可变截面扫描应用技巧(1)[1]

合集下载

10 具有可变截面的扫描

10 具有可变截面的扫描

图 1 - 恒定截面草绘
在创建扫描伸出项或切口时,您可以决定是否使用“合并端”(Merge ends) 选项来合并扫描端。“合并端”(Merge ends) 选 项可合并扫描端。扫描端必须具有实体曲面才能执行合并。图 2 显示了未选择合并端选项的扫描。请观察扫描特征如何 未完全连接到实体壁的曲面。图 3 显示选择了合并端选项的扫描。请注意,扫描特征延伸,从而与实体壁的内侧曲面完 全相交。
使用“垂直于轨迹”截平面控制时,移动边框始终垂直于指定轨迹。缺省情况下,边框被创建为垂直于原点轨迹,但它可以 垂直于任何附加轨迹。要切换边框所垂直的轨迹,仅需在操控板中为该轨迹选择 N 复选框。在图 1 中 ,边框垂直于原 点轨迹。在图 2 中 ,边框垂直于“链 1”(Chain 1) 轨迹,几何也随之更改。
图 4
13. 单击“恢复特征”(Resume Feature)

14. 选择“选项”(Options) 选项卡。 15. 选择“合并端”(Merge ends) 复选框。 16. 单击“完成特征”(Complete Feature) 。
图 5
过程就此结束。
概念: 创建垂直于轨迹的扫描
创建垂直于轨迹的扫描
1.
任务 1. 使用恒定截面创建可变截面扫描伸出项。
1. 禁用所有“基准显示”类型。 2. 从“形状”(Shapes) 组中启动“扫描”(Sweep) 3. 选择曲线。 。
图 1
4. 单击“创建截面”(Create Section)

5. 单击“创建截面”(Create Section) 6. 仅启用下列“草绘器显示”类型:
图 1 - 截面垂直于原点轨迹
图 2 - 截面垂直于链 1 轨迹
指定“起点的 X 方向参考”

Proe全新教材(第五讲可变截面扫描)

Proe全新教材(第五讲可变截面扫描)

3.选取原始轨迹线和轮廓线
4.绘制扫描截面 5.生成特征 轮廓线-X轨迹线
原始轨迹线
1、原始轨迹线是用来定义轨迹用来定义扫描截面的轮廓线变化的。
可变截面扫描1
这是使用关系式驱动的可变截面扫描特征
使用驱动的可变截面扫描特征
轮廓控制 线
可变截面扫描特征。我们可以清楚的看到该特征的轮廓控制线
• 变截面扫描特 征
轮廓控制线
变截面扫描特征
第五讲
可变截面扫描
可变截面扫描
• 可变截面扫描是在同一剖面上不同的点沿着不同的轨 迹线和 轮廓线扫描得出的特征,截面的形状大小将随着轨迹 线和轮廓线的变化而变化,可选择现有的基准曲线作为轨迹 线,也可在构造特征时绘制轨迹线。可变截面扫描可以创建 实体特征亦可创建曲面特征。
步骤
1.开启草绘创建原始轨迹线和轮廓线 2.开启可变截面扫描工具

CREO变截面扫描应用(vss)

CREO变截面扫描应用(vss)

落枫之影原创CREO 教程详解CREO 可变截面扫描——落枫之影(413624704) 一、先认识一下可变截面扫描点击,打开扫描控制面板,如下图所示截平面控制的三种方式A. 垂直于轨迹:截面绐终垂直于轨迹B. 垂直于投影:截面垂直于轨迹在平面上的投影C. 恒定法向:截面的法向始终于给定的方向平行(方向可以是轴、曲线和平面)扫描的选项工具栏如下图所示落枫之影原创CREO 教程封闭端点:扫描曲面时是否封闭端点扫描的相切工具栏如下图所示可选取其他参考的轨迹曲线进行特征扫描二、变截面扫描一般应用1.绘制如下图所示模型落枫之影原创CREO 教程绘制此图的方法有很多,我想使用变截面扫描后会节省很多麻烦前几步我就不说了,重点讲解变截面扫描:落枫之影原创CREO 教程点击创建截面,绘制如下图所示图形落枫之影原创CREO 教程确定,完成绘制到这里我们已经画好了一个,大家可能发现变截面扫描出来的实体好像与原来的实体中间有裂缝,怎么会这样呢?其实问题很好解决,那还得从草绘轨迹说起啦落枫之影原创CREO 教程退出草绘,重新生成,然后再环形阵列一下,如下图所示落枫之影原创CREO 教程2.可变截面扫描的辅助轨迹可以有很多条。

但原点轨迹必须只有一条。

下面再通过另外一个例子来向大家阐述可变截面扫描的强大之处仅用一个变截面扫描特征就可以绘制一把十字螺丝刀a.在使用可变截面扫描前,必须先绘制好轨迹曲线注意:这条线仅用来确定剖面曲线所在平面位置,并非轨迹曲线落枫之影原创CREO 教程c.创建完平自面,下面就要画剖面曲线啦落枫之影原创CREO 教程d.打开变截面扫描的控制面板,按ctrl 键依次选择轨迹e.点击,进入草绘截面,绘制如图所示的截面落枫之影原创CREO 教程退出草绘f.完成绘制,至如螺丝刀的十字,我单独做一个特征来讲解还是变截面扫描,这次要用到关系函数落枫之影原创CREO 教程使用函数退出变截面扫描完成十字螺丝刀的绘制落枫之影原创CREO 教程三、变截面扫描高级应用注意:此部分内容,只写关键步骤,不懂的请自行摸索1. 使用关系函数来控制截面(方向盘)扫描的截面如下图示完成后效果2. 使用关系函数来控制截面(齿形离合器)落枫之影原创CREO 教程a,草绘两条轨迹线b.新建基准点,,落枫之影原创CREO 教程c.草绘截面,标注尺寸时请以经过基准点的轴线为参考d.退出变截面扫描3. 使用trajpar 函数来控制截面(双绞线、四绞线、凸轮等)先来看一下四绞线落枫之影原创CREO 教程草绘一条扫描轨迹进入变截面扫描,选取上面的轨迹,然后草绘如下图所的截面落枫之影原创CREO 教程退出草绘,完成绘制同理双绞线的画法也是如此,请自行绘制4. 使用图形来控制变截面这道题目很简单,主要用来练习一下图形的使用落枫之影原创CREO 教程使用图形基准新建一个名为“tu”的图形,绘制如图所示曲线落枫之影原创CREO 教程再新建一个名为”tu2”的图形,绘制如下图所示曲线草绘一条轨迹曲线,作为原始轨迹进入变截面扫描,选取轨迹,草绘截面落枫之影原创CREO 教程退出草绘后面的工作就麻烦你们自行完成讲到图形,大家很快就会想到凸轮,没错,用图形控制凸轮轨迹比使用二次投影曲线是要精准很多,也容易修改。

