碳纳米管综述
碳纳米管的特性及其高性能的复合材料综述

碳纳米管的特性及其高性能的复合材料综述摘要作为一种具有较强力学性能的材料,碳纳米管自诞生以来就受到了广泛关注,并且从以往的实践经验上来看,碳纳米管是非常理想的制备符合材料的形式。
在本文的研究当中,主要立足于这一领域进行分析,提出了碳纳米管本身所具备的特性,以及这种材料在实践过程当中的优越性,进而提出应用策略,希望能够在一定程度上起到借鉴作用。
关键词碳纳米管;复合材料;复合镀迄今为止,碳纳米管材料已经在诸多领域当中得以运用,并且取得了比较显著的成果,其中包括电极材料、符合材料、催化剂载体等诸多方面。
在应用过程当中,碳纳米管的优异性能能够使其在符合材料当中起到较强的作用。
本文研究的侧重点在于碳纳米管的制备和复合材料的应用方面,提出了碳纳米管的特性及其高性能的复合材料。
1 碳纳米管的结构及其性能从结构上来看,碳纳米管具有石墨层状的结构,其中包括单壁碳纳米管和多壁碳纳米管。
组成纳米碳管的C-C共价键是自然界当中具有稳定特征的化学键,无论在理论计算还是实践当中,都能够看出来,碳纳米管具有非常强的韧性。
在制备过程当中,碳纳米管主要涉及的电弧放电、催化热解和激光蒸发等。
具体来讲,在电弧放电当中,主要制备单壁碳纳米管,但是其中具有一定的弊端,比如产率非常低,但是成本却很高;而催化热解法当中所表现出来的是设备简单和生长速度较快等特点,一般在现代工程的批量化生产过程当中,会用到这种方法。
在当前应用领域,高强度的微米级碳纤维复合材料有着非常广阔的应用前景和较好的应用效果。
但是当前我国在这一领域所取得的进展依旧比较滞后,要想在强度上取得新的突破,必须要有效减少碳纤维的直径,提高纵横比。
碳纳米管是比较典型的纳米材料,纵横比非常可观。
更为重要的是,从长度上来讲,纳米管对于复合材料的加工性能并没有非常明显的不良影响,使用这一材料能够有效聚合复合材料,改变传统加工当中的一些问题,增强复合材料的导电性能。
再加上纳米管当中所具备的结构优势,使得聚合物电导率提升的同时也不容易被改变性能[1]。
新材料概论——碳纳米管

新材料概论——碳纳米管碳纳米管是一种由碳原子组成的纳米材料,具有特殊的结构和优异的性能,被认为是未来材料科学发展的重要方向之一、本文将从碳纳米管的定义、制备方法、结构特点和应用领域等方面进行阐述。
首先,碳纳米管是由碳原子按照特定的方式排列而成的管状结构。
它们的直径通常在纳米尺度范围内,但长度可达数微米至数厘米。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种形式。
单壁碳纳米管具有单层碳原子构成的管状结构,而多壁碳纳米管由多个同心层组成,每层之间有适当的间隙。
制备碳纳米管的方法有很多种,包括化学气相沉积、物理气相沉积、电化学剥离等。
其中,化学气相沉积是最常用的方法之一、该方法在惰性气氛中将碳源分解并沉积在金属催化剂上,从而形成碳纳米管。
此外,还可以利用电弧放电、化学还原剥离等方法获得碳纳米管。
碳纳米管的结构特点使其具有许多独特的性能。
首先,碳纳米管具有优异的导电性能,其导电能力可媲美铜和银等传统导电材料。
其次,碳纳米管具有优异的机械性能,具有很高的抗拉强度和模量。
此外,碳纳米管还具有优异的光学性质和热导性能,具有良好的化学稳定性和抗辐射性能。
碳纳米管的应用领域非常广泛。
在电子器件方面,碳纳米管可以用于制备纳米晶体管和纳米电极,可用于高分辨率显示器、柔性电子器件和高性能电池等。
在能源领域,碳纳米管也可以用于制备锂离子电池和超级电容器,以提高能源存储和转换效率。
此外,碳纳米管还可以用于传感器、生物医药、纳米催化剂等领域。
总之,碳纳米管作为一种新型材料,具有独特的结构和优异的性能,在材料科学领域具有广阔的应用前景。
随着制备技术的不断改进和研究的深入,碳纳米管的应用范围将进一步扩大,为各个领域的科技发展和实际应用带来更多的可能性。
碳纳米管材料的介绍

碳纳米管材料的介绍碳纳米管是一种由碳原子构成的纳米材料,具有许多独特的性质和应用潜力。
它的发现引起了科学界的广泛关注和研究。
碳纳米管具有极高的强度和刚度。
由于碳原子之间的键合非常强大,碳纳米管能够承受很大的拉伸力和压缩力,使其具有很强的抗弯曲性能。
这使得碳纳米管成为一种理想的材料,用于制造轻巧但坚固的结构,如飞机和汽车部件。
碳纳米管具有优异的导电性和导热性。
碳纳米管内部存在着一维的碳原子排列,使得电子在其内部能够自由传输,形成了高效的电子输运通道。
因此,碳纳米管被广泛应用于电子器件领域,如晶体管和纳米电线等。
同时,碳纳米管还具有良好的热导性能,使其成为制造高效散热器和热电材料的理想选择。
碳纳米管还具有丰富的表面化学活性和高比表面积。
碳纳米管的表面可以通过化学修饰来引入不同的功能团,从而赋予其特定的化学性质和应用功能。
例如,通过在碳纳米管表面引入亲水性团体,可以制备出具有优异吸附能力的纳米过滤器。
而碳纳米管的高比表面积则使其成为一种理想的催化剂载体,可用于提高化学反应的效率和选择性。
碳纳米管还具有良好的光学性能和生物相容性。
由于碳纳米管具有一维结构,使得它们能够吸收和发射可见光和红外光。
这使得碳纳米管在光学传感器和光电器件领域具有广泛的应用前景。
此外,碳纳米管还具有良好的生物相容性,可以用于生物医学领域,如药物传递和组织工程等。
碳纳米管具有多种优异的性质和应用潜力,使其在材料科学、电子学、化学和生物医学等领域具有广泛的应用前景。
随着对碳纳米管性质和制备方法的深入研究,相信碳纳米管将会在未来的科技发展中发挥更加重要的作用。
关于碳纳米管的研究进展综述

关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。
这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。
之后,人们相继发现并分离出C70、C76、C78、C84等。
1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。
年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。
1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。
1996年,我国科学家实现了碳纳米管的大面积定向生长。
1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。
1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。
2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。
2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。
2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。
而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。
因此对碳纳米管制备工艺的研究具有重要的意义。
目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。
一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。
催化剂 碳纳米管

