物理化学简明教程第四版(印永嘉)

合集下载

《物理化学简明教程》(第四版)印永嘉 第八章 表面现象与分散系统

《物理化学简明教程》(第四版)印永嘉 第八章 表面现象与分散系统

下一内容
回主目录
返回
2016/2/26
第八章 表面现象与分散系统
上一内容
下一内容
回主目录
返回
2016/2/26
第八章 表面现象与分散系统
上一内容
下一内容
回主目录
返回
2016/2/26
第八章 表面现象与分散系统
上一内容
下一内容
回主目录
返回
2016/2/26
(一) 表面现象
• 吸附热为负值。吸附过程是一个放热过程。
上一内容
下一内容
回主目录
返回
2016/2/26
8.3 气体在固体表面上的吸附
• ③ 吸附等温线
• 图8.8 几种类型的吸附等温线
上一内容 下一内容 回主目录
返回
2016/2/26
2 朗格缪尔单分子层吸附等温式
• 1916年,朗格缪尔(Langmuir)提出个气固吸 附理论。其基本假定是: • l.吸附是单分子层的。 • 2.吸附分子之间无相互作用力。
8.1 表面吉布斯函数与表面张力 界面是指两相接触的约几个分子厚度的过渡区, 若其中一相为气体,这种界面通常称为表面。 严格讲表面应是液体和固体与其饱和蒸气之间
的界面,但习惯上把液体或固体与空气的界面称为
液体或固体的表面。
上一内容
下一内容
回主目录
返回
2016/2/26
8.1 表面吉布斯函数与表面张力
上一内容 下一内容 回主目录
返回
2016/2/26
3 BET多分子层吸附等温式
• 在朗格缪尔吸附理论的基础上,1938年勃劳纳 尔(Brunauer)、爱密特(Emmett)和泰勒 (Te11er)三人提出了多分子层的气固吸附理 论,导出了BET公式:

物理化学简明教程(印永嘉)-绪论ppt课件

物理化学简明教程(印永嘉)-绪论ppt课件
① 要注意逻辑推理的思维方法。在物理化学中
逻辑推理的前提就是基本原理、基本概念和基本假设。
例如热力学中热力学能和熵作为一状态函数存在是由热力 学第一定律和第二定律这种基本原理推理而得的,然后导 出第一定律和第二定律的数学表达式,由此出发而得到一 系列很有用处的结论。这种方法在物理化学中比比皆是, 而且在推理过程中很讲究思维的严密性,所得到的结论都 有一定的适用条件,这些适用条件是在推理的过程中自然 形成的。这种逻辑思维方法如果能在学习物理化学过程中 仔细领会并学到手,养成一种习惯,则将受用无穷。
事实证明,理论和实验的关系已越来越密切,任何缺 乏理论观点指导的实验研究必然是盲目的研究,而更多的 是许多新的实验现象期待着新的理论来解释,因此,那种 认为物理化学是理论性学科,因而轻视实验研究的任何倾 向都是非常有害的。
绪论
8
§0.3 学习物理化学的方法
如何学好物理化学这门课程,除了一般学习中行之有 效的方法如要进行预习,抓住重点和善于及时总结……等 以外,针对物理化学课程的特点,提出以下几点供参考。
绪论
3
物理化学所担负的主要任务:
①化学热力学——化学变化的方向和限度,以及伴 随发生的能量转换关系;
例如合成氨,常温常压下能否进行?产率?
②化学动力学——化学反应的速率和机理; 上例理论上可行。关键是寻找合适的催化剂和反应 途径(模拟生物固氮)。
③结构化学——物质的性质与其微观结构的关系 例如研究与氮分子有关的配合物的结构,以及它们 在不同条件下的变化,就有利于常温常压下寻找固氮的 途径。
一般说来物理化学习题大致有以下几方面的内容, 一是巩固所学的内容和方法的;二是有些正文中所没有 介绍,但运用所学的内容可以推理出来而进一步得到某 些结论的;三是从前人的研究论文和生产实际中抽提出 来的一些问题,如何用所学的知识去解决它。

物理化学(第四版)课件_印永嘉_等编_第3章_化学势 ppt课件

物理化学(第四版)课件_印永嘉_等编_第3章_化学势  ppt课件

k
dG Gi dni i 1
dG=GAdnA+GBdnB
偏摩尔量 化学势 (g) 溶液 (sln) 依数性 非理想溶液 习题课
4
二、偏摩尔量的物理意义
1、由定义式可见:( )T,p 往无限大的系统中加 入一摩尔i物质所引起的X的变化,即dX;
2、由偏微商的概念可理解为图中的曲线的斜率。
它不仅与气体的特性有关,还与温度、压力
有关。
偏摩尔量 化学势 (g) 溶液 (sln) 依数性 非理想溶液 习题课
18
实际气体与理想气体的偏差:
压力较小时, <1 压力很大时,>1 p0时, = 1 实际气体行为趋向于理想气体
f
标准态
实际气体的标准态:p=p的符合
理想气体行为的状态,假想态
右边代入
Vm