可变截面扫描之入门篇

可变截面扫描之入门篇

VSS扫描详解BY:王庆丰VSS也叫可变截面扫描一、首先,我们来理解一下扫描。

如下图:1.用一个不变的截面(位置和大小都不变)沿着一条轨迹线扫描过去。

此轨迹线就是原点轨迹线,其含义就是扫描过种中不管是哪个截面,他的原点始终是在这条线上。

有且只有一条,且必须第一个选。

2.如果只是确定好截面的原点,截面的位置还没有完全确定下来。

扫描过程默认截面垂直于原点轨迹。

所以截面在空间的位置就完全确定了。

3.起点和终点位置可以改,不一定要是草绘线的起点和终点。

只要改图中数字(0.000)即可。

如果是正数,即扫描长度大于轨迹线长度时,加长部份的轨迹线是什么样呢?加长部份是直线且长度等你改的数值,且与草绘线的起点或终点相切终点起点二、可变截面扫描其特点是:截面是可以变化的扫描。

截面的变化有两种1.截面大小变了,如下图:Sd3=40+trajpar*100≤Trajpar≤1扫描过程中截面中的一条边从40变到50,起始点的时候是40,终点的时候是50也就是说在起始点时截面是一个40*sd4的矩形。

终点时截面是一个50*sd4的矩形。

(上图中sd4是固定值,当然也可以变化)截平面默认为垂直于轨迹。

(方向控制下面讲,暂时用垂直于轨迹)2.截面的位置变了。

如上图,截面大小没变,只是矩形的下面一条边相对原点轨迹线的位置变了。

位置由起始点的10变到终点的50。

(截平面默认为垂直于轨迹)说明:Trajpar与原点轨迹线对应。

Trajpar=0。

说明截面处在原点轨迹线的起点Trajpar=1。

说明截面处在原点轨迹线的终点特别的当Trajpar=0.5时。

说明截面处在原点轨迹线的中点。

我们来验证一下一般情况。

当Trajpar=0.3时sd5=10+trajpar*50=10+0.3+50=25。

新建一个点。

选原点轨迹线。

比率0.3过该点作一个平面,与轨迹线垂直。

建一个截面,新建工程图与计算结果一致。

总结:截面的变化可以是大小或位置。

CREO变截面扫描应用

CREO变截面扫描应用

落枫之影原创 CREO 教程详解 CREO 可变截面扫描——落枫之影(4)一、先认识一下可变截面扫描点击,打开扫描控制面板,如下图所示截平面控制的三种方式A. 垂直于轨迹:截面绐终垂直于轨迹B. 垂直于投影:截面垂直于轨迹在平面上的投影C. 恒定法向:截面的法向始终于给定的方向平行(方向可以是轴、曲线和平面)扫描的选项工具栏如下图所示1落枫之影原创 CREO 教程封闭端点:扫描曲面时是否封闭端点扫描的相切工具栏如下图所示可选取其他参考的轨迹曲线进行特征扫描二、变截面扫描一般应用1.绘制如下图所示模型2绘制此图的方法有很多,我想使用变截面扫描后会节省很多麻烦前几步我就不说了,重点讲解变截面扫描:退出草绘,打开扫描工具,依次选择这三条草绘曲线点击创建截面,绘制如下图所示图形退出草绘,预览特征,如下图所示确定,完成绘制到这里我们已经画好了一个,大家可能发现变截面扫描出来的实体好像与原来的实体中间有裂缝,怎么会这样呢其实问题很好解决,那还得从草绘轨迹说起啦修改草绘,更改如下图所示5退出草绘,重新生成,然后再环形阵列一下,如下图所示通过上面那个例子,我们初步认识了可变截面扫描2.可变截面扫描的辅助轨迹可以有很多条。

但原点轨迹必须只有一条。

下面再通过另外一个例子来向大家阐述可变截面扫描的强大之处仅用一个变截面扫描特征就可以绘制一把十字螺丝刀a.在使用可变截面扫描前,必须先绘制好轨迹曲线注意:这条线仅用来确定剖面曲线所在平面位置,并非轨迹曲线b.创建基准平面(选择直线上打断的点和 TOP 平面)7c.创建完平自面,下面就要画剖面曲线啦8d.打开变截面扫描的控制面板,按 ctrl 键依次选择轨迹e.点击,进入草绘截面,绘制如图所示的截面退出草绘f.完成绘制,至如螺丝刀的十字,我单独做一个特征来讲解还是变截面扫描,这次要用到关系函数使用函数退出变截面扫描完成十字螺丝刀的绘制三、变截面扫描高级应用注意:此部分内容,只写关键步骤,不懂的请自行摸索1. 使用关系函数来控制截面(方向盘)扫描的截面如下图示完成后效果2. 使用关系函数来控制截面(齿形离合器)12a,草绘两条轨迹线b.新建基准点,,c.草绘截面,标注尺寸时请以经过基准点的轴线为参考d.退出变截面扫描3. 使用 trajpar 函数来控制截面(双绞线、四绞线、凸轮等)先来看一下四绞线14草绘一条扫描轨迹进入变截面扫描,选取上面的轨迹,然后草绘如下图所的截面使用关系驱动尺寸15退出草绘,完成绘制同理双绞线的画法也是如此,请自行绘制4. 使用图形来控制变截面这道题目很简单,主要用来练习一下图形的使用16使用图形基准新建一个名为“tu”的图形,绘制如图所示曲线17再新建一个名为”tu2”的图形,绘制如下图所示曲线草绘一条轨迹曲线,作为原始轨迹进入变截面扫描,选取轨迹,草绘截面18退出草绘后面的工作就麻烦你们自行完成讲到图形,大家很快就会想到凸轮,没错,用图形控制凸轮轨迹比使用二次投影曲线是要精准很多,也容易修改。

