高频开关变换器中EMI产生的机理及其抑制方法
高频开关变换器中emi产生的机理及其抑制方法
高频开关变换器中EMI产生的机理及其抑制方法• 1 前言开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。
但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰〔Electromagnet ic Inte rf erence,EMI〕,经传导和辐射会污染周围电磁环境,对电子设备造成影响。
本文从开关电源的电路构造、器件进展分析,讨论了电磁干扰产生的机理及其抑制方法。
2 开关电源电磁干扰〔EMI〕产生的机理开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。
按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等;另一类是开关电源自身产生的电磁干扰,如开关管、整流管的电流尖峰产生的谐涉及电磁辐射干扰。
其中外部噪声产生的影响可以通过电源滤波器进展衰减,本文不做讨论,仅讨论开关电源自身产生的电磁噪声。
常规交流输入的开关电源主要构造可以分为四大部分,其框图如图1所示。
其中输入与整流滤波部分、高频逆变部分、输出整流与滤波部分是产生电磁干扰的主要来源。
以下将通过对各部分电压、电流波形的分析,说明电磁噪声产生的原因。
2.1 工频整流器引起的电磁噪声一般开关电源为容式滤波,在输入与整流滤波部分电磁噪声主要是由整流过程中造成的电流尖峰、电压波动所引起的。
正弦波电源经过电源滤波器进展差模、共模信号衰减后,由整流桥整流、电解电容滤波,得到的电压作为高频逆变部分的输入电压。
由于滤波电容的存在,使整流器不象纯整流那样一组开通半个周期,而是只在正弦电压高于电容电压时才导通,造成电流波形非常陡峭,同时电压波形变得平缓。
电流、电压的波形如图2所示。
根据Fourier级数,图中的电流、电压波形可分解为直流分量和一系列频率为基波频率整数倍的正弦交流分量之和。
通过电磁场理论以及试验结果说明,谐波〔特别是高次谐波〕会产生传导干扰和辐射干扰。
开关电源电磁干扰(EMI)抑制措施总结
摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。
对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。
1 引言随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。
开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰( ElectromagneticInterference , EMI )。
EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容( ElectromagneticCompatibility )性。
随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。
本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。
2 电磁干扰的产生和传播方式开关电源中的电磁干扰分为传导干扰和辐射干扰两种。
通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。
下面将对这两种干扰的机理作一简要的介绍。
2.1传导干扰的产生和传播传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。
由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。
2.1.1 共模( CM )干扰变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。
开关电源中产生EMI的原因是什么?变压器内部设置屏蔽绕组抑制共模传导EMI的研究
开关电源中产生EMI的原因是什么?变压器内部设置屏蔽绕组抑制共模传导EMI的研究引言电磁兼容(ElectromagneTIc CompaTIbility,EMC)是指电子设备或系统在电磁环境下能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
它包括电磁干扰(EMI)和电磁敏感(EMS)两方面。
由于开关电源中存在很高的di /dt 和du /dt,因此,所有拓扑形式的开关电源都有电磁干扰的问题。
目前克服电磁干扰的技术手段主要有:在电源的输入、输出端设置无源或有源滤波器,设置屏蔽外壳并接地,采用软开关技术和变频控制技术等。
开关电源中,EMI 产生的根本原因在于存在着电流、电压的高频急剧变化,其通过导线的传导,以及电感、电容的耦合形成传导EMI。
同而电流、电压的变化必定伴有磁场、电场的变化,因此,导致了辐射EMI。
本文着重分析变压器中共模传导EMI 产生的机理,并以此为依据,阐述了变压器中不同的屏蔽层设置方式对共模传导EMI 的抑制效果。
1 高频变压器中传导EMI 产生机理以反激式变换器为例,其主电路如图1 所示。
开关管开通后,变压器一次侧电流逐渐增加,磁芯储能也随之增加。
当开关管关断后,二次侧整流二极管导通,变压器储能被耦合到二次侧,给负载供电。
图1 反激变换器在开关电源中,输入整流后的电流为尖脉冲电流,开关开通和关断时变换器中电压、电流变化率很高,这些波形中含有丰富的高频谐波。
另外,在主开关管开关过程和整流二极管反向恢复过程中,电路的寄生电感、电容会发生高频振荡,以上这些都是电磁干扰的来源。
开关电源中存在大量的分布电容,这些分布电容给电磁干扰的传递提供了通路,如图2 所示。
图2 中,LISN 为线性阻抗稳定网络,用于线路传导干扰的测量。
干扰信号通过导线、寄生电容等传递到变换器的输入、输出端,形成了传导干扰。
变压器的各绕组之间也存在着大量的寄生电容,如图3 所示。
图3 中,A、B、C、D 4 点与图1 中标识的4点相对应。
开关电源的共模干扰抑制技术开关电源共模电磁干扰(EMI)对策详解
开关电源的共模干扰抑制技术开关电源共模电磁干扰(EMI)对策详解開關電源的共模干擾抑制技術|開關電源共模電磁干擾(EMI)對策詳解0 引言由於MOSFET及IGBT和軟開關技術在電力電子電路中的廣泛應用,使得功率變換器的開關頻率越來越高,結構更加緊湊,但亦帶來許多問題,如寄生元件產生的影響加劇,電磁輻射加劇等,所以EMI 問題是目前電力電子界關注的主要問題之一。
傳導是電力電子裝置中干擾傳播的重要途徑。
差模干擾和共模干擾是主要的傳導干擾形態。
多數情況下,功率變換器的傳導干擾以共模干擾為主。
本文介紹了一種基於補償原理的無源共模干擾抑制技術,並成功地應用於多種功率變換器拓撲中。
理論和實驗結果都證明了,它能有效地減小電路中的高頻傳導共模干擾。
這一方案的優越性在於,它無需額外的控制電路和輔助電源,不依賴於電源變換器其他部分的運行情況,結構簡單、緊湊。
1 補償原理共模雜訊與差模雜訊產生的內部機制有所不同:差模雜訊主要由開關變換器的脈動電流引起;共模雜訊則主要由較高的d/d與雜散參數間相互作用而產生的高頻振盪引起。
如圖1所示。