RT
(1 p)
p

RT
1 p

(1 p)

偏摩尔量 化学势 (g) 溶液 (sln) 依数性 非理想溶液 习题课
23
接上页 (d)T Vmdp
RTd ln
f

RT

1 p

1 p
dp
积分
ln f d ln f
ln f
偏摩尔量 化学势 (g) 溶液 (sln) 依数性 非理想溶液 习题课
17
二、实际气体的化学势,逸度 fugacity
令逸度 f = p
(T ) RT ln
p
p
(T ) RT ln
f p
(T):仍是理想气体的标准态化学势,
:逸度系数(校正因子)。 其数值标志该气体与理想气体的偏差程度,

物理化学简明教程(印永嘉) 化学势

物理化学简明教程(印永嘉) 化学势
(dG)T, p =Σ BdnB= [μ(SO3)– μ(SO2)–½μ(O2)]dn
[μ(SO3)– μ(SO2)–½ μ(O2)]
=0: 反应达平衡 <0: 反应正向进行 >0: 反应逆向进行
第三章 化学势
返回目录
退出
17
推广到任意化学反应:定温定压 , W’=0时
(dG)T, p = B dnB
如何证明---利用最大有效功相同。如
dH = TdS + Vdp + Wr’ (dH)S,P= Wr’
第三章 化学势
(2)
返回目录
退出
11
②多组分系统基本公式: G=f(T, p, nB , nC , nD , )
G G G dG dp dnB dT T p ,nB B nB T , p , n p T ,nB C B

(Gm )T Vm dp
p
p
理想气体压力为p时的状态称为标准态, μ(T):标准态化学势,仅是温度的函数。
20
第三章 化学势
返回目录
退出
2. 理想气体混合物的化学势
对理想气体混合物来说,其中某种气体的行为与该气 体单独占有混合气体总体积时的行为相同。所以理想气体 混合物中某气体的化学势表示法与该气体在纯态时的化学 势表示法相同.故
1. 纯组分理想气体的化学势 2. 理想气体混合物的化学势
3. 实际气体的化学势——逸度的概念
第三章 化学势
返回目录
退出
19
1. 纯组分理想气体的化学势
纯组分理想气体 GB = Gm =μ 定温下其状态从p →p 时,dGm=Vmdp

物理化学简明教程(印永嘉)化学动力学_图文

物理化学简明教程(印永嘉)化学动力学_图文
注意: (1)反应速率的表示式 与选择物质 B无关; (2) 对何种条件下进行的反应都是严格的、正确的;
例如,对于体积不恒定的反应系统,对于多相反应系统 以及流动反应系统等,上式都能够正确地表示出反应进 行的快慢程度。
(3) 单位体积的反应速率:r/ mol ·m-3 ·s -1
或/ mol ·dm-3 ·s -1
dt RT dt
RT dt
p酯=2p0 – p总
r 1 dc光 1 dp光 1 dp总 2 dt 2RT dt RT dt
p光气=2[p总– p0]
但对同样类型的反应如:C2H6(g) C2H4(g)+ H2(g) 由于副反应使产物中有一定量的甲烷存在,因此就不能 用系统总压力的增加来求算上述反应中各组分的分压, 亦即不能用压力这一物理性质来测量反应速率。Байду номын сангаас
因此说化学热力学只解决了反应可能性的问题,反 应究竟能否实现还需由化学动力学来解决。
基本任务:
(1)研究各种因素(浓度、温度、光、介质)对反 应速率的影响。
(2)指示反应的机理(即反应实际进行的具体步骤)。 (3)研究物质的结构与反应速率的关系。
目的:
控制反应速率 控制反应机理
得到预期的产品。
dt 2 dt
很显然,在参加反应的三种物质中,选用任何一种,反 应速率的值都是相同的。实际工作中,常选择其中浓度 比较容易测量的物质来表示其反应速率。
2. 反应速率的实验测定
c r0
r2
产物
r1 r3 反应物 t
图9.1 浓度随反应时间的变化
以c t作图,得一曲线,求各点的切线,其斜率 dc /dt
4. 反应级数
若反应的速率公式可以表达为:

物理化学简明教程(印永嘉) 电化学

物理化学简明教程(印永嘉) 电化学
物理化学简明教程(印永嘉)
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节 第十节 第十一节 第十二节 第十三节 第十四节
第七章 电化学
§7.1 离子的迁移
1.电解质溶液的导电机理 2.法拉第定律
3.离子的迁移数
第七章 电化学
返回目录
退出
化学能