可变截面扫描之入门篇

可变截面扫描之入门篇

VSS扫描详解BY:王庆丰VSS也叫可变截面扫描一、首先,我们来理解一下扫描。

如下图:1.用一个不变的截面(位置和大小都不变)沿着一条轨迹线扫描过去。

此轨迹线就是原点轨迹线,其含义就是扫描过种中不管是哪个截面,他的原点始终是在这条线上。

有且只有一条,且必须第一个选。

2.如果只是确定好截面的原点,截面的位置还没有完全确定下来。

扫描过程默认截面垂直于原点轨迹。

所以截面在空间的位置就完全确定了。

3.起点和终点位置可以改,不一定要是草绘线的起点和终点。

只要改图中数字(0.000)即可。

如果是正数,即扫描长度大于轨迹线长度时,加长部份的轨迹线是什么样呢?加长部份是直线且长度等你改的数值,且与草绘线的起点或终点相切终点起点二、可变截面扫描其特点是:截面是可以变化的扫描。

截面的变化有两种1.截面大小变了,如下图:Sd3=40+trajpar*100≤Trajpar≤1扫描过程中截面中的一条边从40变到50,起始点的时候是40,终点的时候是50也就是说在起始点时截面是一个40*sd4的矩形。

终点时截面是一个50*sd4的矩形。

(上图中sd4是固定值,当然也可以变化)截平面默认为垂直于轨迹。

(方向控制下面讲,暂时用垂直于轨迹)2.截面的位置变了。

如上图,截面大小没变,只是矩形的下面一条边相对原点轨迹线的位置变了。

位置由起始点的10变到终点的50。

(截平面默认为垂直于轨迹)说明:Trajpar与原点轨迹线对应。

Trajpar=0。

说明截面处在原点轨迹线的起点Trajpar=1。

说明截面处在原点轨迹线的终点特别的当Trajpar=0.5时。

说明截面处在原点轨迹线的中点。

我们来验证一下一般情况。

当Trajpar=0.3时sd5=10+trajpar*50=10+0.3+50=25。

新建一个点。

选原点轨迹线。

比率0.3过该点作一个平面,与轨迹线垂直。

建一个截面,新建工程图与计算结果一致。

总结:截面的变化可以是大小或位置。

proe可变剖面扫描

proe可变剖面扫描

有三种方式:垂直于原始轨迹,轴心方向和垂直于轨迹如上述,至少需要两条轨迹,原始轨迹和扫描轨迹,这两条轨迹可以预先做好,也可以临时画,我一般预先做好,便于修改.用的最多的是垂直于原始轨迹.下面就用这个举例.垂直于原始轨迹-选取轨迹并定义起点和终点(选其中一条,必须知道原始轨迹一般是零件的各个截面的中心)-完成-选取轨迹(选其中一条或多条,但不能选刚才已经定义的原始轨迹,因为这个扫描轨迹,约束零件外围形状的)-完成-自动进入草绘截面-草绘完成-完成,OK了mrwang说的过于机械化,感觉上就是把绘制可变剖面扫描里面的提示全说了一便,其实不必要那么麻烦,你只需要明白一点,可变剖面扫描绘制钱你要明白你的轨迹线上有几个截面点,很简单的方法就是分线段画扫描轨迹,截面点就落在你分段的地方,其次就是你绘制完某个截面以后点击鼠标右键切换截面继续绘制,完了再切换截面继续。

再参照提示一定就OK了应该是扫描混合吧(sweep blend)扫描混合可以具有两种轨迹:原点轨迹(必需)和第二轨迹(可选)。

每个轨迹特征必须至少有两个剖面,且可在这两个剖面间添加剖面。

要定义扫描混合的轨迹,可选取一条草绘曲线,基准曲线或边的链。

每次只有一个轨迹是活动的。

在“原始轨迹”(Origin Trajectory) 指定段的顶点或基准点处,草绘要混合的截面。

要确定截面的方向,请指定草绘平面的方向(Z 轴)以及该平面的水平/垂直方向(X 或Y 轴)。

注意下列限制条件:对于闭合轨迹轮廓,在起始点和其它位置必须至少各有一个截面。

轨迹的链起点和终点处的截面参照是动态的,并且在修剪轨迹时会更新。

截面位置可以参照模型几何(例如一条曲线),但修改轨迹会使参照无效。

在此情况下,扫描混合特征会失败。

所有截面必须包含相同的图元数。

可使用区域位置以及通过控制特征在截面间的周长来控制扫描混合几何。

区域位置允许用户指定在“原点轨迹”的选定点处扫描混合横截面的准确面积。

PROE野火版可变截面扫描教程

PROE野火版可变截面扫描教程

可变截面扫描-指令详细解说不管版本如何变更,可变扫出始终是我比较偏爱的造型指令。

这是因为可变扫出除了可以得到相对规则的曲面外,它丰富的控制属性和可以预见的结果形状让它更能在适当的场合发挥作用。

可变扫出的控制主要有下面的几项:轨迹,截面的定向和截面的形状1.轨迹在可变扫出中有两类轨迹,有且只有一条称之为原始轨迹(Origin)也就是你第一条选择的轨迹。

原始轨迹必须是一条相切的曲线链(对于轨迹则没有这个要求)。

除了原始轨迹外,其它的都是轨迹,一个可变扫出指令可以有多条轨迹。

在wildfire以后的版本中,原始轨迹和轨迹的功能性差异除了这点外可以说没有任何差异了;截面的定向依赖于两个方向的确定:Z方向和X方向。

注意看上面的图片你会发现在每条轨迹后面都有三个可选项分别用X,N和T作标题,它们分别代表的是X向量,Normal(垂直方向也就是Z方向)以及T angency切向参考,在对应的方框内打勾就表明采用该选项;显然对于可变扫出只能有一个X向量和一个Z方向,所以你选择了某个轨迹后会自动曲线其它轨迹中对应的选择;对于切向参考,因为一条轨迹很可能是两面链的交线,所以有两个框来供你选择不同的面链。

