普通高校专转本统一考试试卷高数模拟试卷

合集下载

普通高校专转本高数统一考试模拟试卷解析(六)

普通高校专转本高数统一考试模拟试卷解析(六)

A、 f (x) 0 , f (x) 0
B、 f (x) 0 , f (x) 0
C、 f (x) 0 , f (x) 0
D、 f (x) 0 , f (x) 0
解析:该题考察可导的奇偶函数的导数性质。 f (x) 可导,
若 f (x) 为奇函数,则 f (x) 为偶函数;若 f (x) 为偶函数,则 f (x) 为奇函数。(其逆不全 成立,)因为偶函数的原函数相差常数 C ,当 C 0 时非奇非偶。故本题答案选 C
0
x
解析:二重积分问题是很多“专转本”同学的难点。首先要理解二重积分的几何意义,特别
是对称型简化积分计算。
在直角坐标系下,首先要画出积分区域,然后根据被积函数的特点与区域的形状选择适当的
积分顺序。
积分区域
D
:
0x2
x
y
2x
转化为
D
D1
D2
其中
D1
:
0 y2 1 yx y 2
;
D2
:
2 y4 1 yx 2 2
h0
h
解析:该题考察导数定义
f
(xபைடு நூலகம் )
lim
h0
f
( x0
h) h
f
(x0 )

f
(x0 )
lim
h0
f
( x0
h) h
f
(x0 )

式子当中的 h 应当理解为中间变量,看成文字。
于是 lim h0
f
( x0
mh) h
f
( x0
nh)
(m n)
f
(x0 )
lim f (h) f (h) 2 f (0) 4 。

2024浙江专升本高数模拟卷2

2024浙江专升本高数模拟卷2

2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

2020年河北省普通高等学校专接本考试模拟试卷 大学数学(含答案解析)

2020年河北省普通高等学校专接本考试模拟试卷 大学数学(含答案解析)