共模電流包含連線到接地面的位移電流,同時,由於開關器件端子上的d/d是最大的,所以開關器件與散熱片之間的雜散電容也將產生共模電流。
圖2給出了這種新型共模雜訊抑制電路所依據的本質概念。
開關器件的d/d通過外殼和散熱片之間的寄生電容對地形成雜訊電流。
抑制電路通過檢測器件的d/d,並把它反相,然後加到一個補償電容上面,從而形成補償電流對雜訊電流的抵消。
即補償電流與雜訊電流等幅但相位相差180°,並且也流入接地層。
根據基爾霍夫電流定律,這兩股電流在接地點匯流為零,於是50Ω的阻抗平衡網路(LISN)電阻(接測量接收機的BNC埠)上的共模雜訊電壓被大大減弱了。
圖1 CM及DM雜訊電流的耦合路徑示意圖圖2 提出的共模雜訊消除方法2 基於補償原理的共模干擾抑制技術在開關電源中的應用本文以單端反激電路為例,介紹基於補償原理的共模干擾抑制技術在功率變換器中的應用。
开关电源emi电路原理
开关电源emi电路原理
开关电源EMI电路是指用来抑制电磁干扰(EMI)的电路。
开关电源是一种使用开关元件(如晶体管或MOSFET)工作
的电源,通过周期性地开关电流来提供电能。
开关电源会产生一定的电磁干扰,主要原因有以下几点:
1. 开关元件的快速开关会引起电压和电流的急剧变化,导致高频谐波成分的产生;
2. 开关电源中的变压器和电感器会产生磁场,进一步引起电磁辐射;
3. 开关电源中的电容器会产生串扰电容耦合,导致干扰信号的传导。
为了抑制开关电源的电磁干扰,可以采取以下措施:
1. 在开关电源输入端添加滤波器,用来抑制高频噪声,常见的滤波器包括电容滤波器和电感滤波器;
2. 设计合适的开关元件驱动电路,减小开关元件的开关速度,从而减小高频谐波的产生;
3. 采用引入屏蔽外壳或屏蔽包围电路等的屏蔽手段,减小电磁辐射;
4. 采用良好的地线布局和接地措施,降低地线电阻和噪声干扰;
5. 使用高频绕线技术和特殊布板设计,减少电感和电容器之间的串扰。
通过以上措施,可以有效地抑制开关电源产生的电磁干扰,提高电源的抗干扰能力,确保设备的正常运行。
开关电源的共模干扰抑制技术,开关电源共模电磁干扰(EMI)对策详解
开关电源的共模干扰抑制技术|开关电源共模电磁干扰(EMI)对策详解由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。
传导是电力电子装置中干扰传播的重要途径。
差模干扰和共模干扰是主要的传导干扰形态。
多数情况下,功率变换器的传导干扰以共模干扰为主。
本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。
理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。
这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。
1 补偿原理共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。
如图1所示。
共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。
图2给出了这种新型共模噪声抑制电路所依据的本质概念。
开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。
抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。
即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。
根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。
图1 CM及DM噪声电流的耦合路径示意图图2 提出的共模噪声消除方法2 基于补偿原理的共模干扰抑制技术在开关电源中的应用本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。
图3给出了典型单端反激变换器的拓扑结构,并加入了新的共模噪声抑制电路。
几种有效开关电源EMI的抑制方案解析
几种有效开关电源EMI的抑制方案解析关于开关电源EMI(Electro-Magnetic Interference)的研究,有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。
这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
这种通过电磁辐射产生的干扰称为辐射干扰。
4、其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。
开关电源EMI的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
开关电源EMI滤波器原理和设计研究
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
开关电源EMI滤波器原理和设计研究
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。
开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。
EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。
EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。
EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。
不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。
2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。
选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。
3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。
4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。
此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。
总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。
开关电源中的EMI分析以及抑制技术
34
MPS Confidential------Internal Use Only
变压器的共模噪声以及抑制
2. 优化变压器的共模噪声
c. 平衡和干扰对消法-3
35 35
MPS Confidential------Internal Use Only
PCB布局对噪声的影响
环路小 分开不同的环路
输入环路尽可能的小 高频环路尽可能小
C PS2 V D2
C PS2 1 Z LISN 2 V D2
17 17
MPS Confidential------Internal Use Only
差模耦合路径
------反激差模耦合路径
LISN D1 D2
IS
AC
CB
S D4 D3
Equivalent Noise Model 2Z LISN
C Equ.