催化剂碳纳米管碳纳米管是一种具有特殊结构和优异性能的催化剂。
它由碳原子构成,形成了空心的纳米管状结构。
碳纳米管具有很高的比表面积和较好的导电性、导热性,使其在催化领域有着广泛应用。
碳纳米管作为催化剂,具有许多独特的特性。
首先,它具有优异的催化活性和选择性。
由于其特殊的结构,碳纳米管能够提供丰富的活性位点,使其能够高效催化各种反应。
其次,碳纳米管具有良好的稳定性和重复使用性。
与其他催化剂相比,碳纳米管在催化反应中表现出较高的稳定性,能够长时间保持催化活性,并且可以通过简单的再生步骤实现重复使用。
此外,碳纳米管还具有较好的抗毒性和抗中毒性能,能够抵御催化反应中产生的有害物质的影响。
碳纳米管在催化领域有着广泛的应用。
首先,碳纳米管可以用作电催化剂。
由于其良好的导电性和高比表面积,碳纳米管可以作为电催化剂用于电化学反应,如燃料电池和电解水制氢等。
其次,碳纳米管还可以用作气体催化剂。
由于其空心的纳米管状结构,碳纳米管能够提供更多的活性位点,使其在气体催化反应中表现出较高的催化性能。
此外,碳纳米管还可以用于液相催化反应和固相催化反应等。
在催化剂研究领域,碳纳米管的应用前景十分广阔。
目前,研究人员正在不断探索碳纳米管的催化性能和应用。
通过调控碳纳米管的结构、形貌和表面性质,可以进一步提高其催化活性和选择性。
此外,还可以将碳纳米管与其他功能材料相结合,形成复合催化剂,以进一步拓展其应用领域。
碳纳米管作为一种特殊的催化剂,具有独特的结构和优异的性能。
它在催化领域有着广泛的应用,并且具有很大的发展潜力。
通过进一步研究和探索,相信碳纳米管催化剂将在未来发挥更大的作用,为人类社会的发展做出更大的贡献。
归纳并总结碳纳米管的特性

归纳并总结碳纳米管的特性碳纳米管是一种由碳原子构成的纳米级管状结构材料,具有独特的物理、化学和电学特性。
它们在纳米科技领域具有广泛的应用前景。
本文将归纳并总结碳纳米管的特性,以便更好地理解和利用这一材料。
1. 结构特性碳纳米管的基本结构由碳原子以六角形排列形成,呈现出类似于由一个或多个碳层卷曲而成的管状形态。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种类型。
单壁碳纳米管由单层碳原子构成,而多壁碳纳米管则包含多个同心管状结构。
2. 尺寸特性碳纳米管的直径通常在1纳米至100纳米之间,长度可以从几十纳米到数微米不等。
其长度和直径比例的不同决定了碳纳米管的形态,如长棒状、管状或扁平形状。
3. 机械特性碳纳米管具有出色的力学性能,其强度和刚度是其他材料无法比拟的。
研究表明,碳纳米管的弹性模量和拉伸强度分别可以达到1000 GPa和100 GPa以上。
此外,碳纳米管还具有极高的柔韧性和耐久性。
4. 热学特性碳纳米管的热导率非常高,比钻石和铜等传统材料还要高。
这是由于碳纳米管的晶格结构和电子结构的特殊性质所决定的。
同时,碳纳米管还表现出优异的热稳定性和低热膨胀系数,使其在微电子器件的散热和封装方面具有广泛的应用潜力。
5. 电学特性碳纳米管是一种半导体材料,具有优良的电学性能。
SWCNT的导电性可分为金属和半导体两种类型,而MWCNT通常是半导体性质。
此外,碳纳米管还表现出高载流子迁移率、低电子散射率等优异特性,这使得其在纳米电子学领域具有重要的应用前景。
6. 光学特性由于碳纳米管具有一维结构和特殊的色散关系,使得其显示出独特的光学性质。
碳纳米管对可见光和红外光有很强的吸收和发射能力,具有广泛的应用潜力,如太阳能电池、光电器件和传感器等。
7. 化学特性碳纳米管具有高度的化学稳定性,能耐受高温、强酸和强碱等条件。
这使得碳纳米管可以在各种工业和科学领域中得到应用,如催化剂、储氢材料、吸附剂和纳米复合材料等。
碳纳米管简介

碳纳米管简介
碳纳米管(CNTs)是一种新型的石墨材料,它是由石墨片层卷曲而成的圆柱形结构,其直径范围一般为一纳米至几百纳米。
这些管状纤维的长度变化范围也很大,一般为几微米到几千微米;因此碳纳米管的长径比(长度与直径的比值)范围为一千~十万。
这么大的长径比以及独特的结构使得碳纳米管与众多其他材料有很大差别。
碳纳米管有很多独特的性质,例如,其强度是不锈钢的16倍,热导率为铜的5倍。
由于碳纳米管自身为粉末状态,它可能是构筑新型复合材料的最合适的添加剂。
将碳纳米管加入到聚合物、陶瓷或金属基体中后,可以显著提高主体材料的物理性质(如导电性、导热性和其他物理性质),其效果远远优于炭黑、碳纤维或玻璃纤维等传统添加剂。
碳纳米管可以分为单壁、双壁和多壁碳纳米管,其主要差别在于碳纳米管结构中石墨片层的数目。
为方便参考,这里列出了一些碳纳米管的常见性能参数:
1. 电阻率:10 -4 Ω-cm
2. 电流密度:107 amps/cm2
3.热导率:3,000 W/mK
4. 抗拉强度:30 GPa
1。
碳纳米管综述

碳纳米管综述碳纳米管的研究进展自20世纪90年代初,日本NEC公司的Sumio Iijima 发现碳纳米管(CNT)以来,其特异的力学和电学性质引发了世界范围内的研究热潮,碳纳米管逐渐成为纳米材料中的明星,得到众星捧月般的关注。
当前,碳纳米管的研究还处在早期阶段,研究工作主要集中在它的生长和表征上,到碳纳米管产品大量投放市场还需要一段时间。
这并不奇怪,因为通常一种新兴事物从发现到投放市场需要10年左右时间。
人们将跨越碳纳米管的奇妙性质研究阶段,而着手解决从材料到器件、从器件到系统等诸多实际问题。
相信在不远的将来,碳纳米管会走进我们的日常生活,成为我们工作和生活中不可或缺的一部分。
我国的碳纳米管研究队伍十分庞大,从事碳纳米管研究的高校和科研院所不下50家,人数不下2000人。
国家有过部门高度重视碳纳米管研究,科技部973计划、863计划以及刚刚启动的纳米重大研究计划、国家自然科学基金、中国科学院等对此均有部署。
我国科研人员发表的相关学术论文逾4400篇,占纳米管论文总数的21%以上,这反映了国内碳纳米管研究的活力和实力。
碳纳米管的分类石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。
单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。
SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。
因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。
多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。
其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。
多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。
多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。
碳纳米管论文5则范文

碳纳米管论文5则范文第一篇:碳纳米管论文碳纳米管前言:碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
摘要:碳纳米管是纳米材料中开发价值最高的纳米材料之一。
碳纳米管的导电性能优于铜,仅次于超导体,导热性能优于金刚石,并是已知的弹性模量和抗拉强度最高的材料。
自从1991年发现以来,经过各国科学家近10年的研究,在基础研究和应用领域都取得了重要进展。
可以预见,随着研究领域新的发现,碳纳米管的应用领域将会越来越广,其蕴藏的潜在的巨大经济价值将随着人们对它的认识的不断加深而充分体现出来。
关键词:碳纳米管性能应用前景制备Abstract: carbon nanotubes nanomaterial is the highest value of development of nanometer materials.Carbon nanotube conductive performance is better than copper, second only to the superconductor, thermal performance is superior to diamond, and is known as the elastic modulus and the tensile strength of the materials of the highest.Since discovered in 1991, after scientists for nearly 10 years of research, in basic and applied research fields have made important progress.Can foreknow, with the research of new discoveries, the applications of carbon nanotubes field will be more and more widely, it contained the potential economic value will be with the people's understanding to it constantly and fully embodied.Key words: carbon nanotubes preparation properties application一.碳纳米管的性能力学性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。
单壁碳纳米管制备方法综述