本试卷分选择题和非选择题两部分。

满分100分,考试时间60分钟。

答试卷前先填写封线内的项目和座位号。

考试结束后,将本试卷和答题卡一并交回2020年河北省普通高等学校专接本考试模拟试卷大学数学(数二)。

选择题一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =的定义域为()A.(1,)+∞B.(,5)-∞ C.(1,5)D.(1,5]【答案】C【解析】因函数有意义的条件为10x ->且50x ->,求解得15x <<.2.下列极限存在的是()A .01lim 1x x e →-B .01limsinx x→C .01lim sinx x x→D .跳跃间断点【答案】C【解析】选项A ,0011lim lim 1xx x e x →→==∞-,极限不存在;选项B ,01limsin x x→极限不存在;选项C ,01lim sin0x x x→=(无穷小⨯有界=无穷小);选项D ,跳跃间断点,左极限不等于右极限,极限不存在.故选C .3.函数11(2),1(),1x x x f x a x -⎧⎪-<=⎨⎪≥⎩在点1x =处连续,则常数a =()A.1-e B.2e C.3e D.0【答案】A【解析】由()f x 在点1x =处连续,得[]111111111lim(2)lim 1(1)xx x x x x a x x e ---⋅----→→=-=+-=.4.设函数2sin5y π=-,则y '=()A .2cos5π-B .CD .2cos55π【答案】B【解析】2sin 5y π''⎛⎫'=-=-⎪⎝⎭B .5.由方程x y xy e +=确定的隐函数()x y 的导数dxdy=()A .(1)(1)x y y x --B .(1)(1)y x x y --C .(1)(1)y x x y +-D .(1)(1)x y y x +-【答案】A【解析】方程两边对y 求导,其中x 看作y 的函数,(1)x y x y x e x +''+=+,所以dx x dy'==(1)(1)x y x y e x x y y e y x ++--=--,故选A .6.函数2()1xf x x =-在区间(1,1)-内()A .单调增加且有界B .单调增加且无界C .单调减少且有界D .单调减少且无界【答案】B【解析】2222(1)1()11x x f x x x -+'==--,(1,1)x ∈-时()0f x '>,所以单调增加,开区间取不到端点所以无界.7.(2)0ydx x dy +-=的通解()A .(2)y c x =+B .y cx =C .(2)y c x =-D .ln(2)y x =-【答案】C【解析】微分方程可转化为一阶可分离变量微分方程为:ln ln(2)ln (2)2dy dx y x c y c x y x =⇒=-+⇒=--.8.设函数2ln z u v =,而x u y =,32v x y =-,则zx∂=∂()A .22223ln(32)(32)x x x y y x y y -+-B .2223ln(32)(32)x x x y y x y y -+-C .2222ln(32)(32)x x x y y x y y -+-D .222ln(32)(32)x x x y y x y y -+-【答案】A【解析】22221232ln 3ln(32)(32)z z u z v u x x u u x y x u x v x y v y x y y ∂∂∂∂∂=⋅+⋅=⋅+⋅=-+∂∂∂∂∂-,故选A .9.下列级数中,收敛的是()A.11n ∞=⎛⎫+⎪⎭∑B.11n ∞=⎛⎫+⎪⎭∑C .1(1)4nn nn ∞=-+∑D.113n n ∞=⎛⎫+⎪⎭∑【答案】D【解析】111133n n n n n ∞∞∞===⎛⎫+=+⎪⎭∑∑,左边是收敛的p 级数,右边是收敛的等比级数,故两者的和仍是收敛的.10.12021λλ-≠-的充要条件是()A .1λ≠-且3λ≠B .3λ≠C .1λ≠-D .1λ≠-或3λ≠【答案】A 【解析】2212(1)423(3)(1)021λλλλλλλ-=--=--=-+≠-,即1λ≠-且3λ≠,故选A .二、填空题(本大题共5小题,每题4分,共20分,把答案填写在题目的横线上)11.参数方程331cos 21sin 2x t y t ⎧=⎪⎪⎨⎪=⎪⎩的导数dy dx =________.【答案】tan t-【解析】223cos (sin )2tan 3sin cos 2dy t t dy dt t dx dx t t dt ⋅-===-⋅.12.极限23(1)limxt x e dt x →-=⎰________.【答案】13【解析】2220322000(1)11lim lim lim 333x t x x x x e dt e x x x x →→→--===⎰.13.设行列式12203369a中,代数余子式213A =,则a =________.【答案】72【解析】21212(1)186369a A a +=-=-+=,即72a =.14.一阶线性微分方程()()y P x y Q x '+=的通解为________.【答案】()()()P x dx P x dxy e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰【解析】对()()y P x y Q x '+=,根据公式可得()()()P x dx P x dxy e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰.15级数03!nn n ∞=∑的和为________.【答案】3e 【解析】23012!3!!!n n xn x x x x e x n n ∞==++++++=∑ ,故303!nn e n ∞==∑.三、计算题(本大题共4小题,每题10分,共40分,解答应写出文字说明,证明过程或演算步骤。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

江苏省普通高校“专转本”统一考试数学模拟试卷全真8套试卷兴国版本(1)

江苏省普通高校“专转本”统一考试数学模拟试卷全真8套试卷兴国版本(1)
江苏省专转本《高等数学》全真模拟试卷 1
一、单项选择题(每小题 4 分,共 24 分)
1.当 x 0,1 cos2x 与 ln(1 ax 2 ) 是等价无穷小,则 a (
)。
A1
B2
C3
D4
2.曲线
y
xx
x2 x
1x
2 的垂直渐近线为(
)。
A x 0 B x 1 C x 2 D 无垂直渐近线
)。
A xy
B 2xy
xy 1
C
8
6.下列级数中,发散的是 (
1n
n
A
n1
n2 1
C
1n sin
1
n1
n 1
D xy 1
)。
B
n1
1 n
n 2n
1n n3 1 n3 1
D
n1
二、填空题(每小题 4 分,共 24 分)
lim 2x 12x
7.极限 x 2x 1 =

8.设
f
(1) x
。 。

10.交换二次积分次序
C 高阶无穷小
D 低阶无穷小
2.曲线
y
ex ex
ex ex
的渐近线共有(
)条。
A 1 B 2 C3 D4
3.设 f x 的一个原函数为 x2 tet2 dt ,则 f x =( 0
)。
A
2 2x2 ex2 B 6x 4x3 ex2
C 6x 2 8x 6 e x4
D 2 4x 4 e x4
图形为 D。 (1)求 D 的面积;
(2)求 D 绕 x 轴旋转所得几何体的体积。
江苏省专转本《高等数学》全真模拟试卷 2

普通高校专转本高数统一考试模拟试卷解析(一)

普通高校专转本高数统一考试模拟试卷解析(一)