Zn
原电池G <0 电解池G >0
电 极 2 1mol 电解质 1m
电 极 1
第七章 电化学
返回目录
退出
2. 电导的测定
测定电阻R电导G 电导率
电桥平衡时,示波器中 无电流通过,即C、D处 电压相等。所以 I1R = I2R1 I1R3 = I2R2 两式相除 R/ R3= R1 / R2 R = R1R3 / R2 电导G =1/R= R 2/R1R3
z
z-
Λ
m
m,

m,
第七章 电化学
(2)电极命名法:
原电池 电解池 正极(电势高) 阴极(还原极) 阳极(氧化极) 负极(电势低) 阳极(氧化极) 阴极(还原极)
第七章 电化学
返回目录
退出
2. 法拉第定律
当电流通过电解质溶液时,通过电极的电量Q与 发生电极反应的物质的量n成正比。即Q=nF
其中: n:电极反应时得失电子的物质的量 F:为法拉第常数 F =L e =6.02210231.6022 10-19 =96485 C mol-1 通常取值为1F=96.5kC· mol-1
返回目录
退出
注意:
(1) u+, u-与外加电压E有关,当E改变时, u+, u-会按相同

物理化学简明教程第四版

物理化学简明教程第四版
(1) 1 2H 2(g )1 2I2(g )HI(g rGm ),2 2rGm,1
(2) H2(g)I2(g)2HI(gK)f,2 (Kf,1)2
例如,求 C (s ) 1 2 O 2 (g ) C O (g )的平衡常数
( 1 ) C ( s ) O 2 ( g ) C O 2 ( g )
rG m ( 1 )
只是T的函数,无量纲
Kp
PB B
B
只是T的函数,单位Pa△υ
Kx
xB B
B
是T和P的函数,无量纲
K K pP K xpp
§4.3 平衡常数的各种表示法
非理想气体反响
K
B
fB P
B
BB RlTnfB P
只是T的函数,无量纲
Kf
fB B
B
只是T的函数,单位Pa△υ
RT(1)ln(1) ln G
0
B
eq
GGniG x
GG
G会在某ζ值时出现极小值,相应的ζ就是反响的 极限进度ζeq, ζeq越大,平衡产物越多, ζeq越小, 平衡产物越少。在一定温度和压力条件下,总吉布斯 函数最低的状态就是反响系统的平衡态。
§4.1 化学反响的方向和限度
3. 化学反响的平衡常数和等温方程
rGm BfGm 'B
3. 反应的 rGm 和 K 的求算
rG m 的几种计算方法
〔1〕热化学的方法 rG m rH mT rSm 利用热力学数据表或测定反响热效应,先
计算反响的焓变和熵变
(2)用易于测定的平衡常数,计算 rGm
再利用Hess定律计算所需的 rGm
rGm RT l nK
不能向右进展,必须使下式成立

物理化学简明教程(印永嘉) 化学平衡

物理化学简明教程(印永嘉) 化学平衡
5
第四章 化学平衡
返回目录
退出
设一简单理想气体反应 ( )T,p A(g) = B(g) * >* , 即G * >G * A B m,A m,B
=0 nA=1mol nB=0 nA=1– =xA nB= =xB
当反应进度为 时,反应系统的G 为: G = G*+ΔmixG * )+RT(nA ln xA+ nB ln xB ) *+ nB µ = (nA µ A B
rGm =ΣνB μB =0
G
G 0 T , p
G 0 T , p
G 0 T , p
0
第四章 化学平衡

eq
返回目录
1
退出
8
3. 化学反应的平衡常数和等温方程
设理想气体反应 aA + bB = gG + hH 平衡时 g μG+h μH=a μA+b μB
物理化学简明教程(印永嘉)
第一节 第二节 第三节 第四节 第五节 第六节
第四章 化学平衡
§4.1 化学反应的方向和限度
1.化学反应的方向和限度 2.反应系统的吉布斯函数
3.化学反应的平衡常数和等温方程
第四章 化学平衡
返回目录
退出
2
1. 化学反应的方向和限度
所有的化学反应既可以正向进行亦可以逆向进行。 有些情况下,逆向反应的程度是如此之小,以致可以略 去不计,这种反应通常称为“单向反应”。例如,常温 下,2H2(g)+O2(g)=H2O(l)就是如此。但是若在1500℃时, 水蒸气却可以有相当程度分解为氢和氧。 但是,在通常条件下,有不少反应正向进行和逆向 进行均有一定的程度。 例如,在一密闭容器中盛有氢气和碘蒸气的混合物, 即使加热到450℃,氢和碘亦不能全部转化为碘化氢气体, 这就是说,氢和碘能生成碘化氢,但同时碘化氢亦可以 在相当程度上分解为氢和碘。