单壁碳纳米管制备方法综述
单壁碳纳米管(SWCNTs)由于其独特的电学、力学和光学性质,在纳米电子学、催化、传感器等领域具有广泛的应用前景。
目前,SWCNTs 的制备方法主要包括以下几种:
1. 电弧放电法:该方法通过电弧放电在催化剂表面生成碳纳米管。
它的优点是产量高,但缺点是难以控制管的直径和长度。
2. 化学气相沉积法(CVD):CVD 法是在催化剂的作用下,通过有机气体的分解和沉积来制备碳纳米管。
该方法可以实现对碳纳米管直径和长度的控制,但产量较低。
3. 激光烧蚀法:利用激光烧蚀含碳靶材,在催化剂上沉积形成碳纳米管。
该方法适用于制备高纯度的碳纳米管,但设备要求较高。
4. 固相热解法:将含有碳和催化剂的前驱体在高温下热解,使碳源在催化剂的作用下生成碳纳米管。
该方法操作简单,但产物纯度较低。
各种制备方法都有其优缺点,需要根据具体的应用需求选择合适的方法。
未来的研究将集中在提高制备效率、控制产物结构以及降低成本等方面。
碳纳米管 锌负极

碳纳米管锌负极
碳纳米管(Carbon Nanotubes,CNTs)是一种由碳原子构成的管状结构,具有高强度、高导电性和高导热性等优异性能。
将碳纳米管与锌负极结合,可以提高锌负极的性能和稳定性。
碳纳米管可以作为锌负极的导电添加剂,提高负极的导电性和倍率性能。
此外,碳纳米管还可以作为锌负极的骨架材料,提高负极的机械强度和稳定性。
将碳纳米管与锌负极结合,可以制备出高性能的锌负极材料,应用于锌离子电池等领域。
这种负极材料具有高容量、高倍率、长循环寿命等优点,有望成为下一代高性能电池的重要组成部分。
需要注意的是,碳纳米管的制备和应用仍然存在一些技术挑战,如制备成本高、分散性差等问题。
因此,需要进一步研究和开发更加高效、低成本的碳纳米管制备方法和应用技术。
如果你对碳纳米管和锌负极的相关研究感兴趣,我可以为你提供更多详细的信息和参考资料。
碳纳米管综述

碳纳米管综述摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。
同时也叙述碳纳米管的各种性能与应用。
引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
正文:碳纳米管的制备:碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。
电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。
研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。
T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。
为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。
C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。
研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。
近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。
综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。
电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。
催化裂解法或催化化学气相沉积法(CCVD)催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。
该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。
碳纳米管的力学性质与应用研究

碳纳米管的力学性质与应用研究碳纳米管作为一种新型纳米材料,具有出色的力学性能和广阔的应用前景。
本文将探讨碳纳米管的力学性质以及其在不同领域的应用研究。
一、碳纳米管的力学性质碳纳米管的力学性质是其广泛应用的基础。
首先,碳纳米管的弯曲强度非常高,可以承受大量的弯曲变形而不会破裂。
其次,碳纳米管具有良好的抗拉应变能力,可以在各种极端环境下承受拉伸力。
此外,碳纳米管还具有优异的刚度和高的弹性模量,使其成为一种理想的纳米材料。
二、碳纳米管在材料科学中的应用1. 增强复合材料碳纳米管可以被用作增强复合材料中的纤维增强剂。
通过将碳纳米管嵌入到基体材料中,可以显著提高材料的力学性能,例如强度和刚度。
这种增强效果使得碳纳米管在航空航天、汽车制造和建筑工程等领域中得到广泛应用。
2. 纳米电子器件由于碳纳米管具有优异的电子传导性能和微小尺寸特征,它们被广泛应用于纳米电子器件的制备中。
碳纳米管晶体管、场效应晶体管和逻辑门等器件已经成功制备,并显示出卓越的性能。
这些纳米电子器件在集成电路、柔性电子学和量子计算等领域具有潜在应用前景。
三、碳纳米管在生物医学中的应用1. 靶向药物传递由于碳纳米管具有较大的比表面积和内部空腔结构,它们可以作为药物的载体,并实现靶向输送。
通过修饰碳纳米管的表面,可以实现对特定细胞或组织的选择性靶向,提高药物的疗效并减少副作用。
2. 生物传感器碳纳米管的优异电化学性质使其成为制备生物传感器的理想材料。
通过将生物分子与碳纳米管结合,可以实现对生物分子的高灵敏检测。
这种生物传感器可以应用于疾病诊断、生物分析和环境监测等方面。
四、碳纳米管在能源领域的应用1. 锂离子电池碳纳米管可以作为锂离子电池的电极材料,具有出色的电化学性能和很高的充放电容量。
将碳纳米管作为电极材料可以提高锂离子电池的能量密度和循环稳定性。
2. 柔性太阳能电池由于碳纳米管具有较小的尺寸和良好的柔性,在柔性太阳能电池中具有广阔的应用前景。
碳纳米管的结构与性能综述

碳纳米管的结构与性能综述摘要:碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,自问世以来即引起广泛关注,近年来广泛应用于众多科学研究领域。
本文介绍了碳纳米管的理论研究、制备方法以及一些重要性能。
关键词:碳纳米管;制备;性能中图分类号:Review of Structure and Properties of Carbon NanotubesAbstract:Carbon nanotube have drawn wide attention due to their unique structures and properties, such as special conductivity, mechanical, physical and chemical properties since it wae first prepared. It has been widely used in many scientific research in recent years. The theoretical research, preparation methods and some important properties are introduced in the paper.Keyword: carbon nanotube; preparation; property1引言1991年日本NEC的Iijima在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是碳纳米(Carbon Nanotube)[1],又名巴基管。
碳纳米管是一种具有石墨结晶的管状纳米碳材料,分为单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)两种,直径在纳米量级,具有很高的长径比。
单壁碳纳米管由单层石墨卷成柱状无缝管而形成,是结构完美的单分子材料。
多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成。
碳纳米管的性能综述

碳纳米管的性能综述摘要碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。
关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性碳纳米管/FeS类Fenton催化剂催化性能杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。
将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。
结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L 和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。
CNTs /FeS 类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。
碳纳米管的连接性能2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。
碳纳米管概述

2) 电学性能
由于碳纳米管的结构与石墨的片层结构相同,所以具有 很好的电学性能。理论预测其导电性能取决于其管径和管壁 的螺旋角。当CNTs的管径大于6mm时,导电性能下降;当 管径小于6mm时,CNTs可以被看成具有良好导电性能的一 维量子导线。
理想的工艺条件:氦气为载气,气压 60—50Pa,电流60A~100A, 电压19V~25 V,电极间距1 mm~4mm,产率50%。Iijima等生产 出了半径约1 nm的单层碳管。
燃烧火焰法
利用液体(乙醇、甲醇等)、气体(乙炔、乙烯、甲烷等) 和固体(煤炭、木炭)等产生火焰分解其碳-氢化合物获得游历 碳原子,为合成碳纳米管提供碳源;然后将基板材料做适当处 理,最后将基板的一面向下,面向火焰放入火焰中,燃烧一段 时间后取出。基板上的棕褐(黑)色既是碳纳米管或碳纳米纤 维。
导电塑料(聚脂): 将碳纳米管均匀地扩散到塑料中,可获得强度更高并具有导
电性能的塑料,可用于静电喷涂和静电消除材料,目前高档 汽车的塑料零件由于采用了这种材料,可用普通塑料取代原 用的工程塑料,简化制造工艺,降低了成 本,并获得形状 更复杂、强度更高、表面更美观的塑料零部件,是静电喷涂 塑料 (聚脂 )的发展方向。
由于碳纳米管复合材料具有良好的导电性能,不会象绝缘塑 料产生静电堆积,因此是用于静电消除、晶片加工、磁盘制 造及洁净空间等领域的理想材料。碳纳米管还有静电屏蔽功 能,由于电子设备外壳可消除外部静电对设备的干扰,保证 电子设备正常工作。
4) 电磁干扰屏蔽材料及隐形材料 碳纳米管是一种有前途的理想微波吸收剂,可用于隐形材
碳纳米管(CNTs)及其制备技术综述