解析:该题考察二元显函数偏导数的求法,偏导数的本质就是将其中一个变量当作常量对另 一个变量的导数。
u x
1
1
x2 y2
1 y
y x2
y2
, v(x, y)
ln
x 2 y 2 1 ln(x 2 y 2) , 2
v y
1 2
x2
1
y2
2y
x2
y
y2
,即 u x
v y
,故本题答案选
A
3
6、正项级数(1) un 、(2) un3 ,则下列说法正确的是(
第二步:寻找与 x 对应的路径 ,计算的过程可以总结为“路中用乘,路间用加”
z x
cos
x
f1' ,
2z xy
cos
x(
f '' 12
2y)
2 y cos
xf1'2'
18、求过点 A(3,1,2) 且通过直线 L : x 4 y 3 z 的平面方程。
5
21
解析:求平面方程,基本方法是使用点法式,求出平面上的一个定点和法向量 n 。
1 e 1

f
(x)
1 x
,所以
f
( )
1
于是
1
e
1 1
,得
e 1。
9、
1 x 1 11 x 2

解析:该题考察奇偶函数的定积分在对称区间上的积分性质。
a
a
f
(x)dx
0, 2
a 0
f
( x)dx,
f ( x)为奇函数 f (x)为偶函数
1 x 1
1 1 x2

2024年专升本高数试卷

2024年专升本高数试卷

2024年专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 当x→0时,xsin(1)/(x)是()A. 无穷小量。

B. 无穷大量。

C. 有界变量,但不是无穷小量。

D. 无界变量,但不是无穷大量。

3. 设y = f(x)在点x = x_0处可导,则limlimits_Δ x→0frac{f(x_0-Δ x)-f(x_0)}{Δ x}=()A. f^′(x_0)B. -f^′(x_0)C. 0D. 不存在。

4. 设y = x^3ln x,则y^′=()A. 3x^2ln x + x^2B. 3x^2ln xC. x^2D. 3x^2ln x - x^25. 函数y = (1)/(3)x^3-x^2-3x + 1的单调递减区间是()A. (-1,3)B. (-∞,-1)∪(3,+∞)C. (-∞,-1)D. (3,+∞)6. ∫ xcos xdx=()A. xsin x + cos x + CB. xsin x-cos x + CC. -xsin x + cos x + CD. -xsin x-cos x + C7. 设f(x)在[a,b]上连续,则∫_a^bf(x)dx-∫_a^bf(t)dt=()A. 0B. 1C. f(b)-f(a)D. 无法确定。

8. 下列广义积分收敛的是()A. ∫_1^+∞(1)/(x)dxB. ∫_1^+∞(1)/(x^2)dxC. ∫_0^1(1)/(√(x))dxD. ∫_0^1(1)/(x^2)dx9. 由曲线y = x^2与y = √(x)所围成的图形的面积为()A. (1)/(3)B. (2)/(3)C. 1D. (1)/(6)10. 二阶线性齐次微分方程y^′′+p(x)y^′+q(x)y = 0的两个解y_1(x),y_2(x),且y_1(x)≠0,则frac{y_2(x)}{y_1(x)}为()A. 常数。