物理化学(第四版)课件印永嘉等编第3章化学势

物理化学(第四版)课件印永嘉等编第3章化学势
界面张力与物质在界面上的吸附状态密切相关,通过改变界面张力可以调控物质的 吸附行为。
表面吸附与化学势的变化
当物质被吸附到界面上时,其化学势 会发生变化,这种变化会影响物质在 界面上的吸附量和吸附状态。
通过研究物质在界面上的吸附和反应 过程中化学势的变化,可以深入了解 这些过程的机理和动力学特征。
对于理想气体,化学势的变化与温度、 压力和物质的量有关;对于液态和固 态物质,还与物质的聚集状态和表面 结构有关。
理等计算溶质的活度和浓度。
溶液的化学势
溶液的化学势是描述溶质在溶液 中的能量状态的参数,可以通过 热力学基本定律和化学反应平衡 常数等计算溶质的活度和浓度。
ห้องสมุดไป่ตู้3 化学势在化学平衡中的应 用
化学平衡的条件与判据
化学平衡条件
在一定温度和压力下,化学反应 达到平衡状态时,正反应和逆反 应速率相等,且各组分浓度保持 不变。
界面
物质的不同聚集状态(固 态、液态、气态)之间接 触的表面。
界面化学
研究物质在界面上的吸附、 反应和传递等现象的化学 分支。
界面张力
液体表面抵抗形变的能力, 与表面分子或离子的排列 紧密程度有关。
界面张力与化学势的关系
化学势与界面张力在数值上存在一定的关系,通常界面张力越低,化学势越高。
在一定温度和压力条件下,物质在界面上的吸附和反应往往受化学势和界面张力的 共同影响。
物理化学(第四版)课件印永嘉等编 第3章化学势
目 录
• 化学势的定义与意义 • 化学势的计算方法 • 化学势在化学平衡中的应用 • 化学势在相平衡中的应用 • 化学势在界面化学中的应用
01 化学势的定义与意义
化学势的定义
化学势定义为在等温、等压条件 下,物质在某特定相中的吉布斯 自由能与该物质在标准态下的吉

物理化学简明教程(印永嘉)-热力学第一定律169911394

物理化学简明教程(印永嘉)-热力学第一定律169911394

第一章 热力学第一定律
返回目录
退出
21
1.热力学能(内能)的概念
(1)热力学能:除整体动能、整体势能以外的系统中一切形式的 能量(如分子的平动能、转动能、振动能、电子运动能及原 子核内的能等等)。
(2)热力学能是系统的状态函数。(证明见下页)
(3)热力学能是容量性质。 (4)热力学能的绝对值现在无法测量,但对热力学来说,重要的
W3 = – ∫nRT dV/V
= nRT ln(V1/V2)
第一章 热力学第一定律
返回目录
退出
30
比较三者大小(绝对值): 膨胀过程:以可逆膨胀做功最大; 压缩过程:以可逆膨胀做功最小;
但是,可逆过程的膨胀功和压缩功相等。
第一章 热力学第一定律
返回目录
退出
31
2. 可逆过程
系统恢复原状的同时,环境也恢复原状,没有 留下任何永久性的变化,这样的过程叫做可逆过 程。
Zn
定温定压下在烧 杯中进行
Zn
ZnSO4
Cu
CuSO4
定温定压下在原电 池中进行
第一章 热力学第一定律
返回目录
退出
16
4. 热力学平衡系统
系统与环境间 无物质、能量的交换,系统各状态性质均不 随时间而变化时,称系统处于热力学平衡
热力学平衡系统必须同时处于下列四个平衡: 热平衡;机械平衡; 化学平衡;相平衡
则环境也恢复原状,所以为可逆过程。
第一章 热力学第一定律
返回目录
退出
33
可逆过程的特点:
1.系统始终无限接近于平衡——准静态过程; 2.可逆过程无限缓慢; 3. p外=p±dp 推动力和阻力只差一个无限小; 4.可逆过程系统所做的功最大,环境对系统所做的功最小。

物理化学第四版印永嘉答案

物理化学第四版印永嘉答案

物理化学第四版印永嘉答案【篇一:2、《物理化学》教学大纲(化学专业)】xt>一、课程基本信息(一)课程中文名称:物理化学(二)课程英文名称:physical chemistry (三)课程代码:15030100 15030101 (四)课程属性及模块:专业必修课(五)授课学院:理学院(六)开课学院:理学院(七)教材及参考书目教材:《物理化学》(第五版)上册,傅献彩,沈文霞等编,高等教育出版社,2005年《物理化学》(第五版)下册,傅献彩,沈文霞等编,高等教育出版社,2006年参考书:《物理化学核心教程》(第二版),沈文霞编,科学出版社,2009年《物理化学》,万洪文,詹正坤主编,高等教育出版社,2009年《物理化学简明教程》(第四版),印永嘉等编,高等教育出版社,2009年《物理化学学习指导》,孙德坤沈文霞等编,高等教育出版社,2009年《物理化学核心教程学习指导》,沈文霞等编,科学出版社,2009年《化学热力学基础》,李大珍编,北京师范大学出版社,1982年《物理化学》,朱文涛编,清华大学出版社,1995年《物理化学教程》(修订版),姚允斌,朱志昂编,湖南科技出版社,1995年(八)课程定位及课程简介《物理化学》是化学及相关学科的理论基础。