碳纳⽶管(CNTs)及其制备技术综述碳纳⽶管(CNTs)及其制备技术1.概述1991年,Iijima在⽯墨电弧放电产物中发现了碳纳⽶管(CNTs),从此碳纳⽶管成为碳家族的⼀个新成员。
CNTs是纳⽶科学的⼀颗耀眼明珠,其独特的结构、优良的物理和化学性能、巨⼤的应⽤前景吸引了⼤批的物理学家、化学家和材料学家的兴趣,成为科学领域的研究热点。
尤其是单壁碳纳⽶管的发现和研究被科学界权威杂志《Science》评为1997年世界⼗⼤科技成果之⼀。
2.碳纳⽶管的结构和性能2.1碳纳⽶管的结构碳纳⽶管是由多个碳原⼦六⽅点阵的同轴圆柱⾯套构⽽成的空⼼⼩管,相临的同轴圆柱⾯之间的距离与⽯墨的层间距相当,约为0.34nm,管壁由六边形排列的碳原⼦组成,每个碳与周围的三个碳原⼦相邻,碳/碳间通过sp2杂化键结合。
管的直径为零点⼏纳⽶到⼏⼗纳⽶,管的长度为微⽶级。
管的直径和长度随不同的制备⽅法及条件的变化⽽不同。
管的端部由五边形排列的碳原⼦封顶。
碳纳⽶管绝⼤多数两端是封闭的,并且这种封闭与碳纳⽶管圆管平滑连接,较⼩直径的碳纳⽶管的封闭形式⼀般呈半圆状,这对应于半个富勒烯(Fullerence)笼。
依据组成碳纳⽶管的⽯墨⽚层数的不同,碳纳⽶管可分为单壁碳纳⽶管即含⼀层⽯墨⽚的碳纳⽶管以及由⼀层以上⽯墨⽚组成的多壁碳纳⽶管。
碳纳⽶管结构⽰意图如图1所⽰。
图1 碳纳⽶管结构⽰意图(a)四层碳纳⽶管结构(b)单层碳纳⽶管结构2.2碳纳⽶管的性能碳纳⽶管具有独特的电⼦结构和物理化学性质,可以在许多⽅⾯得到⼴泛的应⽤。
碳纳⽶管的直径-长度⽐很⼤,⼀般情况下,长度都是直径的⼏千倍,远远⼤于普通的纤维材料;它的强度⽐钢⾼约100倍,⽽重量仅仅为钢材料的六分之⼀,有可能成为⼀种新型的⾼强度碳纤维材料。
这种“超级碳纤维”材料既具有碳素材料的固有本性,⼜具有⾦属材料的导电性、导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性以及⾼分⼦材料的轻质、易于加⼯性,因⽽具有极⼤的应⽤潜⼒。
碳纳米管制备方法综述

凝聚相电解生成法
此法是最近出现的一种电化学合成碳 纳米管的方法。该方法采用石墨电极(电解 槽为阳极),在约600℃的温度及空气或氢 气等保护性气氛中。以一定的电压和电流 电解熔融的卤化碱盐(如LiCI),电解生成 了形式多样的碳纳米材料。包括包裹或未 包裹的碳纳米管和碳纳米颗粒等。通过改 变电解的工艺条件可以控制生成碳纳米材 料的形式。
化学气相沉积法
化学气相沉积法(Chemical Vapor Deposition。简称CVD)。基本原理为含 碳气体流经催化剂表面时分解。沉积生 成纳米碳管。这种方法具有制备条件可 控、容易批量生产等优点。自发现以来 受到极大关注,成为纳米碳管的主要合 成方法之一。常用的碳源气体有CH4、 C2H 、C2H 、C6H 和CO等。最早用25% 铁,石墨颗粒作为催化剂。常压下700℃ 时9% 乙炔,氮气制得纳米碳管。
碳纳米材料
主讲:星空大神~ PPT制作:李淳坤
纳米材料被誉为21世纪的重要材料,而作 为新型纳米材料的碳纳米材料因其本身所拥有 的潜在优越性,在化学、物理学及材料学领域 具有广阔的应用前景,成为全球科学界各级科 研人员争相关注的焦点。
近年来发展建立起来的 碳纳米材料制备方法也多种 多样,可大致归为以下几种: 石墨电弧法、化学气相沉积 法、激光蒸发法、热解聚合 物法、火焰法、离子辐射法、 电解法、原位合成法、模板 法等。
碳纳米材料的制备方法
石墨电弧法 激光蒸发法
催化裂解法
化学气相沉积法 模板法 水热法 凝聚相电解生成法
石墨பைடு நூலகம்弧法
石墨电弧法是最早用于制备纳米碳管的工 艺方法。后经过优化工艺,每次可制得克量级 的纳米碳管。此法是在真空反应室中充惰性气 体或氢气。采用较粗大的石墨棒为阴极,细石 墨棒为阳极,在电弧放电的过程中阳极石墨棒 不断的被消耗。同时在石墨阴极上沉积出含有 纳米碳管的产物。采用此法合成纳米碳管时。 工艺参数的改变如更换阴极材料或改变惰性气 体都将大大影响纳米碳管的产率。除此之外。 改变在阳极组成或直径、或在石墨极中添加 Y2O3等也有很好的效果。
碳纳米管文献综述