当然你也可以手工选择作为切向参考的面链。

在下面的Section Plane Control下拉框中,你可以选择你的截面的定向方法,缺省是Norma To Trajectory是由轨迹来确定截面的定向,但是你也可以用其它两个选项来确定:最下面就是水平竖直方向的确定,这可以在Horzontal/Vertical Control下拉框中进行选择。

下面就来具体看一下各种组合的截面定向方法的表现形式:2.切向参考(Tangency)很多人都知道用切向参考可以实现扫出面和已有的面实现相切连接,但如果仅是局限于定义面相切的话那就是人为的把这个选项的作用局限在一个点上了,事实上利用这个选项你可以把你的扫出面定以成和参考面成任何角度关系(当然也包括相切的0度关系)。

CREO变截面扫描应用(vss)

CREO变截面扫描应用(vss)

详解CREO 可变截面扫描——落枫之影(4)一、先认识一下可变截面扫描点击,打开扫描控制面板,如下图所示截平面控制的三种方式A. 垂直于轨迹:截面绐终垂直于轨迹B. 垂直于投影:截面垂直于轨迹在平面上的投影C. 恒定法向:截面的法向始终于给定的方向平行(方向可以是轴、曲线和平面)扫描的选项工具栏如下图所示封闭端点:扫描曲面时是否封闭端点扫描的相切工具栏如下图所示可选取其他参考的轨迹曲线进行特征扫描二、变截面扫描一般应用1.绘制如下图所示模型绘制此图的方法有很多,我想使用变截面扫描后会节省很多麻烦前几步我就不说了,重点讲解变截面扫描:退出草绘,打开扫描工具,依次选择这三条草绘曲线点击创建截面,绘制如下图所示图形退出草绘,预览特征,如下图所示确定,完成绘制到这里我们已经画好了一个,大家可能发现变截面扫描出来的实体好像与原来的实体中间有裂缝,怎么会这样呢其实问题很好解决,那还得从草绘轨迹说起啦修改草绘,更改如下图所示退出草绘,重新生成,然后再环形阵列一下,如下图所示通过上面那个例子,我们初步认识了可变截面扫描2.可变截面扫描的辅助轨迹可以有很多条。

但原点轨迹必须只有一条。

下面再通过另外一个例子来向大家阐述可变截面扫描的强大之处仅用一个变截面扫描特征就可以绘制一把十字螺丝刀a.在使用可变截面扫描前,必须先绘制好轨迹曲线注意:这条线仅用来确定剖面曲线所在平面位置,并非轨迹曲线b.创建基准平面(选择直线上打断的点和TOP 平面)c.创建完平自面,下面就要画剖面曲线啦d.打开变截面扫描的控制面板,按ctrl 键依次选择轨迹e.点击,进入草绘截面,绘制如图所示的截面退出草绘f.完成绘制,至如螺丝刀的十字,我单独做一个特征来讲解还是变截面扫描,这次要用到关系函数使用函数退出变截面扫描完成十字螺丝刀的绘制三、变截面扫描高级应用注意:此部分内容,只写关键步骤,不懂的请自行摸索1. 使用关系函数来控制截面(方向盘)扫描的截面如下图示完成后效果2. 使用关系函数来控制截面(齿形离合器)a,草绘两条轨迹线b.新建基准点,,c.草绘截面,标注尺寸时请以经过基准点的轴线为参考d.退出变截面扫描3. 使用trajpar 函数来控制截面(双绞线、四绞线、凸轮等)先来看一下四绞线草绘一条扫描轨迹进入变截面扫描,选取上面的轨迹,然后草绘如下图所的截面使用关系驱动尺寸退出草绘,完成绘制同理双绞线的画法也是如此,请自行绘制4. 使用图形来控制变截面这道题目很简单,主要用来练习一下图形的使用使用图形基准新建一个名为“tu”的图形,绘制如图所示曲线再新建一个名为”tu2”的图形,绘制如下图所示曲线草绘一条轨迹曲线,作为原始轨迹进入变截面扫描,选取轨迹,草绘截面退出草绘后面的工作就麻烦你们自行完成讲到图形,大家很快就会想到凸轮,没错,用图形控制凸轮轨迹比使用二次投影曲线是要精准很多,也容易修改。

Proe可变截面扫描教程

Proe可变截面扫描教程
多项式关系式
利用多项式关系式,可以创建复杂的非线性变化的截面。
线性关系式
通过线性关系式,可以创建线性变化的截面。
使用关系式控制截面变化
结合可变截面扫描与其他扫描特征,如混合扫描,可以实现更复杂的设计。
混合扫描
阵列扫描
与其他特征的关联
通过将可变截面扫描特征阵列化,可以快速创建一系列相似的复杂结构。
通过将可变截面扫描特征与其他特征关联,可以实现更精细的控制和复杂的形状变化。
03
02
01
结合其他特征进行复杂设计
04
CHAPTER
Proe可变截面扫描常见问题与解决方案
总结词
01
在可变截面扫描过程中,如果截面变化不连续,可能会导致扫描结果出现断裂或不完整。
详细描述
02
这通常是由于扫描路径上的控制点设置不正确或控制点之间的连接不平滑所致。要解决这个问题,需要检查并调整控制点的位置和连接方式,确保截面变化平滑。
解决方案
重新绘制或调整扫描路径上的点,确保路径平滑且符合设计要求。可以使用Proe的几何约束或参数化设计功能来辅助绘制和调整路径。
扫描路径不正确
要点三
总结词
在完成可变截面扫描后,如果生成的实体不符合预期,可能是由于参数设置、扫描操作或后处理不当等原因。
要点一
要点二
详细描述
例如,生成的实体可能过小、过大或形状不符合预期。要解决这个问题,需要仔细检查参数设置、扫描操作和后处理步骤,确保每一步都符合设计要求。
解决方案
根据实际情况调整参数设置,如截面尺寸、扫描速度等。重新进行扫描操作,确保操作步骤正确无误。在后处理阶段,可以使用Proe的编辑功能对实体进行必要的调整和优化,使其符合设计意图。

