 7.3.3 矩阵唯一确定线性变换 7.3.4 线性变换在不同基下的矩阵—相似矩阵
二、教学目的 1.熟练地求出线性变换关于给定基的矩阵A,以及给
定n 阶矩阵A和基,求出关于这个基矩阵为A的线性变. 2.由向量α关于给定基的坐标,求出σ(α)关于这个基的
定义2 设σ是向量空间V到W的一个线性映射,
(1) 如果 V V , 那么 (V ) { ( ) | V } 叫做V
在σ之下的象. (2) 设W W , 那么{ V | ( ) W} 叫做 W 在σ
之下的原象.
定理7.1.1 设V 和W 是数域F 上向量空间,而
:V W 是一个线性映射,那么V 的任意子空间在
(1) ;
(2) ( ) ( ).
令θ表示V到自身的零映射,称为V的零变换,它显然
具有以下性质:对任意 L(v) 有:
(3)
设 L(v),σ的负变换-σ指的是V到V的映射
: ( ). 容易验证,-σ也是V的线性变换,并且
(4) ( )
线性变换的数乘满足下列算律:
所以 是V的一个线性变换
令 k ,那么对于任意 a,b F 和任意 , V ,
(a b) k( (a b)) k(a ( ) b ()) ak ( ) bk () a( ) b().