文献综述纳米碳管作为一种碳素新材料,具有优异的力学、电学、储氢等物理性质,在纳米材料、纳米生物学、纳米化学等方面具有潜在的应用价值,成为近年来人们的研究热点。
大批量、低成本合成纳米碳管是拓展纳米碳管应用研究的基础,因此对纳米碳管的合成研究也最多,并取得了一定的进展。
纳米碳管的机械强度高,比表面积大,界面效应强,容易吸附金属催化剂,而被认为在催化剂载体领域里有很好的应用前景。
一碳纳米管简史研究碳纳米管的历史,可以追溯到1889年,一项专利阐明了如何制备一维碳纳米材料,产物中可能有碳纳米管。
1970年,法国奥林大学(University of Orleans)的En-do 用气相生长技术制成了直径为7nm 的碳纤维,由于他没有对这些碳纤维的结构进行细致的评估和表征,所以并没有引起人们的注意。
后来科学家在研究C60,C70的基础上认识到产生无数种近石墨结构成为可能。
1991年1月,日本筑波NEC 实验室的饭岛澄男首先用高分辨率电镜观察到了他认为是一种螺旋状的微管,也就是碳纳米管,文章发表在《自然》(Nature)杂志上。
从而饭岛成为公认的碳纳米管发现者。
1993年,等和DS。
Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。
1997年,等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。
二碳纳米管的分类按照石墨烯片的层数,可分为:单壁碳纳米管(Single-walled nanotubes, SWNT s):由一层石墨烯片组成。
单壁管典型的直径和长度分别为~3nm和1~50μm。
又称富勒管(Fullerenes tubes);多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。
形状象个同轴电缆。
其层数从2~50不等,层间距为±,与石墨层间距相当。
多壁管的典型直径和长度分别为2~30nm和~50μm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chemistry of Carbon NanotubesDimitrios Tasis,*,†Nikos Tagmatarchis,‡Alberto Bianco,§and Maurizio Prato*,| Department of Materials Science,University of Patras,26504Rio Patras,Greece,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation,48Vass.Constantinou Avenue,11635Athens,Greece,Institut de Biologie Mole´culaire et Cellulaire, UPR9021CNRS,Immunologie et Chimie The´rapeutiques,67084Strasbourg,France,and Dipartimento di Scienze Farmaceutiche,Universita`di Trieste,Piazzale Europa1,34127Trieste,ItalyReceived July12,2005Contents1.Introduction11052.Covalent Approaches11052.1.Sidewall Halogenation of CNT11052.2.Hydrogenation11072.3.Cycloadditions11072.4.Radical Additions11092.5.Electrophilic Additions11112.6.Addition of Inorganic Compounds11112.7.Ozonolysis11112.8.Mechanochemical Functionalizations11112.9.Plasma Activation11122.10.Nucleophilic Additions11122.11.Grafting of Polymers11122.11.1.“Grafting to”Method11122.11.2.“Grafting from”Method11123.Defect Site Chemistry11133.1.Amidation/Esterification Reactions11133.2.Attachment of Biomolecules11153.3.Grafting of Polymers to Oxidized Nanotubes11164.Noncovalent Interactions11174.1.Polymer Composites11174.1.1.Epoxy Composites11174.1.2.Acrylates11184.1.3.Hydrocarbon Polymers11194.1.4.Conjugated Polymers11194.1.5.Other Nanotube−Polymer Composites11204.2.Interactions with Biomolecules and Cells11225.Endohedral Filling11255.1.Encapsulation of Fullerene Derivatives andInorganic Species11255.2.Encapsulation of Biomolecules11265.3.Encapsulation of Liquids11276.Concluding Remarks11277.Acknowledgments11278.References1127 1.IntroductionThe unidirectional growth of materials to form nanowires or nanotubes has attracted enormous interest in recent years.Within the different classes of tubes made of organic or inorganic materials and exhibiting interesting electronic, mechanical,and structural properties,carbon nanotubes (CNT)are extremely promising for applications in materials science and medicinal chemistry.The discovery of CNT has immediately followed the synthesis of fullerenes in macro-scopic quantities,1and since then the research in this exciting field has been in continuous evolution.2CNT consist of graphitic sheets,which have been rolled up into a cylindrical shape.The length of CNT is in the size of micrometers with diameters up T form bundles,which are entangled together in the solid state giving rise to a highly complex network.Depending on the arrangement of the hexagon rings along the tubular surface,CNT can be metallic or semiconducting.Because of their extraordinary properties, CNT can be considered as attractive candidates in diverse nanotechnological applications,such as fillers in polymer matrixes,molecular tanks,(bio)sensors,and many others.3 However,the lack of solubility and the difficult manipula-tion in any solvents have imposed great limitations to the use of CNT.Indeed,as-produced CNT are insoluble in all organic solvents and aqueous solutions.They can be dispersed in some solvents by sonication,but precipitation immediately occurs when this process is interrupted.On the other hand,it has been demonstrated that CNT can interact with different classes of compounds.4-20The formation of supramolecular complexes allows a better processing of CNT toward the fabrication of innovative nanodevices.In addition, CNT can undergo chemical reactions that make them more soluble for their integration into inorganic,organic,and biological systems.The main approaches for the modification of these quasi one-dimensional structures can be grouped into three cat-egories:(a)the covalent attachment of chemical groups through reactions onto theπ-conjugated skeleton of CNT;(b)the noncovalent adsorption or wrapping of various functional molecules;and(c)the endohedral filling of their inner empty cavity.As clearly visible from the high number of citations,this field is rapidly expanding.The information reported in this review on each literature citation will necessarily be limited in space.It is the aim of this review to consider the three approaches to chemical functionalization of CNT and to account for the advances that have been produced so far.2.Covalent Approaches2.1.Sidewall Halogenation of CNTCNT grown by the arc-discharge or laser ablation methods have been fluorinated by elemental fluorine in the range†Department of Materials Science,26504Rio Patras,Greece.Telephone: +302610969929.Fax:+302610969368.E-mail:dtassis@upatras.gr.‡Theoretical and Physical Chemistry Institute.§Institut de Biologie Mole´culaire et Cellulaire.|Universita`di Trieste.Fax:+390405587883.E-mail:prato@units.it.1105Chem.Rev.2006,106,1105−113610.1021/cr050569o CCC:$59.00©2006American Chemical SocietyPublished on Web02/23/2006between room temperature and 600°C (Figure 1).21-25Fluorinated nanotubes have been extensively characterized by transmission electron microscopy (TEM),23scanning tunneling microscopy (STM),26electron energy loss spec-troscopy (EELS),27and X-ray photoemission spectroscopy (XPS),28whereas thermodynamical data were obtained using theoretical approaches.29-32The structures of fluorinated CNT have been investigated both experimentally and theoretically.Controversy exists regarding the favorable pattern of F addition onto the sidewalls of CNT.On the basis of STM images and semiempirical calculations,Kelly et al.26proposed two possible addition patterns,consisting of 1,2-addition or 1,4-addition,and concluded that the latter is more stable.On the contrary,DFT calculations on a fluorinated tubepredictedDimitrios Tasis was born in Ioannina,Greece,in 1969.He received his B.S.and Ph.D.degrees in Chemistry from the University of Ioannina in 1993and 2001,respectively.In 2002,he moved to the laboratory of Prof.M.Prato at the University of Trieste,Italy,for two years as a postdoctoral fellow,working with carbon nanotubes and fullerenes.Since early 2004,he has been teaching in the Department of Materials Science at the University of Patras,Greece,as a lecturer (under contract).His research interests lie in the chemistry of nanostructured materials and their applications,focusing on carbon nanotubes and their polymer composites for advanced mechanicalproperties.Nikos Tagmatarchis is at Theoretical and Physical Chemistry Institute (TPCI)at the National Hellenic Research Foundation (NHRF),in Athens,Greece.His research interests focus (i)on the chemistry and physics of carbon-based nanostructured materials for nanotechnological applications and (ii)on supramolecular assemblies of hybrid ensembles consisting of carbon-based nanostructured materials with organic and/or inorganic systems.He received his Ph.D.degree at the University of Crete,Greece,in 1997,in Synthetic Organic and Medicinal Chemistry with Prof.H.E.Katerinopoulos.At the end of the same year,he was introduced to fullerenes as a Marie-Curie EU TMR Fellow at Sussex University,U.K.,in the solid-state chemistry group of Prof.K.Prassides,working on azafullerenes.In 1999,he moved to Nagoya University,Japan,and joined the group of Nanostructured Materials of Prof.H.Shinohara,where he investigated endohedral metallofullerenes with funds received from the Japan Society for the Promotion of Science (JSPS).From 2002until 2004he was in the group of Prof.M.Prato at the University of Trieste,Italy,active in the field of carbon nanotubes and nanotechnology.He is a member of the Editorial Boards of the journals Mini Reviews in Medicinal Chemistry ,Medicinal Chemistry ,and Current Medicinal Chemistry ,edited by Bentham Science Publishers.In 2004he received the European Young Investigator (EURYI)Award from the European Heads of Research Councils (EUROHORCs)and the European