198-常见问题-有关可变截面扫描的问题

198-常见问题-有关可变截面扫描的问题

1.可变截面扫描的意图是什么?需要注意什么问题?
答:可变截面扫描是在PROE中创建不规则零件时常用的方法。

它的主要设计意图是让一个截面沿多条轨迹曲线扫描而生成实体。

在使用变截面扫描做特征的时候,需要注意如下问题:
•所有用于创建可变截面扫描的轨迹曲线都必须是相切线,即要求轨迹线的曲率连续。

不相切的曲线不能用于创建可变截面扫描特征。

•轨迹线应和草绘平面有交点。

•轨迹线之间不能相交,端点除外。

•在选择轨迹线时,首先选择的是骨架线即扫描曲线,然后选轨迹线,轨迹线可以选多条。

2.变截面扫描中三种类型剖面控制的含义?
答:;⑴ 垂直原点轨迹线
这种方式首先需要选取原点轨迹线和X轨迹线,在必要时还应选取辅助轨迹线来确定特征的造型。

在扫描过程中,截面始终垂直于原点轨迹线,且X轴永远从原点指向X轨迹线。

2. 垂直于投影
在2001版本中,这种方式被称为“轴心方向”,其截面始终垂直于原点轨迹在参考方向上的投影。

采用这种方式,除了选取原点轨迹线和X轨迹线外,还应选取参考方向(可指定一个平面的法线方向、一条直线、一条轴线、或坐标系的一个轴作为参考方向)。

生成的扫描体的截面垂直于原点轨迹线沿该参考方向上的投影,即平行于该参考方向。

3. 恒定的法线方向这种方式的截面的垂直方向与选择的参考方向平行,即截面垂直于参考方向。

Proe5.0可变截面扫描指令运用实例

Proe5.0可变截面扫描指令运用实例

软件更新与优化
更新频率
未来可变截面扫描指令的更新频率将加快,以适 应不断变化的技术和市场环境。
用户界面
优化用户界面,提高易用性和用户体验,降低学 习成本。
开放性
增强软件的开放性,支持更多文件格式和数据交 换标准,方便与其他软件的集成。
谢谢
THANKS
指令功能
参数化设计
可变截面扫描指令支持参数化设 计,用户可以通过参数控制扫描 路径和截面的形状,从而实现快
速、灵活的设计变更。
多截面扫描
该指令支持多个截面同时进行扫描, 从而创建复杂的曲面或实体。
约束和驱动关系
用户可以通过约束和驱动关系来控 制截面和路径之间的关系,以实现 精确的形状控制。
指令操作流程
应用领域拓展
1 2 3
汽车制造
可变截面扫描指令在汽车制造领域有广泛应用, 未来将进一步拓展至汽车零部件设计和优化。
航空航天
在航空航天领域,可变截面扫描指令可用于复杂 结构件的设计和优化,提高飞行器的性能和安全 性。
医疗器械
医疗器械领域对精度和可靠性要求极高,可变截 面扫描指令可用于复杂医疗器械的设计和制造, 如人工关节、血管支架等。
根据需要调整扫描速度
在满足设计要求的前提下,应尽量提高扫描速 度,以提高工作效率。
保证足够的精度
在控制扫描速度的同时,应保证足够的扫描精 度,以确保零件的质量和性能。
考虑速度与精度的平衡
在调整扫描速度和精度时,应综合考虑,以找到最佳的平衡点。
05 可变截面扫描指令运用注意事项
CHAPTER
注意事项一:避免过约束
proe5.0可变截面扫描指令运 用实例
目录
CONTENTS

Proe可变截面扫描教程

Proe可变截面扫描教程

§14.1 可变截面扫描
当给定的剖面较少,轨迹线的尺寸很明确,且轨迹线较多 的场合,则较适合使用可变截面扫描,也就是说我们可以利用 一个剖面及多条轨迹线来创建一个“多轨迹”的特征。例如在图 14-2 中 , 剖 面 垂 直 轨 迹 线 0 作 扫 描 时 , Point1 、 Point2 及 Point3分别沿着轨迹线1、轨迹线2及轨迹线3走,最后剖面缩 成一个点。
或曲面的扫描。
轴心方向
原始轨迹线
z轴 轴心平面
RIGHT
y轴
TOP
Page 6
图14-6 【轴心方向】/【平面】
LOGO 14-6
3. 【垂直于轨迹】
剖面的绘图原点落在原始轨迹线上,而剖面垂直另一条轨 迹线,称为垂直轨迹线。如图14-7所示。
垂直轨迹线 z轴
原始轨迹线
x轴 剖面的绘图原点
Page 7
轨迹线 x向量轨迹线
原始轨迹线
轨迹线
选取轨迹线
绘制剖面图
Page 18
生成的扫描实体
LOGO14-18
作法2: 以【轴心方向】方式创建扫描实体特征,各类轨迹线的选取如下图所示。 设置完轨迹线后,系统自动进入草绘模式,绘制剖面,最后生成实体特征
轴心方向
轨迹线 轨迹线
轴心平面 (TOP)
轨迹线
原始轨迹线
创建新特征时,在 【实体选项】或【曲面选 项】菜单中选取【高级】/ 【可变截面扫描】选项, 即进入【扫描选项】菜单,
如图14-3所示。
Page 3
图14-3 【可变截面扫描】菜单
LOGO 14-3
在【扫描选项】菜单中,剖面的垂直方向有以下3种设置方式:
1. 【垂直于原始轨迹】
在扫描过程中,剖面垂直原始轨迹线,且剖面的绘图原点 落在原始轨迹线上。用该方式创建特征,除了原点始轨迹线外, 必须要有x向量轨迹线,才能决定x轴。