8
HV
VCC
CS
GND
HFC0500
3 4 6 5
VCC
DRV
The Future of Analog IC Technology®
抑制干扰源
HFC0500抖频控制电路
2.72uA
14pF
The Future of Analog IC Technology®
抑制差模噪声
LISN D1 D2
S
AC
15 15
MPS Confidential------Internal Use Only
共模耦合路径
------ 反激耦合路径2
C SP V D1
C SP 1 Z LISN 2 V D1
16 16
MPS Confidential------Internal Use Only
开关电源中EMI干扰源的抑制方案
开关电源中EMI干扰源的抑制方案
介绍辐射干扰的传输通道。
(1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子;
(2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间);
(3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。
其次:是传导干扰的传输通道
(1)容性耦合
(2)感性耦合
(3)电阻耦合
a.公共电源内阻产生的电阻传导耦合
b.公共地线阻抗产生的电阻传导耦合
c.公共线路阻抗产生的电阻传导耦合
以下是EMI干扰源相关的抑制方案:
为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。
屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。
高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。
涡街流量计为防止该噪声,需要对变压器
采取加固措施:。
开关电源EMI产生机理及整改经验总结汇编
开关电源EMI产生机理及整改经验总结汇编开关电源EMI产生机理及整改经验总结整理:柏自飞共模(CM)干扰变换器工作在高频情况时,由于dv/dt很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。
如图1所示,共模干扰电流从具有高dv/dt的开关管出发流经接地散热片和地线,再由高频LISN网络(由两个50Ω电阻等效)流回输入线路。
图1 典型开关变换器中共模、差模干扰的传播路径根据共模干扰产生的原理,实际应用时常采用以下几种抑制方法:1)优化电路器件布置,尽量减少寄生、耦合电容。
2)延缓开关的开通、关断时间。
但是这与开关电源高频化的趋势不符。
3)应用缓冲电路,减缓dv/dt的变化率。
差模(DM)干扰开关变换器中的电流在高频情况下作开关变化,从而在输入、输出的滤波电容上产生很高的di/dt,即在滤波电容的等效电感或阻抗上感应了干扰电压。
这时就会产生差模干扰。
故选用高质量的滤波电容(等效电感或阻抗很低)可以降低差模干扰。
辐射干扰的产生和传播辐射干扰又可分为近场干扰〔测量点与场源距离<λ/6(λ为干扰电磁波波长)〕和远场干扰(测量点与场源距离>λ/6)。
由麦克斯韦电磁场理论可知,导体中变化的电流会在其周围空间中产生变化的磁场,而变化的磁场又产生变化的电场,两者都遵循麦克斯韦方程式。
而这一变化电流的幅值和频率决定了产生的电磁场的大小以及其作用范围。
在辐射研究中天线是电磁辐射源,在开关电源电路中,主电路中的元器件、连线等都可认为是天线,可以应用电偶极子和磁偶极子理论来分析。
分析时,二极管、开关管、电容等可看成电偶极子;电感线圈可以认为是磁偶极子;一. 1MHZ以内,以差模干扰为主。
(整改建议)1.增大X电容量;2.添加差模电感;3.小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
二 . 1MHZ-5MHZ,差模共模混合,采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,(整改建议)1.对于差模干扰超标可调整X 电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理一对快速二极管如FR107 一对普通整流二极管1N4007。
开关电源产生EMI的原因分析及抗干扰对策
开关电源产生EMI的原因分析及抗干扰对策
开关式稳压电源的体积小、重量轻、效率高、稳压范围宽且安全可靠,在很多电子设备中被采用。
但是,它像其他电路一样同样存在一些问题,如控制电路复杂,较高的工作频率会对电视机、收音机等产生电磁辐射干扰使得收音机出现噪声、电视机出现噪波点,甚至还会通过反馈干扰其他电子设备的正常工作。