Science Foundation (ESF).Earlier this year he was invited by The Nobel Foundation to participate at the Alfred Nobel Symposium in Stockholm,Sweden.Alberto Bianco received his Laurea degree in Chemistry in 1992and his Ph.D.in 1995from the University of Padova,under the supervision of Professor Claudio Toniolo,working on fullerene-based amino acids and peptides.As a visiting scientist,he worked at the University of Lausanne during 1992(with Professor Manfred Mutter),at the University of Tu ¨bingenin 1996−1997(with Professor Gu¨nther Jung,as an Alexander von Humboldt fellow),and at the University of Padova in 1997−1998(with Professor Gianfranco Scorrano).He currently has a position as a Researcher at CNRS in Strasbourg.His research interests focus on the synthesis of pseudopeptides and their application in immunotherapy,solid-phase organic and combinatorial chemistry of heterocyclic molecules,HRMAS NMR spectroscopy,and functionalization and biological applica-tions of fullerenes and carbonnanotubes.Maurizio Prato studied chemistry at the University of Padova,Italy,where he was appointed Assistant Professor in 1983.He then moved to Trieste as an Associate Professor in 1992and was promoted to Full Professor in 2000.He spent a postdoctoral year in 1986−87at Yale University and was a Visiting Scientist in 1992−93at the University of California,Santa Barbara.He was Professeur Invite ´at the Ecole Normale Supe ´rieure,Paris,in July 2001.His research focuses on the functionalization chemistry of fullerenes and carbon nanotubes for applications in materials science and medicinal chemistry,and on the synthesis of biologically active substances.His scientific contributions have been recognized by national awards including the Federchimica Prize (1995,Association of Italian Industries),the National Prize for Research (2002,Italian Chemical Society),and an Honor Mention from the University of Trieste in 2004.1106Chemical Reviews,2006,Vol.106,No.3Tasis et al.an energetic gain of 4kcal/mol in favor of the 1,2-addition pattern.29b However,such a small energy difference between the two addition patterns implies that both types of fluori-nated material probably coexist.The sidewall carbon atoms on which F atoms are attached are tetrahedrally coordinated and adopt sp 3hybridization.This destroys the electronic band structure of metallic or semiconducting CNT,generating an insulating material.The best results for the functionalization reaction have been achieved at temperatures between 150and 400°C,23as at higher temperatures the graphitic network decomposes appreciably.The highest degree of functionalization was estimated to be about C 2F by elemental analysis.However,when fluorination was applied to small diameter HipCO-SWNT (single-walled CNT),the nanotubes were cut to an average length of less than 50nm.33Fluorinated nanotubes were reported to have a moderate solubility (∼1mg/mL)in alcoholic solvents.34The majority of the fluorine atoms could be detached using hydrazine in a 2-propanol suspension of CNT,23,35whereas heat annealing was used as an effective way to recover the pristine nanotubes.36,37In a different approach,defunctionalization of fluoronanotubes has been observed under electron beam irradiation in microscope observations.38The fluorination reaction is very useful because further substitution can be accomplished.39It was demonstrated that alkyl groups could replace the fluorine atoms,using Grig-nard 40or organolithium 41reagents (Figure 1).The alkylated CNT are well dispersed in common organic solvents such as THF and can be completely dealkylated upon heating at 500°C in inert atmosphere,thus recovering pristine CNT.In addition,several diamines 42or diols 43were reported to react with fluoronanotubes via nucleophilic substitution reactions (Figure 1).Infrared (IR)spectroscopy allowed confirming the disappearance of the C -F bond stretchingat 1225cm -1as a result of the reaction.Because of the presence of terminal amino groups,the aminoalkylated CNT are soluble in diluted acids and water.The amino-function-alized CNT were further modified,for example,by conden-sation with dicarboxylic acid chlorides.42The cross-linked nanotubes were characterized by Raman and IR spectroscopy.In additon,primary amines can be employed to further bind various biomolecules to the sidewalls of CNT for biological applications.Using an alternative approach,the functionalization of fluoronanotubes with free radicals,thermally generated from organic peroxides,has been reported and the resulting material was characterized by FT-IR,Raman,thermogravi-metric techniques,and microscopy.44Chlorination or bromination reactions to CNT were achieved through electrochemical means.45The electrochemi-cal oxidation of the appropriate inorganic salts afforded the coupling of halogen atoms on the graphitic network.The modified material was found to be soluble in polar solvents,whereas the carbon impurities were insoluble.2.2.HydrogenationHydrogenated CNT have been prepared by reducing pristine CNT with Li metal and methanol dissolved in liquid ammonia (Birch reduction).46Using thermogravimetry -mass spectrometry analysis,the hydrogenated CNT were found to have a stoichiometry of C 11H.The hydrogenated material was found to be stable up to 400°C.TEM micrographs showed corrugation and disorder of the nanotube walls due to hydrogenation.Binding energies between carbon and hydrogen atoms were estimated with computational meth-ods.47Moreover,CNT have been functionalized with atomic hydrogen using a glow discharge 48-50or proton bombard-ment.51Supporting evidence for the covalent attachment was given by FT-IR spectroscopy.2.3.CycloadditionsCarbene [2+1]cycloadditions to pristine CNT were first employed by the Haddon group.52-56Carbene was generated in situ using a chloroform/sodium hydroxide mixture or a phenyl(bromodichloro methyl)mercury reagent (Figure 2).The addition of dichlorocarbene functionality induced some changes in the XPS and far-infrared spectra,whereas chemical analysis showed the presence of chlorine in the sample.It was found that over 90%of the far-infrared intensity is removed by 16%CCl 2functionalization.Such covalent modification exerted stronger effects on the elec-tronic band structures of metallic SWNT.Nucleophilic addition of carbenes has been reported by the Hirsch group.6,57In this case,zwitterionic 1:1adducts were formed rather than cyclopropane systems (Figure 3,routea).Figure 1.Reaction scheme for fluorination of nanotubes,defunc-tionalization,and furtherderivatization.Figure 2.Cycloaddition reaction with in situ generated dichloro-carbene.Chemistry of Carbon Nanotubes Chemical Reviews,2006,Vol.106,No.31107In another [2+1]cycloaddition reaction,the thermal functionalization of CNT by nitrenes was extensively studied (Figure 3,route b).6,57-59The first step of the synthetic protocol was the thermal decomposition of an organic azide,which gives rise to alkoxycarbonylnitrene via nitrogen elimination.The second step consisted of the [2+1]cy-cloaddition of the nitrene to the sidewalls of CNT,affording alkoxycarbonylaziridino-CNT.A variety of organic func-tional groups,such as alkyl chains,dendrimers,and crown ethers,were successfully attached onto CNT.It was found that the modified CNT containing chelating donor groups in the addends allowed complexation of metal ions,such as Cu and Cd.58The [2+1]cycloaddition reaction resulted in the formation of derivatized CNT,soluble in dimethyl sulfoxide or 1,2-dichlorobenzene.The final material was fully characterized by 1H NMR,XPS,UV -vis,and IR spec-troscopies,58while chemical cross-linking of CNT was demonstrated by using R ,ω-bifunctional nitrenes.59In a similar approach,the sidewalls and tips of CNT were functionalized using azide photochemistry.60The irradiation of the photoactive azidothymidine in the presence of nano-tubes was found to cause the formation of very reactive nitrene groups in the proximity of the carbon lattice.In a cycloaddition reaction,these nitrene groups couple to the nanotubes and form aziridine adducts (Figure 4).The free hydroxyl group at the 5′position of the deoxy-ribose moiety in each aziridothymidine group was used as the site of modification from which DNA strands could be further attached.60a Theoretical studies have supported the feasibility of the reactions of CNT with carbenes (or nitrenes)from a thermodynamic point of view.61,62A simple method for obtaining soluble CNT was devel-oped by our group.63,64The azomethine ylides,thermally generated in situ by condensation of