Proe可变截面扫描教程

Proe可变截面扫描教程
或曲面的扫描。
轴心方向
原始轨迹线
z轴 轴心平面
RIGHT
y轴
TOP
Page 6
图14-6 【轴心方向】/【平面】
LOGO 14-6
3. 【垂直于轨迹】
剖面的绘图原点落在原始轨迹线上,而剖面垂直另一条轨 迹线,称为垂直轨迹线。如图14-7所示。
垂直轨迹线 z轴
原始轨迹线
x轴 剖面的绘图原点
Page 7
l x轴:剖面在扫描的过程中,任何时候都 有十字形、互相垂直的x轴和y轴出现,如图 14-4所示。其中x轴和y轴的交点即为剖面的 原点,而x轴的方向则以原始轨迹线为起点, x向量轨迹线为终点。 l z轴 :落在原始轨迹线上。 l y轴:利用右手定则,由x轴和z轴决定。 l 坐标系原点:落在原始轨迹线上。
在图14-11中,sd4=evalgraph(“height_graph”,trajpar*16), 扫描的行程为16,剖面的高度参数sd4是受到基准图形 “height_graph”的y值而变化,因而创建出顶面为波浪形的实 体特征。
x向量轨迹线
控制剖面高度参数sd4的基准图形“height_graph”
y轴:轴心方向。 x轴:由轴心方向看到的原始轨迹线的方 向(即是原始轨迹线在轴心方向上的投影线 的方向)。 z轴:根据右手定则,由y轴和z轴决定。 坐标轴原点:落在原始轨迹线上
图14-5 轴心方向的设置方式
Page 5
LOGO 14-5
在图14-6中,轴心平面设置为RIGHT基准面,轴心方向垂 直RIGHT面、朝右的方向,则由此轴心方向看到的原始轨迹线 为垂直TOP基准面的直线。剖面A-A将垂直此直线,剖面的原点 落在原始轨迹线上,且剖面A-A的圆心沿着原点轨迹线作实体

proe5.0可变截面扫描

proe5.0可变截面扫描

proe5.0可变截面扫描可变截面扫描一、可变截面扫描的机理可变截面扫描命令所得到的实体或曲面特征,是以所选的原始轨迹作为截面的原点轨迹,以其他所选的轨迹链作为限制轨迹。

在扫描时,沿着原始轨迹通过控制截面的方向、旋转和几何来添加或移除材料进行渐进扫描而得到的实体或曲面。

可变截面扫描,单从名字来看,我们就知道它的精髓在于一个可变。

这是因为可变截面扫描除了可以得到相对规则的曲面外,它丰富的控制属性和可以预见的结果形状让它更能在适当的场合发挥作用。

二、可变截面扫描命令的启动在Pro/E5.0处于模型创建状态下,插入→可变截面扫描,这时软件会出现可变截面扫描命令操控面板如图1所示。

图1:可变截面扫描命令操控面板三、可变截面扫描的构成可变截面扫描的控制主要有下面的几项:1、轨迹;2、截面的定向;3、截面的形状1.轨迹可变截面扫描的轨迹有两类:①原始轨迹:也就是你选择的第一条轨迹,有且仅有一条原始轨迹。

原始轨迹必须是一条相切的曲线链(对于限制轨迹则没有这个要求),它是确定扫描过程中截面原点的,也就是说可变截面扫描所得到的特征或曲面的所有截面的原点形成的曲线就是原始轨迹。

②限制轨迹:限制轨迹用于限制所得特征的外形。

只有当截面与限制轨迹有约束关系时,限制轨迹才可以限制所得特征的外形,否则限制轨迹失效。

图1:参照滑出面板2.截面的定向截面的定向依赖于其X方向和Z方向的确定。

在pro/e5.0中,可变截面扫描环境下,参照滑出面板中,如果你选择轨迹后,在每个轨迹后都会有三个选项X(x向量)、N(Normal,垂直方向也就是Z方向)以及T(Tangency,切向参考),在相应的方框内打勾就表明采用该选项。

在可变截面扫描中,过原始轨迹上的点作平面,所作的平面称为可变截面扫描特征的剖面,如果过原始轨迹上所有的点,从起点到终点作剖面就形成了可变截面扫描特征的剖面组。

剖面控制就是对上述的所有剖面进行选择和控制,也就是对截面的Z方向进行选择和控制。

Proe可变截面扫描教程

Proe可变截面扫描教程

z轴
x轴
剖面的绘 � y轴:利用右手定则,由 x轴和z轴决定。 图原点 � 坐标系原点: 落在原始轨迹线上。 图14-4 【垂直于原始轨迹】
14-4
2. 【轴心方向】
剖 在扫描过程中, 在扫描过程中,剖 面将永远与“由轴心方向 看过去的原始轨迹线”互 相垂直且剖面的绘图原 。 点落在原点轨迹线上 点落在原点轨迹线上。 3种设置 轴心方向有以下 轴心方向有以下3 图14-5 所示。 方式,如 方式,如图 14-5所示。
生成的扫描实体
14-13
作法3: 以【垂直于轨迹】方式创建扫描实体特征,各类轨迹线的选取如 下图所示。设置完轨迹线后,系统自动进入草绘模式,绘制剖面
y轴 x轴 法向轨迹线
法向轨迹线
原始轨迹线
原始轨迹线
原始轨迹线 的指向
选取轨迹线
绘制剖面图
14-14
作法3: (续)
剖面垂直于法向轨 迹线作扫描 剖面的绘图原点落在 原始轨迹线上 z轴
】 : 选取一个平面作为轴心平 � 【 平面 平面】 面,此平面的垂直方向即为所需的轴心 方向。 / 边 / 轴 】 : 选取一条曲线、面 � 【 曲线 曲线/ 的边界线或中心轴线作为轴心线,此线 的指向即为所需的轴心方向。 】:选取一个坐标系的 x轴、 �【坐标系 坐标系】 y轴或z 轴作为轴心坐标轴,此轴的指向 即为所需的轴心方向。轴向的决定原则 如下: 轴心方向。 轴:轴心方向。 y轴: 由轴心方向看到的原始轨迹线 轴:由轴心方向看到的原始轨迹线 x 轴: 的方向(即是原始轨迹线在轴心方向上 的投影线的方向)。 根据右手定则,由 y轴和z轴决定。 轴:根据右手定则,由 z轴:
轴心方向 原始轨迹线
轴心平面
z轴
RIGHT

Creo2.0可变截面扫描的高级应用三例

Creo2.0可变截面扫描的高级应用三例

Creo2.0可变截⾯扫描的⾼级应⽤三例
Creo2.0可变截⾯扫描的⾼级应⽤三例
(原创教程)
应⽤⼀凸轮建模
⽤可变截⾯扫描来创建凸轮是⼗分⽅便的。

它的表⾯恰恰可以⽤基准图形来控制。

建模过程如下:1、草绘直径为100的圆:
2、建⽴基准图形1:
3、可变截⾯扫描:
a、选取步骤1创建的草绘为轨迹,创建矩形截⾯:
b、矩形宽度尺⼨⽤基准图形1控制:
4、拉伸加料⽅式创建轮毂(略)
应⽤⼆盖体建模
1、草绘
2、拉伸加料
3、选取步骤1创建的草绘为轨迹线作可变截⾯扫描的⼯作,截⾯如下,尺⼨⽤关系来控制。