1.超音频振荡的干扰问题
开关式稳压电源的工作频率多为20-100kHz,属于超音频范围。
作为该电源的开关调整器件晶体管或场效应晶体管以相应的频率工作在导通与截止状态,振荡波形近似于方波(还存在过冲),根据傅里叶分析法可以进行分解,即得到直流分量、基波和高次谐波,基波的能量最大,其次是三次、五次、七次……等等。
2.无线电广播与电磁干扰的关系
众所周知,无线电广播是利用调制的方法来传播信息的。
音频信号对高频载被采用幅度调制(AM)和频率调制(FM)的方法,然后通过发射天线将调制波以电磁披的形式辐射出去,无线电接收设备是通过接收天线将它们接收下来s再经选频、变频、放大和解调,还原成为音频信号,最后通过低频功放,由扬声器放出声音。
如果只有高频载波而无音频范围的调制信号,那幺它的能量再大,无线电接收设备也不会通过扬声器还原出任何声音信息的。
由此可以想到,仅仅是超音频方披干扰的存在(超音频振荡的下限频率为15k!毡,已在人耳的可听范围之外),产生的高次谐波也不会成为我们通过收音机昕到音频范围的干扰信号,而实际上这种干扰有时却是很严重的,可能在整个中波、短波范围都出现强烈的噪声,那幺干扰来自哪里呢?开关式稳压电源存在。
开关电源EMI噪声分析及抑制
开关电源EMI噪声分析及抑制开关电源是一种高效率的电源转换器,能将电能转换为不同电压、电流和频率的输出。
然而,由于其高频开关行为引起的电磁干扰(EMI)噪声,可能对其他电子设备和通信系统产生不良影响。
因此,EMI噪声的分析和抑制对于开关电源设计和应用至关重要。
EMI噪声源主要包括开关器件、开关电容和开关电感。
开关器件的开关动作会产生脉冲干扰,频率可达数MHz至数GHz。
开关电容和开关电感则会导致谐振效应,形成谐振峰,并产生共模和差分噪声。
为了对EMI噪声进行分析,通常需要进行频谱分析。
可以使用频谱分析仪来测量开关电源的频谱,并确定EMI噪声的频率范围和幅度。
根据测量结果,可以采取相应的措施来抑制EMI噪声。
首先,选择合适的滤波器。
在开关电源的输入端和输出端都可以加入滤波器,以滤除高频噪声。
常用的滤波器包括电源型滤波器、陷波滤波器和共模滤波器等。
电源型滤波器通常采用电容和电感组成,并将高频噪声短路至地。
陷波滤波器则能够抑制特定频率的噪声,而共模滤波器则能滤除共模噪声。
其次,可以采取屏蔽措施。
通过将敏感部件(例如传感器和高速信号线)包裹在屏蔽层中,可以阻挡电磁辐射对其的干扰。
屏蔽可以采用金属盒、铜箔和铁氧体等材料实现。
此外,还可以采用良好的地线布局和绝缘层来提高屏蔽效果。
此外,优化PCB设计也是抑制EMI噪声的重要手段。
首先,在布局设计时,应尽量减小回路面积和环路面积,以降低信号线的长度和电流回路的大小。
其次,应使用短而宽的连线,以减小线路的电感和电阻。
而在布线设计时,则需要注意信号线和电源线的分离,避免共模干扰。
此外,由于高频信号对连线的特殊要求,可以采用扇形隔离和差分传输等技术来提高电路的抗干扰能力。
最后,还可以通过使用低EMI噪声的开关元件、降低开关频率和斩波频率来抑制EMI噪声。
开关元件的选择应具备低开关电流和低开关损耗的特性,以减小开关动作带来的噪声。
而降低开关频率和斩波频率则是通过改变控制电路来实现的,可以减小时域和频域上的噪声。
6个常见的EMI干扰来源和抑制措施
6个常见的EMI干扰来源和抑制措施干扰源、耦合途径和敏感设备并称电磁干扰三要素,对于电源模块来说,噪声的产生在于电流或电压的急剧变化,即di/dt或dv/dt很大,因此高功率和高频率运作的器件都是EMI噪声的来源。
解决方法就是要将干扰三要素中的一个去除,如屏蔽干扰源、隔离敏感设备或切断耦合途径。
因为无法让电磁干扰不产生,只能用一定的方法去减少其对系统的干扰,下面分析下常见的6个干扰来源和抑制措施。
1、外界干扰的耦合输入端是电源的入口处,内部的噪声可由此处传播到外部,对外界造成干扰。
常用抑制措施是在输入加X电容和Y电容,及差模和共模电感对噪声和干扰进行过滤。
输出端如果是有长引线的情况,电源模块跟系统搭配后,内部一些噪声干扰可能会由输出线而耦合到外界,干扰到其它用电设备。
一般是加共模和差模滤波,还可以在输出线串套磁珠环、采用双绞线或屏蔽线,实现抑制EMI干扰。
2、开关管电源模块由于开关管结电容的存在,在工作时,开关管在快速开关后会产生毛刺和尖峰,开关管的结电容和变压器的绕组漏感也有可能产生谐振而发出干扰。
抑制方法有:1、开关管D和G极串加磁珠环,减小开关管的电流变化率,从而实现减小尖峰。
2、在开关管处加缓冲电路或采用软开关技术,减小开关管在快速工作时的尖峰,使其电压或电流能缓慢上升。