2022年河南省专升本高数模拟卷1及答案

2022年河南省专升本高数模拟卷1及答案

2022年河南省专升本模拟试卷(一)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。

2.所有答案必须按照答题号在答题卡上对应的答题卡区域内作答,超出各题答题区域的答案无效。

在草稿纸、试题上作答无效。

考试结束后,将试题和答题卡一并交回。

3.本试卷分为第I 卷和第II 卷,共9页,满分为150分,考试时间为120分钟。

第I 卷一、选择题(本大题共25小题,每小题2分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数()f x 的定义域为(0,1],则函数(2)f x -的定义域为()A .(0,1]B .[0,1)C .(1,2]D .[1,2)2.设()f x 为偶函数,则()()xax f t dt ϕ=⎰的奇偶性与a ()A .有关B .无关C .可能有关D .都不对3.若0lim ()x x f x →存在,则()f x 在点0x 处是()A .一定有定义B .一定没有定义C .可以有定义,也可以没定义D .以上都不对4.极限0arctan 5limx x→=()A .12B .2C .0D .∞5.设函数20(),0x f x a x -<<=⎪≥⎩在0x =处连续,则必有a =()A .4-B .2-C .22D .46.函数22,1()1,1x x f x x x ≥⎧=⎨+<⎩,在点1x =处()A .可导且(1)2f '=B .不可导C .不连续D .不能判断是否可导7.设()f x 在点0x 的某邻域内可导,0()f x 为极大值,则000(2)()lim h f x h f x h→+-=()A .2-B .0C .1D .28.设函数()52x f x =+的反函数为()g x ,则(27)g =()A .2-B .1-C .2D .39.函数()ln 2xf x x e=-+在(0,)+∞内的零点个数为()A .0B .1C .2D .310.曲线15xy x+=-()A .仅有水平渐近线B .既有水平渐近线又有垂直渐近线C .仅有垂直渐近线D .既无水平渐近线又无垂直渐近线11.若12+x 是)(x f 的一个原函数,则()f x =()A .33x C+B .12+x C .x2D .212.2328dxx x =--⎰()A .17ln114x C x -++B .7ln4x C x -++C .14ln7x C x ++-D .ln(4)ln(7)x x C+--+13.设曲线()y f x =过原点,且该曲线在点(,())x f x 处切线斜率为2x -,则20(2)lim x f x x →-=()A .4-B .2-C .0D .414.函数21(3sin )xy t t dt =+⎰,则22d ydx=()A .262sin x x +B .23sin x x +C .6cos x x+D .122cos x x+15.使广义积分1()1f x dx +∞=⎰成立的()f x 为()A .xe -B .1xC .21x D .211x +16.下列方程为一阶微分方程的是()A .2321dy dy xy x dx dx ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .232xy y y e '''+-=C .()d xy xy dx'=D .22()d u du uL Rf t dt dt A++=17.函数36x y Cx =+(其中C 是任意常数)对微分方程22d y x dx =而言()A .是通解B .是特解C .是解,但既非通解也非特解D .不是解18.直线137213x y z +-+==--与平面42210x y z -+-=的位置关系是()A .平行B .垂直相交C .直线在平面上D .相交但不垂直19.设向量b 与向量{}3,1,1=-a 共线,且满足22⋅=b a ,则=b ()A .{}6,2,2-B .{}6,2,4-C .{}3,1,1--D .{}6,2,2-20.设函数21(,)(1)ln()f x y y x y =+-,则(,1)x f x =()A .21x B .21x -C .211y x x-+D .212(1)y x x--+21.已知函数(,)z z x y =的全微分2sin dz xdx ydy =+,则2(1,2)zx y∂=∂∂()A .2B .sin 2C .1D .022.曲面222y z x =+在(1,2,3)-处的切平面方程为()A .2230x y z ++-=B .2230x y z +-+=C .2230x y z -++=D .2230x y z ---=23.把积分00(,)ady f x y dx ⎰化为极坐标形式为()A .200(cos ,sin )ad f r r rdr πθθθ⎰⎰B .2cos 0(cos ,sin )a d f r r rdrπθθθθ⎰⎰C .sin 20(cos ,sin )a d f r r rdrπθθθθ⎰⎰D .20(cos ,sin )ad f r r rdrπθθθ⎰⎰24.设曲线L 为圆周221x y +=,则对弧长的曲线积分为=⎰ ()A .0B .2πC .πD .2π25.下列级数中,收敛的级数是()A .113nn ∞=∑B .111n n ∞=+∑C .132nnn ∞=∑D.n ∞=第II 卷二、填空题(本大题共15小题,每小题2分,共30分)26.322042lim x x x xx x→+-=-________.27.当x →∞时,4(23)kx x +与31x是等价无穷小,则常数k =________.28.已知函数sin 2,0()0xx f x x ⎧<⎪⎪=⎨>,则点0x =是函数()f x 的________间断点.29.微分方程22230d y dyy dx dx+-=的通解为________.30.设61011x y x x e =++,则(10)y =________.31.曲线3(2)2y x =++的拐点是________.32.定积分131(1)x x dx --=⎰________.33.2max(2,3)x x dx -=⎰________.34.计算2211cos dx xππ-=+⎰________.35.方程22241625x y z +=所表示的曲面为________.36.设已知两点(4,0,5)A 与(7,1,3)B ,方向和AB一致的单位向量为________.37.已知平面区域D :22916x y ≤+≤,则Dd σ=⎰________.38.二次积分111(,)y dy f x y dx +⎰⎰交换积分次序后得________.39.函数2223u x y z =-+在点(1,2,2)M -沿方向l 取得最大方向导数,则l 可取________.40.设1nn n a x ∞=∑的收敛半径为R ,则211n n n a x∞-=∑的收敛半径为________.三、计算题(本大题共10小题,每小题5分,共50分)41.21lim ln 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦.42.已知参数方程2ln(1)2x t y t t=+⎧⎨=+⎩,求0t dy=.43.已知函数y =,2()0f x ≠,求dydx.44.计算定积分3e edx x⎰.45.已知函数(,)z z x y =由方程3z z xy e =+-确定,求曲面(,)z z x y =在点(2,1,0)处的切平面方程.46.求22z x y =+在条件22x y +=下的极值.47.求过点(1,4,3)--并与两直线1L :24135x y z x y -+=⎧⎨+=-⎩和2L :24132x ty t z t=+⎧⎪=--⎨⎪=-+⎩都垂直的直线方程.48.计算二重积分223()x Dx y e dxdy +⎰⎰,其中D 为由直线y x =,y x =-,1x =围成的闭区域.49.计算曲线积分(sin 3)(cos 67)LI x y dx y x dy =+-++-⎰ ,其中L 为顶点分别为(0,0)、(2,0)、(2,1)和(0,1)的四边形区域D 的正向边界.50.把函数()ln(2)f x x =-展开成x 的幂级数,并写出收敛域.四、应用题(本大题共2小题,每小题7分,共14分)51.求由曲线1y =,直线y x =和2x =所围成的平面图形的面积S ,并求该平面图形绕x 轴旋转所形成旋转体体积V .52.若火车每小时所耗燃料费用与火车速度立方成正比,已知速度为20时,每小时的燃料费用为40元,其他费用每小时200元,求最经济的行驶速度.五、证明题(本大题共1小题,每小题6分,共6分)53.证明:当0x >时,2sin 2x x x >-.2022年河南省专升本模拟试卷(一)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。