an R -amino acid and an aldeyde,were successfully added to the graphitic surface via a 1,3-dipolar cycloaddition reaction,forming pyrrolidine-fused rings (Figure 5).In principle,any moiety could be attached to the tubular network,in an approach that has led to a wide variety of functionalized CNT.After the first report,63various aspectshave been extensively explored including applications in the fields of medicinal chemistry,solar energy conversion,and selective recognition of chemical species.The amino-functionalized CNT were particularly suitable for the covalent immobilization of molecules or for the formation of com-plexes based on positive/negative charge interaction.65Vari-ous biomolecules have been attached on amino-CNT,such as amino acids,peptides,and nucleic acids (Figure 6).65-70Several applications in the field of medicinal chemistry can be envisaged,including vaccine and drug delivery,gene transfer,and immunopotentiation.One of the central aspects in CNT chemistry and physics is their interaction with moieties via electron tranfer.In-tramolecular electron-transfer interactions between nanotubes and pendant ferrocene groups showed that this composite material can be used for converting solar energy into electric current upon photoexcitation.71In another application,a SWNT -ferrocene nanohybrid was used as a sensor for anionic species as a result of hydrogen bond interactions.72The complexation of the functionalized CNT with phosphates was monitored by cyclic voltammetry.The detection of ionic pollutants is very important in the field of environmental chemistry.By an analogous approach,glucose could be detected by amperometric means.73The organic functionalization of CNT with azomethine ylides can be used for the purification of raw material from metal particles and amorphous carbonaceous species.74a Three main steps were followed:(a)the chemical modification of the starting material,(b)the separation of the soluble adducts and reprecipitation by the use of a solvent/nonsolvent technique,and (c)the thermal removal of the functional groups followed by annealing at high temperature.The final material was found to be free of amorphous carbon whereas the catalyst content was less than 0.5%.Water-soluble,functionalized,multiwalled carbon nano-tubes (MWNT)have been length-separated and purified from amorphous material through direct flow field-flow fraction-ation (FlFFF).In this context,MWNT subpopulations of relatively homogeneous,different lengths have beenobtainedFigure 3.Derivatization reactions:(a)carbene addition;(b)functionalization by nitrenes;and (c)photoinduced addition of fluoroalkylradicals.Figure 4.Photoinduced generation of reactive nitrenes in the presence ofnanotubes.Figure 5.1,3-Dipolar cycloaddition of azomethine ylides.1108Chemical Reviews,2006,Vol.106,No.3Tasis et al.from collecting fractions of the raw,highly polydispersed (200-5000nm)MWNT sample.74b Although the resulting length-based MWNT sorting was performed on a micro-preparative scale,the isolation of purified and relatively uniform-length MWNT is of fundamental importance for further characterization and applications requiring monodis-perse MWNT material.In another approach,Alvaro et al.75a modified nanotubes by thermal 1,3-dipolar cycloaddition of nitrile imines,whereas the reaction under microwave conditions afforded functionalized material in 15min (Figure 7).75b The pyra-zoline-modified tubes were characterized by UV -vis,NMR,and FT-IR spectroscopies.Photochemical studies showed that,by photoexcitation of the modified tubes,electron transfer takes place from the substituents to the graphitic walls.75a The applicability of the 1,3-dipolar cycloadditions onto the sidewalls of CNT has been supported by theoretical calculations.76The so-called Bingel [2+1]cyclopropanation reaction was also reported recently.77In this reaction,diethylbromoma-lonate works as a formal precursor of carbene.The [2+1]addition to CNT dispersed in 1,8-diazobicyclo[5,4,0]-undecene (DBU)afforded the modified material.In a subsequent step,CNT reacted with 2-(methylthio)ethanol to give thiolated material.The functional groups on the nano-tube surface could be visualized by a tagging technique using chemical binding of gold nanoparticles (Figure 8).The degree of functionalization by the Bingel reaction was estimated to be about 2%.A Diels -Alder cycloaddition was performed on the sidewalls of CNT.78a The reaction involves four π-electrons of a 1,3-diene and two π-electrons of the dienophile.The active reagent was o -quinodimethane (generated in situ from 4,5-benzo-1,2-oxathiin-2-oxide),and the reaction was assisted by microwave irradiation.The modified tubes were charac-terized by Raman and thermogravimetric techniques.The feasibility of the Diels -Alder cycloaddition of conjugated dienes onto the sidewalls of SWNT was assessed by means of a two-layered ONIOM(B3LYP/6-31G*:AM1)molecular modeling approach.78b While the reaction of 1,3-butadiene with the sidewall of an armchair (5,5)nanotube was found to be disfavored,the cycloaddition of quinodimethane was predicted by observing the possible aromaticity stabilization at the corresponding transition states and products.2.4.Radical AdditionsClassical molecular dynamics simulations have been used to model the attachment of CNT by carbon radicals.79These simulations showed that there is great probability of reaction of radicals on the walls of CNT.A simple approach to covalent sidewall functionalization was developed via dia-zonium salts (Figure 9).80-88Initially,derivatization of small diameter CNT (HipCO)was achieved by electrochemical reduction of substitutedarylFigure 6.Reaction pathway for obtaining water-soluble am-monium-modified nanotubes.The latter can be used for the delivery ofbiomolecules.Figure 7.1,3-Dipolar cycloaddition of nitrile imines tonanotubes.Figure 8.Bingel reaction on nanotubes and subsequent attachment to goldnanoparticles.Figure 9.Derivatization scheme by reduction of aryl diazonium salts.Chemistry of Carbon Nanotubes Chemical Reviews,2006,Vol.106,No.31109diazonium salts in organic media,80-82where the reactive species was supposed to be an aryl radical.The formation of aryl radicals was triggered by electron transfer between CNT and the aryl diazonium salts,in a self-catalyzed reaction.A similar reaction was later described,utilizing water-soluble diazonium salts,83,84which have been shown to react selectively with metallic CNT.83,84a Additionally,the methodology gave the most highly functionalized material by using micelle-coated CNT.The micelles were generated using the surfactant sodium dodecyl sulfate (SDS).84a The micelle-coated material was made of noncovalently individu-ally wrapped SWNT.Functionalization of this type of CNT material occurred very easily according to UV -vis spec-troscopy,and the tubes were heavily functionalized according to Raman spectroscopy and TGA (one functional group every 10carbon atoms).Analysis by AFM of the modified CNT,dispersed in DMF,showed a dramatic decrease in bundling.This profoundly increased the solubility of CNT in DMF (0.8mg/mL).In situ chemical generation of the diazonium salt was found to be an effective means of functionalization,providing well-dispersed nanotubes in DMF 85,86or aqueous solutions.87The same reaction can also be performed under solvent-free conditions,offering the possibility of an efficient scale-up with moderate volumes.88Electrochemical modification of individual CNT was demonstrated by the attachment of substituted phenyl groups.89-91Two types of coupling reactions were proposed,namely the reductive coupling of aryl diazonium salts (Figure 10)and the oxidative coupling of aromatic amines (Figure 11).In the former case,the reaction resulted in a C -C bond formation at the graphitic surface whereas,in the latter,amines were directly attached to mercial fabrica-tion of field-effect transistors (FETs)using electrochemically modified CNT was recently reported by Balasubramanian et al.91The authors utilized electrical means for the selective covalent modification of metallic nanotubes,resulting in exclusive electrical transport through the unmodified semi-conducting tubes.To achieve this goal,the semiconducting tubes were made nonconducting by application of an appropriate gate voltage prior to the electrochemical modi-fication.The FETs fabricated in this manner display good hole mobilities and a ratio approaching 106between the currents in the on/off states.Electrochemically modified CNT with amino groups were shown to act as potential