3、减小开关管与周边组件的压差,开关管结电容可充电的程度会得到一定的降低。
4、增大开关管的G极驱动电阻。
3、变压器变压器是电源模块的转换储能组件,在能量的充放过程中,会产生噪声干扰。
漏感可以与电路中的分布电容组成振荡回路,使电路产生高频振荡并向外辐射电磁能量,从而造成电磁干扰。
一次绕组与二次绕组之间的电位差也会产生高频变化,通过寄生电容的耦合,从而产生了在一次侧与二次侧之间流动的共模传导EMI 电流干扰。
抑制方法有:1、变压器加屏蔽,电屏蔽是指将初级来的干扰信号与次级隔离开来。
可在初、次级之间包一层铜箔(内屏蔽),但头尾不能短路,铜箔要接地,共模传导干涉信号通过电容-铜箔-接地形成回路,不能进入次级绕组从而起到电屏蔽的作用。
电源中emi产生的原理
电源中emi产生的原理
电源中电磁干扰(EMI)产生的原理可以归结为以下几个方面:
1. 开关元件的开关过程:在切换开关电源中的开关元件(如MOSFET、IGBT等)时,会产生高频电流和电压的开关过程。
这种高频开关产生的瞬态电流和电压变化会引起电磁辐射,并产生电磁波导致EMI。
2. 整流过程:开关电源的输入端通常包括整流电路,用于将交流电转换成直流电。
整流过程会产生短脉冲的电流和电压变化,这些变化同样会引起电磁辐射并产生电磁波。
3. 变压器和电感器:在开关电源中,变压器和电感器用于实现电压和电流的转换。
这些元件在工作过程中会产生磁场,当磁场发生变化时,会在周围产生电磁波,并引起EMI。
4. 共模和差模噪音:在电源的接地线和电源线之间存在共模噪音和差模噪音。
共模噪音是指电源线和接地线上同时出现的噪音,而差模噪音是指电源线和接地线之间的差分噪音。
这些噪音可以通过电源线辐射出去,形成EMI。
为了减少电源中的EMI产生,可以采取以下措施:
1. 使用滤波器:在电源输入端和输出端加入滤波器,可以有效地减少高频噪音
的传输,并降低EMI。
2. 选择合适的元件:选择低EMI的开关元件、变压器和电感器等元件,以减少EMI的产生。
3. 确保良好的接地:良好的接地可以有效地屏蔽EMI,并减少共模和差模噪音的传输。
4. 使用屏蔽材料:在设计电源时,可以使用屏蔽材料覆盖电路板或部分电源元件,以防止EMI的辐射和传播。
总之,电源中的EMI产生是由于开关元件的开关过程、整流过程、变压器和电感器的工作以及共模和差模噪音引起的。
通过合适的措施和材料选择,可以有效地减少EMI的产生。
开关电源EMI抑制的9大措施你知道吗
(5)有源功率因数校正,以及其他谐波校正技术
(6)采用合理设计的电源线滤波器
(7)合理的接地处理
(8)有效的屏蔽措施
(9)合理的PCB设计
以上介绍的就是开关电源EMI抑制的9大措施等技术抑制电源的EMI以及提高电源的EMS。
分开来讲,9大措施分别是:
(1)减小dv/dt和di/dt(降 低其峰值、减缓其斜率)
(2)压敏电阻的合理应用,以降低浪涌电压
(3)阻尼网络抑制过冲
(4)采用软恢复特 性的二极管,以降低高频段EMI
开关电源EMI抑制的9大措施你知道吗
开关电源EMI抑制的9大措施是什么?在开关电源中,电压和电流的突变,即高dv/dt和di/dt,是其EMI产生的主要原因。实现开关电源的EMC设计技术措施主要基于以下两点:
(1)尽量减小电源本身所产生的干扰源,利用抑制干扰的方法或产生干扰较小的元器件和电路,并进行合理布局;
为什么开关电源会产生EMI 有什么抑制方法
为什么开关电源会产生EMI 有什么抑制方法与传统的线性稳压电源相比,开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高、待机功耗低、稳压范围宽等特点,广泛用于空间技术、雷达、计算机及外围设备、通信、自动控制、家用电器等领域。
然而,开关电源自身产生的各种电磁骚扰占有很宽的频带和较强的幅度,如果控制不当会通过传导和辐射对周围设备产生电磁干扰,污染电磁环境,成为一个很强的电磁干扰源。
这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁。
如何抑制开关电源的电磁骚扰,以提高相应电子产品的质量,使之符合有关电磁兼容标准的要求,已成为抛开沉重的线性电源换用轻便的开关电源的产品设计者们面对的首要问题开关电源是一种应用功率半导体器件并综合电力变换技术、电子电磁技术、自动控制技术等的电力电子产品。
因其具有功耗小、效率高、体积小、重量轻、工作稳定、安全可靠以及稳压范围宽等优点,而被广泛应用于计算机、通信、电子仪器、工业自动控制、国防及家用电器等领域。
但是开关电源瞬态响应较差、易产生电磁干扰,且EMI信号占有很宽的频率范围,并具有一定的幅度。
这些EMI信号经过传导和辐射方式污染电磁环境,对通信设备和电子仪器造成干扰,因而在一定程度上限制了开关电源的使用。