得到:
4、创建基准图形1
5、创建⼿柄扫描的轨迹:
a、建⽴基准平⾯DTM1
b、在DTM1草绘
6、可变截⾯扫描
选择以上草绘为轨迹线,并作截⾯。

截⾯为⼀个圆,圆的直径⽤关系控制。

完成!
应⽤三
异形棒的创建
1、草绘轨迹
2、选取上述草绘为轨迹进⾏可变截⾯扫描:
简单的控制语句解释:轨迹的1/4到3/4之间的截⾯圆直径尺⼨按正弦函数为数变化,1/4之前与3/4之后截⾯圆直径尺⼨恒定为1最终得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可变截面扫描应用技巧不管版本如何变更,可变扫出始终是我比较偏爱的造型指令。

这是因为可变扫出除了可以得到相对规则的曲面外,它丰富的控制属性和可以预见的结果形状让它更能在适当的场合发挥作用。

可变扫出的控制主要有下面的几项:轨迹,截面的定向和截面的形状轨迹,在可变扫出中有两类轨迹,有且只有一条称之为原始轨迹(Origin)也就是你第一条选择的轨迹。

原始轨迹必须是一条相切的曲线链(对于轨迹则没有这个要求)。

除了原始轨迹外,其它的都是轨迹,一个可变扫出指令可以有多条轨迹。

在wildfire以后的版本中,原始轨迹和轨迹的功能性差异除了这点外可以说没有任何差异了。

截面的定向依赖于两个方向的确定:Z 方向和X方向。

注意看上面的图片你会发现在每条轨迹后面都有三个可选项分别用X,N和T作标题,它们分别代表的是X向量,Normal(垂直方向也就是Z方向)以及Tangency切向参考,在对应的方框内打勾就表明采用该选项。

显然对于可变扫出只能有一个X向量和一个Z方向,所以你选择了某个轨迹后会自动曲线其它轨迹中对应的选择。

对于切向参考,因为一条轨迹很可能是两面链的交线,所以有两个框来供你选择不同的面链。

当然你也可以手工选择作为切向参考的面链。

在下面的Section Plane Control下拉框中,你可以选择你的截面的定向方法,缺省是Norma To Trajectory 是由轨迹来确定截面的定向,但是你也可以用其它两个选项来确定:最下面就是水平竖直方向的确定,这可以在Horzontal/Vertical Control下拉框中进行选择。

下面就来具体看一下各种组合的截面定向方法的表现形式切向参考(Tangency) 很多人都知道用切向参考可以实现扫出面和已有的面实现相切连接,但如果仅是局限于定义面相切的话那就是人为的把这个选项的作用局限在一个点上了,事实上利用这个选项你可以把你的扫出面定以成和参考面成任何角度关系(当然也包括相切的0度关系)。

设定这个选项只是告知系统你需要一条关于参考曲面的切线参考,至于用来定义成什么关系则完全是你的事了。

因为参考切线实际上就是已有曲面在截面处的切线,所以当我们在截面中定义截面的图元和参考线相切时那么该图元扫出形成的面自然就是参考曲面相切了。

下面就是对同一条曲面边轨迹不使用切线参考和使用切线参考的情况。

可以注意到在使用切线参考的情况下进入草绘环境后会自动生成一条曲面的切线。

下图中假设我们截面为一在切线参考上的直线段,那么扫出的面就是一个和参考面相切面额带面,如右下图的效果。

但是如果刻意标准直线段和参考线成一角度如30度,那么扫出的带面在公共边的任一垂直截面上两个面的交线都是30度(或说是150度)。

如右下图所示在可变扫出的Options(选项)中还有几个选项: Variable Section和Constant Section分别控制在扫出过程中截面的形状变化,分别表示可变和恒定,我们在下面会用图来说明则两者的区别。

Merge ends用于在截面是封闭的时候可以生成端部封闭的封闭的曲面 Sketch Placement Point用来确定草绘平面的位置。

下面的两个图分别说明Variable Section(可变截面)和Constant Section(恒定截面)所产生的不同效果。

使用Variable Section选项则表明在扫出过程中截面严格按照在草绘中的约束和尺寸来生成扫出过程的截面形状,所以截面形状是可变的,不变的是截面的约束和尺寸,下例中草绘的截面是使用拉伸圆柱的边界而得到的圆,那么在扫出的过程中因为草绘平面的定位改变使用边界得到的就有可能是椭圆(因为“使用边界“这个约束维持不变),所以就会得到如右下图的形状。

而如果使用constant Section选项,那么扫出过程中系统就会维持原来的截面形状不改变(本例中是正圆)。

如左下图所示。

我们再看一个例子,如下图的可变扫出有两条轨迹,截面圆经过两条轨迹。

从下面的两个图中就可以很明显看到两个选项的不同之处。

可以说constant Section选项的可变扫出已经不再是可变扫出了,它的截面形状在扫出过程中并不发生变化。

要灵活使用可变扫出,自然不可不理解轨迹参数trajpar。

轨迹参数实际就是扫出过程中当前位置对应的原始轨迹位置相对整个原始轨迹的比例值,其值为0到1之间,它也是可变扫出特征特有的一个参数。

在草绘截面时可以把这个参数作为已知参数来编写关系以控制截面的形状。

如下图,假设pnt0在曲线中的位置比例为0.3,那么在可变扫出的过程中在这点处的轨迹参数值就是0.3(或0.7)。

假设我们在截面中添加的关系为sd3=trajpar*50,那么在这点sd3就是0.3*50=15推而广之,那么在整个扫出过程中截面的sd3值就上从0到50发生线性变化,所以形状就类似下图所示:利用这个参数和不同数学函数的组合就可以生成各种规则的变化。