grafting sites for nucleic acids.92a Covalent attachment of DNA strands was accomplished byfirst immersing the nanotubes into a solution of the hetero-bifunctional cross-linker sulfo-succinimidyl 4-(N -maleimido-methyl)cyclohexan-1-carboxylate to expose the reactive maleimido groups for the selective ligation with a thiol-modified DNA.The specificity of the DNA-modified CNT was tested in the presence of a mixture of four complemen-tary DNA molecules,each of which was labeled at the 5′-end with a different fluorescent dye.Emission spectra showed that the DNA molecules are able to recognize their appropri-ate complementary sequences with a high degree of selectiv-ity.Each sequence was able to hybridize only with the complementary sequence bonded to the CNT.Similarly,Zhang et al.92b have electrografted poly(N -succinimidyl acrylate)by in situ polymerization onto the surface of SWNT.In a subsequent step,glucose oxidase was covalently attached to the nanotube-polymer assembly through the active ester groups of the polymer chain.The authors explored the potential application of this composite for the electrocatalytic oxidation of glucose.Thermal and photochemical routes have also been applied to the successful covalent functionalization of CNT with radicals.Alkyl or aryl peroxides were decomposed thermally and the resulting radicals (phenyl or lauroyl)added to the graphitic network.93,94In an alternative approach,CNT were heated in the presence of peroxides and alkyl iodides or treated with various sulfoxides,employing Fenton’s reagent.95The reaction of CNT with succinic or glutaric acid acyl peroxides resulted in the addition of carboxyalkyl radicals onto the sidewalls (Figure 12).96This acid-functionalized material was converted to acid chlorides and then to amides with various terminaldiamines.Figure 10.Electrochemical functionalization resulting in C -C bondformation.Figure 11.Electrochemical functionalization by oxidative coupling resulting in C -N bondformation.Figure 12.Derivatization reaction with carboxyalkyl radicals by a thermal process.1110Chemical Reviews,2006,Vol.106,No.3Tasis et al.The reductive intercalation of lithium ions onto the nanotube surface in ammonia atmosphere97a,c or in polar aprotic solvents97b,c has been studied.The negatively charged tubes were found to exchange electrons with long chain alkyliodides,resulting in the formation of transient alkyl radicals.97a,c The latter were added covalently to the graphitic surface,and the resulting modified nanotubes were charac-terized by FT-IR,Raman,and TEM.Addition of perfluoroalkyl radicals to CNT was obtained by photoinduced reactions(Figure3,route c).6,57,60b,98The precursor used in this case was an alkyl iodide which dissociated homolytically upon illumination.In another approach,it was shown that H,N,NH,and NH2radicals could be added to CNT using a cold plasma method.99The authors used ammonia plasma generated by microwave discharge as a precursor.By using amino-functionalized multiwalled CNT as a starting material, chemical bonds were shown to form by covalent attachment of13C-enriched terephthalic acid.100The characterization of these modified tubes was achieved using13C NMR spec-troscopy.2.5.Electrophilic AdditionsElectrophilic addition of chloroform to CNT in the presence of a Lewis acid was reported followed by alkaline hydrolysis.101Further esterification of the hydroxy groups to the surface of the nanotubes led to increased solubility, which allowed the complete spectroscopic characterization of the material.2.6.Addition of Inorganic CompoundsOsmium tetroxide is among the most powerful oxidants for alkenes.The base-catalyzed[3+2]cycloaddition of the oxide with alkenes readily occurs at low temperature,forming osmate esters that can be further hydrated to generate diols.102 In light of these features,the covalent linkage of osmium oxide to the double bonds of CNT lattices was theoretically studied.103The calculations predicted that the cycloaddition of osmium oxide could be viably catalyzed by organic bases, giving rise to osmylated CNT.In practice,the sidewall osmylation of CNT has been achieved by exposing the tubes to osmium tetroxide vapors under UV irradiation.104a The proposed mechanism for the photostimulated osmylation of CNT involved photoinduced charge transfer from nanotubes to osmium oxide and subsequently quick formation of the osmate ester adduct.The cycloaddition product can be cleaved by UV light in V acuo or under oxygen atmosphere whereby the original electronic properties are restored. Concerning the effect of the oxide vapor on MWNT,the tips of the tubes were opened after treatment with the inorganic reagent.104bUsing a solution-phase approach,Banerjee et al.104c suggested that the reaction is highly selective to the metallic tubes.The phenomenon of chemoselective reactions with metallic versus semiconducting CNT was confirmed by Lee and co-workers using Raman spectroscopy.105The authors observed the selective disintegration of metallic tubes by stirring them in a solution of nitronium(NO2+)salt,while semiconducting tubes remained intact.CNT were allowed to react with trans-IrCl(CO)(PPh3)2 to form nanotube-metal complexes.106a The coordination of the inorganic species to the graphitic surface was confirmed by FT-IR and31P NMR spectroscopies.The reactivity of the SWNT sidewalls toward metal coordination was not straightforward.It was found that coordination mainly occurred at defect sites.106b,c The development of this chemistry was crucial for applications of SWNT as reusable catalyst supports.Carbon nanotube interconnects were obtained by covalent attachment of an inorganic metal complex,such as[ruthenium-(4,4′-dicarboxy-2,2′-bipyridine)(2,2′-bipyridyl)2](PF6)2,to CNT which were previously treated in ammonia atmosphere.107 Cross-linking was visualized by microscopy imaging,while emission spectroscopy showed significant changes between the starting components and the resulting ruthenium-nanotube complex.The coordination chemistry of CNT with the inorganic complex Cr(CO)3was studied by density functional theory calculations.108,109It was suggested that the metal fragment coordinates to the walls of the nanotube.The synthesis of the nanotube adduct had been attempted by Wilson et al.110 However,experimental difficulties in the manipulation of nanotubes rendered impossible the characterization of the final product.2.7.OzonolysisSingle-walled CNT have been subjected to ozonolysis at -78°C111and at room temperature,112affording primary CNT-ozonides.Pristine CNT were subjected to cleavage by chemical treatment with hydrogen peroxide or sodium borohydride,111a yielding a high proportion of carboxylic acid/ ester,ketone/aldeyde,and alcohol groups on the nanotube surface.This behavior was supported by theoretical calcula-tions.113By this process,the sidewalls and tips of the nanotubes were decorated with active moieties,thus sub-stantially broadening the chemical reactivity of the carbon nanostructures.Banerjee et al.111c found that the chemical reactivity in this sidewall addition reaction is dependent on the diameter of the nanotubes.Smaller diameter nanotubes have greater strain energy per carbon atom due to increased curvature and higher rehybridization energy.The radial breathing modes in the low wavenumber region of the Raman spectra of CNT indicate that,after functionalization,the features corresponding to small diameter tubes were relatively decreased in intensity as compared to the profile of larger diameter tubes.Cai et al.114demonstrated the attachment of ozonized nanotubes to gold surfaces by the use of appropriate chemical functionalities,namely conjugated oligo(phenyleneethynyl-enes).The derivatized materials were characterized by means of SEM and TEM,and spectroscopically,using Raman, UV-vis-NIR,and XPS.2.8Mechanochemical FunctionalizationsThe ball-milling of MWNT in reactive atmospheres was shown to produce short tubes containing different chemical functional groups such as amines,amide,thiols and mer-captans.115The solid material obtained after treatment with different gases contained functional groups in rather high quantity.The introduction of the functional groups was confirmed by IR and XPS.In an analogous strategy,SWNT have been reacted with potassium hydroxide through a simple solid-phase milling technique.116The nanotube surface was covered with hy-droxyl groups,and the derivative displayed an increased solubility in water(up to3mg/mL).Using the sameChemistry of Carbon Nanotubes Chemical Reviews,2006,Vol.106,No.31111。