开关电源的干扰源分析开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。
工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换、输出整流二极管的反向恢复电流都是这类干扰源。
开关电源中的电压电流波形大多为接近矩形的周期波,比如开关管的驱动波形、MOSFET漏源波形等。
对于矩形波,周期的倒数决定了波形的基波频率;两倍脉冲边缘上升时间或下降时间的倒数决定了这些边缘引起的频率分量的频率值,典型的值在MHz范围,而它的谐波频率就更高了。
这些高频信号都对开关电源基本信号,尤其是控制电路的信号造成干扰。
开关电源的传导EMI分析与抑制
在 MOSFET 交流电压分量单独作用下,副边电流源开路,由于副边流过电
流为零,所以原边电流也为零,在此变压器就不起作用了,只有励磁电感 Lm, 将上述电路图简化其等效电路图为:
在 MOSFET 单独作用下,其差模成分路径为:
其中,差模成分分两条支路,一条如红色所示,另一条如蓝色所示。在此等 效电路中,滤波电容 CB 一条支路给差模成分提供了路径,可以知道如果减小滤 波电容 CB 的阻抗, 则对差模成分分流更多, 在电阻 R1 和 R2 形成的电压会更小, 仪器检测幅值更低,一般我们都选取等效串联阻抗较小的滤波电容。另一条支路 中有激磁电感 Lm,单从差模成分的抑制方面考虑,增加激磁电感 Lm 的值可以
开关电源中的传导 EMI 分析与抑制
一、开关电源传导 EMI 产生的根源
1、测试传导 EMI 的线路图
LISN— Line Impedance Stabilization Network 源阻抗稳定网络(人工电源网络) 。 LISN 是电力系统中电磁兼容中的一项重要辅助设备。它可以隔离电网干扰,提 供稳定的测试阻抗,并起到滤波的作用。 LISN 是在进行传导干扰发射测试中,为了客观地考核受试设备(DUT)的 干扰,在电网与受试设备之间加入的网络。该网络具有以下功能: 1、在规定的频率范围内提供一个规定的稳定的线路阻抗。由于电网受各种 因素影响,使其线路阻抗不稳定。可是,在传导干扰的测量中,阻抗是非常重要 的。为了用电压法在进行传导发射电压的测量中能有一个统一的测试条件,而人 为的拟制一个稳定的线路阻抗。一般在射频段提供 50Ω网络阻抗。 2、 LISN 将电网与受试设备进行隔离。 供给 DUT 的电源必须是纯净的。 否则,电网将会向 DUT 注入干扰,EUT 也 会向电网馈入干扰,这就会在 EMC 分析仪上搞不清哪些是 EUT 上的干扰。所以,只有将二者隔离,测量结果才是 有效的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频开关变换器中EMI产生的机理及其抑制方法1 前言开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。
但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰(Electromagnet ic Inte rf erence,EMI),经传导和辐射会污染周围电磁环境,对电子设备造成影响。
本文从开关电源的电路结构、器件进行分析,探讨了电磁干扰产生的机理及其抑制方法。
2 开关电源电磁干扰(EMI)产生的机理开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。
按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等;另一类是开关电源自身产生的电磁干扰,如开关管、整流管的电流尖峰产生的谐波及电磁辐射干扰。
其中外部噪声产生的影响可以通过电源滤波器进行衰减,本文不做讨论,仅讨论开关电源自身产生的电磁噪声。
常规交流输入的开关电源主要结构可以分为四大部分,其框图如图1所示。
其中输入与整流滤波部分、高频逆变部分、输出整流与滤波部分是产生电磁干扰的主要来源。
以下将通过对各部分电压、电流波形的分析,阐明电磁噪声产生的原因。
2.1 工频整流器引起的电磁噪声一般开关电源为容式滤波,在输入与整流滤波部分电磁噪声主要是由整流过程中造成的电流尖峰、电压波动所引起的。
正弦波电源经过电源滤波器进行差模、共模信号衰减后,由整流桥整流、电解电容滤波,得到的电压作为高频逆变部分的输入电压。
由于滤波电容的存在,使整流器不象纯整流那样一组开通半个周期,而是只在正弦电压高于电容电压时才导通,造成电流波形非常陡峭,同时电压波形变得平缓。
电流、电压的波形如图2所示。