是化学、化工、冶金、材料等专业本科生必修的专业主干基础课之一。

它是从化学现象与物理现象的联系入手,借助数学、物理学等基础科学的理论及其提供的实验手段,来探求化学变化中最具普遍性的基本规律的一门学科。

它是先行课程无机化学、分析化学、有机化学普适规律的理论归纳和定量探讨,是后续专业知识深造和科研工作的理论基础,也是连接化学与其它学科的桥梁。

(九)课程设计基本理念依据“以学生为中心”的教育教学理念,本课程的教学目的主要是:(1)使学生在已学过的一些先行课程(无机化学、有机化学、分析化学、高等数学、普通物理学)的基础上,对化学运动作理论和定量探讨。

(2)使学生能系统地掌握物理化学的基本知识和基本原理,加深对自然现象本质的认识;(3)使学生学会物理化学的科学思维方法,培养学生提出问题、研究问题的能力,培养他们获取知识并用来解决实际问题的能力。

物理化学简明教程(印永嘉) 热力学第二定律

物理化学简明教程(印永嘉) 热力学第二定律
明这一结论?---卡诺循环)
第二章 热力学第二定律
返回目录
退出
8
§2.2 热力学第二定律的经典表述(经验总结)
19世纪初,资本主义工业生产已经很发 达,迫切需要解决动力问题。当时人们已 经认识到能量守恒原理,试图制造第一类 永动机已宣告失败,然而人们也认识到 能量是可以转换的。于是,人们就想到 空气和大海都含有大量的能量,应该是 取之不尽的。有人计算若从大海中取热 做功,使大海温度下降1℃,其能量可供 全世界使用100年…。
Q1 T1 W T2 T1 其中W为环境对致冷机所作的功;Q1为给致冷机作每 单位的功能从低温热源取出的热。
第二章 热力学第二定律
返回目录
退出
25
根据题给条件,此致冷机的可逆致冷效率为
253 5.62 298 253
而欲保持冷冻系统的温度为20℃,则每分钟必 须由低温热源取出104 J的热。因此需对致冷机作 的功应为 W=Q/=(104/5.62) J· min-1= 1780 J· min-1故 开动此致冷机所需之功率为
返回目录
退出
3
思路:找出决定这些自发过程的方向和限度 的共性的因素,然后判断个性的化学反应的方向 和限度。 在本章中,我们发现功和热的转换具有不可逆 性,也就是功向热转换的自发性。功和热是自然 界最普遍、最概括的两种能量形式,而且任何化 学过程都会伴随功和热的产生,因此如果从这里 面提取出一个函数就可以为方向的判断提供依据。
高温热源T2 吸热Q2 做出W’ 放热 吸热 QQ 22
I
放热Q1’
R
做功 W 做出 W 放热 Q 吸热 Q 11
低温热源T1
联合热机工作的总结果是:
第二章 热力学第二定律

物理化学第四版印永嘉第二章

物理化学第四版印永嘉第二章
由卡诺定理可知: r
Q2 T2 Q1 T1 Q1 Q2 0 T1 T2
(不可逆) (可逆)
(不可逆) (可逆)
由无数小循环构成的不可逆循环: 结合卡诺循环有:
δQ T 0
δQir T 0
(不可逆) (可逆)
1
整个过程不可逆,所以有:
不可逆
可逆
2
2
δQir T 1
自发过程的共同特征:
(1) 自发过程必为不可逆过程; (2) 热功转化是有方向性的。
§2.2 热力学第二定律的经典表述
热力学第二定律的提出
这个问题的实质可归结为热只能从高温物
体自动传向低温物体,没有温差就取不出热
来(即从单一热源吸热)。
热力学第二定律的经典表述
(1)克劳修斯(Clausius, R) 说法:
放热Q1
做出功W
卡诺热机
p
V
1mol 理想气体的卡诺循环在pV图上可以分为四步: 过程1:定温(T2)可逆膨胀由p1,V1到p2,V2
U 1 0
V2 W1 RT2 ln V1
所作功பைடு நூலகம்AB曲线下的面积所示
Q2 W1
V2 RT2 ln V1
过程2:绝热可逆膨胀由p2 , V2 , T2到p3 , V3 , T1
不可能把热从低温物体 传到高温物体,而不引起 其它变化。
A T1 > T2
B
克劳修斯说法,反映了传热过程的不可逆性。
不可逆
A T1 > T2 B
(2)开尔文(Kelvin, L) 说法:
不可能从单一热源吸热使 之完全变为功而没有任何其 他变化。 (3)热力学第二定律的经典叙述可简化为:

物理化学简明教程(印永嘉) 绪论

物理化学简明教程(印永嘉) 绪论
绪论
4
物理化学与其它学科之间的联系
物理化学与化学中的其它学科(如无机化学、分析化学、 有机化学等)之间有着密切的联系,无机化学、分析化学、有 机化学等各有自己特殊的研究对象,但物理化学则着重研究 更具有普遍性的、更本质的化学运动的内在规律性。物理化 学所研究的基本问题亦正是其它化学学科最关心的问题。现 代无机化学、分析化学和有机化学在解决具体问题时,很大 程度上常常需要应用物理化学的规律和方法,因此,物理化 学与无机化学、分析化学、有机化学等学科的关系是十分密 切的,并相互交叉融合,形成了诸如无机物理化学、有机物 理化学、高分子物理化学、生物物理化学、材料物理化学等 新兴交叉学科。
M再对x偏微商, N再对y偏微商
2Z M x y yx
M N 所以 x y y x
绪论
N 2Z y xy x
第二章中Maxwell关系式的 推导就用到此性质。
4 全微分的性质: dZ=Mdy +Ndx 式中Z和M,N都是x,y的函数, 若Z是x,y的全微分
Z Z dZ d y dx y x y x
比较上两式,得
Z M ( x, y ) y x
Z N ( x, y ) x y
最小
最大
绪论
18
4. 物质的pVT关系和相变
(1) 理想气体的pV 图
定温线 p
V
绪论
19
有关数学知识的复习
1 函数:Z = f (x,y) 如理想气体的压力、温度和体积三个物理量中: p=f1(T,V), 压力是温度和体积的函数; V=f2(T,p), 体积是温度和压力的函数; 2 偏微分: 设Z = f (x,y) , x,y为独立变量, Z是x,y的连续函数,若 自变量x改变了dx, y改变了dy,则Z相应改变了dZ:

物理化学简明教程第四版(印永嘉)

物理化学简明教程第四版(印永嘉)

体积功的计算
• 基本公式:

W=-p外dV
• 注意: 体积功是系统反抗外压所作的功;•源自或者是环境施加于系统所作的功。
• W的数值不仅仅与系统的始末态有关,还与具体经历的途径 有关。
• 强度性质: 数值取决于系统自身的特点,与系统的数量无关, 不具有加和性,如温度、压力等。它在数学上是零次齐函数。
• 一般而言, 两个广度量的比值是一强度量,如
密 度: = m/V
摩尔体积:Vm = V/n • 指定了物质的量的容量性质即成为强度性质,如摩尔热容。
-
6
p,压力或者压强, N/m2(帕斯卡), Pa; 1pø=0.1MPa,热力学标准压力;常压101325 Pa T,温度,K , T/K= t/℃+273.15; V,体积,m3;
-
10
平衡态?稳态?
一金属棒分别与两个恒温热源相接触,经过一定时间后,金属 棒上各指定点的温度不再随时间而变化,此时金属棒是否处于 热力学平衡态?
T2
T1
-
11
过程和途径
• 热力学系统发生的任何状态变化称为过程。 • 完成某一过程的具体步骤称为途径。
如: pVT变化过程、相变化过程、化学变化过程
个量符合上述三个特征之一,可以判定有某一状态函数的存在。
-
9
热力学平衡态
• 系统与环境间必须同时达到以下四个条件时, 才可认为系统达 热力学平衡, 此时系统的状态称为热力学平衡态.
• 1.热平衡: 系统处处温度(T) 相等; • 2.力学平衡: 系统处处压力(p) 相等; • 3.相平衡:多相共存时,各相的组成和数量不随时间而改变; • 4.化学平衡: 系统内各化学反应达平衡.
-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•热力学具有极其牢固的实验基础, 具有高度的普遍性和可靠性.
系统与环境
几个基本概念
• 系统 在科学研究时必须先确定研究对象,把一部分物质与
其余分开,这种分离可以是实际的,也可以是想象的。这种 被划定的研究对象称为系统,亦称为物系或体系。
• 环境 与系统密切相关、有相互作用或影响所能及的部分称为
环境或外界。
• W的取号:
• 系统对环境做功(系统失去能量)为负; • 环境对系统做功(系统得到能量)为正。
广义功
• 广义功的一般表达式为:
• W=-xdx
• x是广义力:可以是牛顿力、压强、电压等;dx是广义位移: 可以是距离、体积、电量等。
• 功的种类 • 体积功 • 机械功 •电 功 •势 能 • 表面功 • 化学功
• 系统与环境之间的边界可以是实际的,也可以是想象的。
系统分类
• 热力学上因系统与环境间的关系不同而将其分为三种不同
的类型:
• 开放系统 : 系统与环境之间既有能量,又有物质的交换;
• 封闭系统: 系统与环境间只有能量的交换没有物质的交换;
• 隔离系统: 系统与环境间既无能量又无物质的交换 。 • 注意:系统+环境=孤立系统。
热力学方法和局限性
•热力学的方法是一种演绎的方法, 它结合经验所得到的几个基 本定律, 讨论具体对象的宏观性质.
•热力学的研究对象是大数量分子的集合体, 所得到的结论具有 统计意义, 只反应它的平均行为, 而不适宜于个别分子的个体 行为.
•热力学方法的特点:不考虑物质的微观结构和反应进行的机理.
•热力学方法的局限:可能性与可行性;变化净结果与反应细节; 宏观了解与微观说明及给出宏观性质的数值;
热功当量
焦耳:J.P.Joule 1818-1889
1 cal = 4.1840 J
第一类永动机
系统的总能量
•通常系统的总能量(E)是由三部分组成: •⑴系统总体运动的动能(T); •⑵系统在外势场中的势能(V); •⑶热力学能(U)。 •目前在热力学中只需考虑热力学能。
•能量守恒与转化定律应用于热力学系统就是热力学第一定律。
• Q和W只是能量交换的一种形式,不属于系统的性质。 • 因而对Q和W没有“变化”而言,只是量的大小而已。 • 如果系统发生的微小的状态变化,如与环境有能量交换,则Q
和W是“微小量”,不应是“微小变化量”。 • 为了区别全微分,以符号“”表示:W或Q 。
• Q和W具有能量的单位:J或kJ。
热力学能(U)
• 系统经历一过程的状态函数差值,只取决于系统的始末两态。 用数学 语言表达:状态函数在数学上具有全微分的性质,用 符号d表示,如dV、dp。
• 系统经过一系列过程,回到原来的状态,即循环过程,状态 函数数值的变化为零。
• 以上三个特征只要具备其中一条,其他两个特征就可以推导出 来。
• 以上关于状态函数的特征可以反过来说:如果一个系统的有一 个量符合上述三个特征之一,可以判定有某一状态函数的存在。
状态2
(6) 对抗恒定外压过程: p环=常数
p1, T1
P环
状态1 循环过程
气体向真空膨胀 (自由膨胀)
气体 真空
(7) 自由膨胀过程: (向真空膨胀过程)。 P环=0
热力学第一定律
• 热功当量 焦耳(Joule)和迈耶(Mayer)自1840年起,历经20 多年,用各种实验求证热和功的转换关系,得到的结果是一 致的。即: 1 cal = 4.1840 J。
• 系统的性质是彼此相互关联的,通常只要确定其中几个性质, 其余随之而定,系统的状态也就确立了。确定系统状态的热 力学性质之间的定量关系式称为状态方程。
• 例如,理想气体的状态方程可表示为: pV=nRT
状态函数的特征
• 系统的状态一定,它的每一个状态函数具有唯一确定的值。 用数学语言表达:状态函数是系统状态的单值函数。
• 强度性质: 数值取决于系统自身的特点,与系统的数量无关, 不具有加和性,如温度、压力等。它在数学上是零次齐函数。
• 一般而言, 两个广度量的比值是一强度量,如
密 度: = m/V
摩尔体积:Vm = V/n • 指定了物质的量的容量性质即成为强度性质,如摩尔热容。
p,压力或者压强, N/m2(帕斯卡), Pa; 1pø=0.1MPa,热力学标准压力;常压101325 Pa T,温度,K , T/K= t/℃+273.15; V,体积,m3;
体积功的计算
dl V2
f外 = p外A
活塞位移方向 (a)系统压缩
• (3)Q=0,W>0,U>0 因为水和电炉丝均为系统,系统之间的热 交换是不计的。电源对系统做电功,系统热力学能增加。
• (4)Q=0,W=0,U=0 因为这是个孤立系统,系统之间的热、功 交换是不计的。
小结:Δ与δ的差异
Δ,d 均表示变化
Δ表示大的、宏观的变化,例如从状态1变化到状态2,状态函 数的变化。 d表示微小的变化,全微分符号。 Δ、d后面为可以进行全微分的函数,包括所有状态函数。
热力学能(U)
结果:无论以何种方式,无论直接或分成几个步骤,使一个绝热
封闭系统从某一始态变到某一终态,所需的功是一定的。
分析: 绝热封闭系统:
途径1,W
始态(T1,V1) (U1)
途径2,W 途径3,W
终态(T2 ,V2) (U2)
定义: 状态函数U——热力学能
U2-U1 def W(封闭,绝热)
• 能量守恒与转化定律应用于热力学系统就是热力学第一定律。 • 能量守恒与转化定律的确立,绝不意味着该原理已告完成。
• 能量守恒与转化定律已经成为自然科学的一块基石,重要性 不言而喻,但决不是自然界唯一的法则。
• 例:如图所示,开水瓶中有一热得快,与外电源相接。如果按照
以下几种情况选择系统,试判断△U,W和Q的符号。
• 这就是著名的热功当量,为能量守恒原理提供了科学的实验 证明。
• 能量守恒定律 到1850年,科学界公认能量守恒定律是自然界 的普遍规律之一。能量守恒与转化定律可表述为:
• 自然界的一切物质都具有能量,能量有各种不同形式,能够 从一种形式转化为另一种形式,但在转化过程中,能量的总 值不变。
火是人类文明之源
• 即有 ⊿U=UB-UA=W+Q (封闭系统)
• 对于微小的变化过程: dU=W+Q (封闭系统)
热力学能(U)
• 热力学能: 以前称为内能,它是指系统内部能量的总和。 • 包括:核、电子、振动、平动、转动等。 • 热力学能是系统自身的性质,即容量性质,具有状态函数的
特征。它具有能量的单位:J。
• (1)以电炉丝为系统; • (2)以水为系统; • (3)以水和电炉丝为系统; • (4)以水、电炉丝和电源为系统。
• 解 (1)Q<0,W>0,U=0 因为电炉丝得到电功,产 生的热量传给水,状态不变,热力学能不变。
• (2)Q>0,W=0,U>0 因为水从电炉丝得到热,而无 任何功的交换,水获得热量使热力学能升高。
• 设有一不作整体运动的封闭系统,从状态A变到状态B有多种 途径。根据热力学第一定律,只要系统的始态A和终态B确定, 途径不同,功(W)和热(Q)不同,W+Q的值不变。
• 这一事实表明, W+Q的值只取决于系统的始态和终态,与途 径无关。根据状态函数的特征,必然存在某一状态函数,它 的变化值等于W+Q 。该状态函数称为热力学能,用符号U表 示。
热和功
• 热(heat):系统与环境间因温差的存在而传递的能量称为热. 热的符号为Q。
• Q的取号:系统放热为负;系统吸热为正。
• 热量总是从高温物体传至低温物体; • 当系统与环境温度相等时,达热平衡,没有热量的传递。
• 功(work)系统与环境之间传递的除热以外的其它能量都
称为功,用符号W表示。
热力学概论
热力学的研究对象
研究宏观系统的热与其他形式能量之间的相互转换关系及其转 换过程中所遵循的规律。
热力学共有三个基本定律:第一、第二、第三定律,都是人类 经验的总结。第一、第二定律是热力学的主要基础。
化学热力学是用热力学基本原理研究化学现象和与化学现象相 关的物理现象 根据第一定律计算变化过程中的能量变化,根据第二定律判断 变化的方向和限度。
δ表示微小量,后面为不可以直接进行全微(积)分的函数, 包括过程量,例如Q、W。
作业
Page 12:习题3;习题6
体积功的计算
• 基本公式:

W=-p外dV
• 注意: 体积功是系统反抗外压所作的功;

或者是环境施加于系统所作的功。
• W的数值不仅仅与系统的始末态有关,还与具体经历的途径 有关。
• 在计算体积功时,首先要弄清反抗的压力与系统体积的关系。
广义力 p f E mg
广义位移 dV dl dQ dh dA dn
功的表达式 W= -pdV -f dl -EdQ
mgdh
-dA dn
膨胀功 非膨胀功
过程量
•过程量:不仅与系统的始末态有关,还与系统所经历的途径 有关的热力学量称为过程量,也称过程函数。
• 常见的过程量为Q和W。 Q和W都不是状态函数,其数值与变化 途径有关,在数学上不具有全微分的性质。
热力学平衡态
• 系统与环境间必须同时达到以下四个条件时, 才可认为系统达 热力学平衡, 此时系统的状态称为热力学平衡态.
• 1.热平衡: 系统处处温度(T) 相等; • 2.力学平衡: 系统处处压力(p) 相等; • 3.相平衡:多相共存时,各相的组成和数量不随时间而改变; • 4.化学平衡: 系统内各化学反应达平衡.源自举例:暖水瓶状态和性质
• 用宏观可测性质包括压力(p)、体积(V)、温度(T)、质量(m)、 物质的量(n)、物种(i)等来描述系统的热力学状态,故这些性 质又称为热力学变量。
相关文档
最新文档