江苏省专转本(高等数学)模拟试卷64(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷64(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷64(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知连续函数f(x)满足f(x)=x2+,则f(x)=( )。

A.f(x)=x2+xB.f(x)=x2—xC.f(x)=x2+D.f(x)=x2+正确答案:C解析:用代入法可得出正确答案为C。

2.函数f(x)=在x=0处( )。

A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:=0f(x)=f(x)=f(0)=0,则此分断函数在x=0处连续,又=0,=0,则,故分段函数x=0可导。

3.关于y=的间断点说法正确的是( )。

A.x=kπ+为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:f(x)=的间断点为x=kπ,kπ+,k∈Z f(x)=0,所以x=kπ+为可去间断点,对于x=kπ,当k=0,即x=0时,=1,x=0为可去间断点,当k≠0时,=∞,x=kπ为第二类无穷间断点。

4.设D:x2+y2≤R2,则=( )。

A.=πR3B.=πR2C.D.=2πR3正确答案:C解析:在极坐标中,0≤r≤R,0≤θ≤2π,5.抛物面++=1在点M0(1,2,3)处的切平面是( )。

A.6x+3y—2z一18=0B.6x+3y+2z一18=0C.6x+3y+2z+18=0D.6x一3y+2z一18=0正确答案:B解析:设F(x,y,z)=—1,则Fx=x,Fy=,Fz=,Fx(1,2,3)=,Fy(1,2,3)=,Fz(1,2,3)=切平面方程为6x+3y+2z一18=0。

6.幂级数的收敛半径是( )。

A.0B.1C.2D.+∞正确答案:B解析:ρ==1收敛半径R==1填空题7.x+y=tany确定y=y(x),则dy=________。

正确答案:8.函数y=,y″(0)=________。

普通高校专转本高数统一考试模拟试卷解析(三)