根据Fourier级数,图中的电流、电压波形可分解为直流分量和一系列频率为基波频率整数倍的正弦交流分量之和。
通过电磁场理论以及试验结果表明,谐波(特别是高次谐波)会产生传导干扰和辐射干扰。
通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰,在空间产生电场、磁场向外辐射产生的干扰称之为辐射干扰。
2.2 变压器与开关管引起的电磁噪声逆变部分是开关稳压电源的核心,用以实现变压、变频以及完成输出电压的调整,主要有开关管和高频变压器组成。
电磁噪声主要是由于变压器的漏感、分布电容以及开关管的开通、关断造成。
开关电源中的高频变压器用作隔离和变压,变压器在理论分析时,通常认为是理想变压器,但是在实际应用中变压器存在漏感,而且在高频的情况下,还要考虑变压器层间的分布电容。
高频变压器的等效电路模型如图3所示。
从图中可以看到变压器层间的分布电容使开关电源中的高频噪声很容易在初次级之间传递。
而且如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式通过变压器的寄生电容传到交流电源中。
开关电源的体积、重量减小的根本原因是使功率半导体器件工作在高频开关状态,但导致的结果是产生了非常严重的电磁干扰。
其原因是在工作过程中产生高的di/dt和dv/dt,以及变压器漏感,电路寄生电感与开关管寄生电容之间的高频震荡。
开关电源中的电压波形大多为接近矩形的周期波,比如开关管的驱动波形、MOSFET漏源电压波形等。
频率高,一般在k Hz以上,上升、下降时间短,dv/dt大,而且通过傅里叶展开以后,包含的谐波频率非常高,很容易污染周围的电磁环境。
开关管(比如MOSFET )在开通关断时,也会造成很强的电磁干扰。
由于变压器初级线圈漏感,电路寄生电感的存在,致使一部分能量没有从一次侧传输到二次侧,漏感中储存能量,关断瞬间电流发生突变,di/dt非常高,产生反电动势。
由电磁场理论可知:E=-Ldi/dt。
其值与电流的变化成正比,与电感成正比。
因此漏感会产生非常高的反电动势叠加在关断电压上,形成关断电压尖峰,产生传导性电磁干扰。
漏感与开关管之间的寄生电容还会发生震荡,影响电路中的电磁环境,产生噪声。
开关管开通时,寄生电容瞬间放电,产生尖峰电流,初级线圈也会造成浪涌电流的产生,影响电磁环境。
2.3 输出整流二极管反向恢复造成的电磁噪声二极管承受反向电压时,PN结内积累的电荷将释放并形成一个反向电流,反向恢复电流脉冲的幅度、脉冲宽度和形状与二极管本身的特性及电路参数有关,而且恢复到零点的时间与结电容等因素有关。
高频整流二极管由于反向恢复电流脉冲的幅度和di/dt都很大,它们在引线电感和与其相连接的电路中都会产生很高的感应电压,从而造成很强宽频的瞬态电磁噪声。
二极管反向恢复过程电压、电流波形如图4所示。
在高频开关电源、高频DC/DC谐振变换器以及功率因数校正电路等重复开关频率较高的变流器电路中,都要用到快恢复二极管。
它们的反向恢复时间通常在纳秒量级,因此通过引线电感造成的瞬态电磁噪声是不可忽视的。
特别是在反激式开关电源中,二极管反向恢复电流尖峰还有可能从次级传到初级,在开关开通时,形成一个电流尖峰,不仅容易烧毁开关管,还造成电磁噪声。
3 开关电源电磁干扰(EMI)的抑制措施形成电磁干扰的三要素是干扰源、传播途径和受扰设备。
因而,抑制电磁干扰也应该从这三方面着手。
首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的藕合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,降低其对噪声的敏感度。
目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的藕合通道,常用的方法是屏蔽、接地和滤波。
在实践中证明这些都是行之有效的方法。
本文通过介绍一种可行性技术从电路上改进,直接控制干扰源。
软开关技术的应用大大提高了电源的效率,在节能方面做出了巨大的贡献。
但在一些电路拓扑结构中,软开关技术的应用还大大降低了电磁干扰,准谐振反激式变换器就是最好的一个实例,电路结构如图5所示。
相对于一般的反激式变换器,准谐振只在原来电路基础上加了一个无源器件电容器,不会在电路中产生多余的电磁噪声。
通过改变控制方式,利用变压器初级电感与电容器之间发生谐振,在开关管电压波形出现波谷处开通;关断时利用电容器进行缓冲,可以大大降低开关管上的关断电压尖峰和开通电流尖峰,从而降低电磁干扰。
利用安森美的NCP1207制作的准谐振反激式开关电源,其开关管上的电压波形如图6所示:从图中可以看出开关管在开通时,电压非常低,有利于降低电流尖峰,关断时,电压尖峰小,从而电磁干扰降低。