而很多花哨的变化其实就是一些简单的变化的累加。

大小渐变: 尺寸实现从某个值渐变到另一个值(变大或变小),常用有两个关系(当然你用任何关系都可以),线性变化和正弦变化:线性渐变:sd#=a+b *trajpar正弦渐变:sd#=a+b*sin(trajpar*90)注: a是初始值,b是变化幅度它决定变化的速度和终了值(a+b),b为正值则增大,为负值则为减小。

如果要实现先小再大最后再变小的峰状变化,你可以用线性峰状变化:Sd#=a+b *abs(trajpar-0.5)或正弦峰状变化:sd#=a+b*sin(trajpar*180)等。

如下面两图所示螺旋变化其实就是线性变化和圆周变化的累加。

原始轨迹的自动变化就是线性变化,截面的变化只需加上角度的圆周变化就可以完成螺旋变化,一般的关系形式如下:螺旋变化:Sd#=trajpar*360*n其中#是变化角度尺寸,trajpar是轨迹参数,n是需要的螺旋圈数。

扫出的结果如下,效果类似沿轨迹的的螺旋效果一般来说都是用正弦(sin)或余弦(cos)来实现截面的周期变化,基本的关系表现形式如下:周期变化:Sd#=a+b*sin(trajpr*360*n)其中a是基准值,b是幅度值(变化幅度),n是周期数。

如下图,原始轨迹为直线,截面为正圆,关系如下这个关系表明在扫出的过程中圆的直径sd4的值以20为基准,10为幅度在扫出过程中作4个周期的变化。

所以不难想象结果如下所示:最小的直径为10,最大的直径为30,总共发生四个周期的变化。

而如果把原始轨迹换成为圆周的,那么就实现了圆周和周期变化的叠加,得到结果如下:同样的道理你可以实现和螺旋以及其它任何形状的叠加。

你会发现很多貌似复制的花哨形状其实是很简单的。

而在实际情况中,更多的是遇见的椭圆和圆之间的过度变化,这个时候你要善于应用椭圆和conic线,要注意的是长短轴相等的椭圆就是正圆,而rho值为sqrt(2)-1的conic线就是正椭圆弧。

而当轨迹相切的时候要实现形状的连接相切时要保证截面形状在端点处的导数连续。

下面举例说明。

如下图,我们要实现长轴为40短轴为20的椭圆到直径20的圆柱间的顺接。

或许很多人都能想到用轨迹参数来控制长轴的变化以使得在和圆柱的接合点处值20,为此就会加入下面的关系但是结果出来后你就会发现虽然在结合的地方形状是对了,但是却不能实现顺接,如下图所示 这是为什么呢,这是因为你的截面的变化是线性的也就是说如果把trajpar作为一个变量来看待,那么截面在连接点的导数值就为-10,而圆柱的导数则为0所以导数不连续不能实现相切我们只需把上面的关系改为 Sd4=20-10*sin(trajpar*90) 就可,至于原因我想你已经不难想到了轨迹参数通常还和计算函数evalgraph来结合使用,也正是因为它们结合的频繁度所以给很多人造成一个错觉,那就是evalgraph本就是专给可变扫出而使用的,其实不然,evalgraph只是proe提供的一个用于计算图表graph中的横坐标对应纵坐标的值的一个函数,你可以用在任何场合而非只是可变扫出。

如图,假设我们有一条名字为“graph“的图表graph,我们要计算它在横坐标x处对应的值,那么就可以用evalgraph(“graph”,x)来获得,函数返回的就是这条graph在x处的纵坐标值。

图形计算参数与轨迹参数混合使用:Sd#= evalgraph(“graph”,x)利用这个函数结果轨迹参数我们就可以实现通过graph图表来控制截面的目的。

首先我们创建一个graph,名字是”sec”。

它的形状和值如下然后用直线作为轨迹正圆作为截面创建可变扫出,并添加关系如下。

这样我们就把截面中sd3的值和图表sec建立起了一一对应关系,注意到我们在graph中的横坐标的值最大为100,而我们的trajpar的变化范围是0到1,所以需要把轨迹参数放大100倍才能建立一一对应关系。

最后你就会得到类似下图的形状,可以看出截面的变化和graph的变化是一致的,这就是两者结合使用的奥妙所在使用可变扫出,如果你在生成几何前不能想像出它的大概形状的话可以说你并没有真正理解可变扫出。

使用可变扫出你一定要完完全全明白:你的截面垂直谁?x方向通过谁?尺寸和约束变化如何引起截面的变化?前两项我们在前面我们讨论了,下面我们来详细讨论最后一项。

可变扫出杂进入草绘环境的时候会缺省生成在原始轨迹交点处的水平和竖直的参考线,并且生成每条轨迹在草绘平面的交点参考。

在草绘中一旦几何建立和则这些参考的尺寸或约束关系也就是建立了截面和对应的轨迹的约束关系。

同样的道理,如果你想截面和轨迹建立起约束关系你在草绘中就必须显式的进行定义,比如你想在扫出过程中某个几何的端点在轨迹上的话你就要在草绘中添加一个点对齐的约束把几何端点显式的对齐到轨迹的参考点上。

当你的可变扫出形状并没有跟着轨迹走的话不妨看看约束条件是否错了。

尺寸标注对截面形状的影响 我们先来看一下不同的标注形式对扫出形状的影响。

因为可变扫出只需要用户提供一个草绘截面,所以对于同一形状的截面或许就有不同的标注方法。

但是不同的标注方法就有可能带来不同的形状,哪一种才是你想要的呢?这就要根据你的设计意图来定了。

要预先知道我们将要扫出的形状如何,我们一定要紧记可变扫出过程中系统维持的是截面的尺寸标注和约束而并不一定是形状(当然设了恒定截面的除外)所以我们在创建截面的时候一定要注意约束和尺寸。

如下图假设我们用过两个轨迹的交点的圆弧来扫出,并且标注圆弧半径。

这样就相当于我们告诉系统要在扫出的过程中维持这个R30不变并且两个端点在上下两条轨迹上。

因为轨迹是渐开的不难想像我们的圆弧“高度“会不断升高。

如右下图。

同样的圆弧假设我们标注的是“高度“的话,出来的形状又会大不相同,至于为什么会这样个中滋味还是自己慢慢体会一下比较好。

相关文档
最新文档