4 结论随着开关电源的不断高频化,其电磁干扰问题越发显得重要。
在开发和设计开关电源中,如何有效抑制开关电源的电磁干扰,同时提高开关电源本身对电磁干扰的抗干扰能力(即EMC)是一个重要课题。
因此,抑制开关电源电磁干扰还有大量的工作要做,需要全体工程技术人员不懈的努力。
PWM与PFM的比较脉宽调制PWM是开关型稳压电源中的术语。
这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。
脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。
PFM:(Pulse frequency modulation) 脉冲频率调制一种脉冲调制技术,调制信号的频率随输入信号幅值而变化,其占空比不变。
由于调制信号通常为频率变化的方波信号,因此,PFM也叫做方波FMPWM是频率的宽和窄的变化,PFM是频率的有和无的变化, PWM是利用波脉冲宽度控制输出,PFM是利用脉冲的有无控制输出.其中PWM是目前应用在开关电源中最为广泛的一种控制方式,它的特点是噪音低、满负载时效率高且能工作在连续导电模式,现在市场上有多款性能好、价格低的PWM集成芯片,如UCl842/2842/3842、TDAl6846、TL494、SGl525/2525/3525等;PFM具有静态功耗小的优点,但它没有限流的功能也不能工作于连续导电方式,具有PFM功能的集成芯片有MAX641、TL497等;PWM-PFM兼有PWM和PFM的优点。
DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到与设定电压相同的输出电压。
PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。
但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。
PWM控制也是与频率同步进行开关,但是它会在达到升压设定值时,尽量减少流入线圈的电流,调整升压使其与设定电压保持一致。
与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。
因此,消耗电流的减少可改进低负荷时的效率。
PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。
若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。
此功能是在重负荷时由PWM控制,低负荷时自动切换到PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。
在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。
就DC-DC变换器而言目前业界PFM只有Single Phase,且以Ripple Mode的模式来实现,故需求输出端的Ripple较大。
没有负向电感电流,故可提高轻载效率。
由于是看输出Ripple,所以Transient很好,在做Dynamic 的时候没有under-shoot。
PWM有Single Phase & Multi-phase,多以Voltage Mode or Current Mode来实现,对输出Ripple没有要求,轻载时存在电感负向电流,故轻载效率较差,Compensation较Ripple相比较慢。
将PWM于PFM结合使用,当侦测到电感负电流的时候,变出现Pulse Skipping,而不再受内部Clock控制。
此时,controller will turn off both h-mos & l-mos,Coss & L会出现阻尼振荡。
每位工程师接触的领域不一样,可能有的领域是用PFM比较多,有的是用PWM比较多,但从整个电源行业来说,相信目前还是PWM用的多.上世纪80年代至今,PWM开始了在电源变换领域的“王朝统治"地位,因为每种方式都有缺点和优点.关键还是看是否适合客户需要吧在论坛看到一位网友是这样写的,我觉得写的比较形象,他说如果把PFM与PWM的电源用车来比较的话,用PFM的=奔驰,用PWM的=大众。
PFM相比较PWM主要优点在于效率1、对于外围电路一样的PFM和PWM而言,其峰值效率PFM与PWM相当,但在峰值效率以前,PFM的效率远远高于PWM的效率,这是PFM的主要优势.2、PWM由于误差放大器的影响,回路增益及响应速度受到限制,PFM具有较快的响应速度PFM相比较PWM主要缺点在于滤波困难1、滤波困难(谐波频谱太宽)。