普通高校专转本高数统一考试模拟试卷解析(三)
普通高校“专转本”统一考试模拟试卷解析(三) 高等数学
一、选择题(本大题共 6 小题,每小题 4 分,满分 24 分. 在每小题给出的四个选项中,只
有一项符合题目要求,请把所选项前的字母填在题后的括号内)
1、设函数 f (x) 二阶可导,且 f (x) 0 , f (x) 0 ,则 x0 为 f (x) 的( )
y
2ex
(y
1)ex exy ex x2exy
xye xy
, y0
2 2 1 1。 1
15、求不定积分
x3 dx 。 x2 4
解析:该题使用第二类换元法,作三角代换
令 x 2 sec t ,
原式 8sec3 t 2 tan t sec tdt 8 sec 4 tdt
2 tan t
分顺序。一般当被积函数形如 f (x2 y2 ) ,区域形状为圆形、圆环、扇形(环)等,往往
5
使用极坐标计算。
将圆周 x 2 y 2 2ax 化为极坐标方程 r 2a cos ,
2 2a cos
y
原式= d r cos r sin rdr
0
0
2 [r4 04
cos sin ]
2a cos 0
f (x 1)dx
2
f (u)du
1
f (u)du
2
f (u)du
2
1
1
1
1 udu 2 (2u 1)du 0 (u 2 u) 2 6 2 4
1
1
1
17、设区域 D 为圆周 x 2 y 2 2ax 与 x 轴在第一象限所围部分,求 xydxdy 。
D
解析:二重积分问题是很多“专转本”同学的难点。首先要理解二重积分的几何意义,特别 是对称型简化积分计算。 首先要画出积分区域,然后根据被积函数的特点与区域的形状选择适当的坐标以及适当的积

专升本数学模拟试卷10套及答案

专升本数学模拟试卷10套及答案

11.如果当 x ® 0 时,无穷小量(1 - cos x )与 a sin 2 x 为等阶无穷小量,则a = 2
ò 12.设 f ¢(x) 的一个原函数为 sin ax ,则 xf ¢¢(x)dx =
ò 13. sin x + cos x dx =
3 sin x - cos x
14.已知
a,
b, c
三、解答题:本大题共 8 小题,共 86 分.解答应写出文字说明,证明过程或演算步骤。 得分 评卷人 17.(本小题满分 10 分)
确定常数 a 和 b 的值,使 lim [ x2 + x + 1 - (ax + b)] = 0 x®-¥ 96-4
得分 评卷人 18.(本小题满分 10 分)
ò求Leabharlann xe x dx .10.已知 y = x 是微分方程 y¢ = y + j ( x ) 的解,则j ( x ) 的表达式为
ln x
xy
y
A. - y 2 x2
B. y2 x2
C. - x 2 y2
D. x2 y2
96-3
天津市高等院校“高职升本科”招生统一考试
高等数学标准模拟试卷(一)
第Ⅱ卷 (选择题 共 110 分)
B.是 f (x)g(x) 的驻点,但不是极值点
C.是 f (x)g(x) 的极大点
D.是 f (x)g(x) 的极小点
3.已知 f ¢(e x ) = xe-x 且 f (1) = 0 则 f (x) =
A. f (x) = (ln x)2 2
B. ln x
C. f (x) = ln x2 2
D. ln x 2
x
f (t)dt +

普通高校专转本统一考试试卷高数模拟试卷九

普通高校专转本统一考试试卷高数模拟试卷九

Axex , 则 y* A(1 x)ex , y* A(2 x)ex ,代入原方程

A(2 x)ex 3A(1 x)ex 2 Axex 2ex ,化简得 A 2
所以 y* 2xex ,所以 y C ex C e2 x 2xex ,则 y C ex 2C e2 x 2(1 x)ex
2( x
arctan
x)
0
2
2
2x x2 所围成, 15. 解:根据二重积分的上下限,积分区域 D 是由 x 0, x 1, y 0,
y
y 2x x2 实际上是圆心在(1, 0) ,半径为 1 的上半圆,即(x 1)2 y2 1( y 0) ,如
1
2 x
x2
图所示,则 dx
0
n1
n1
n 1
n1
n3 1
n3 1)
6.设 f (x, y) xy f (u, v)dudv, 其中 D 由 y 0, y x2 , x 1围成,则 f (x, y) () D
A.xy
B.2xy
C.xy+ 1 8
D.xy+1
二.填空题(每小题 4 分,共 24 分)
x2 ax b

4
(1)n1
17. 解:因为 li
(n 1)2n1
1 ,所以 R 2 ,于是2 x 2 2 ,所以4 x 0 ;
m
n
(1)n
2
n2n
(1)n
n
(1)n n
2n
当 x 4 时,
(x
n2n 2)
(2) n2n
n2n
当 x 0 时, (1) n2n n
(x 2)n
n
D

5专转本高等数学模拟试题一

5专转本高等数学模拟试题一

1 江苏省专转本高等数学模拟试卷(一)一.选择题(本大题共5小题,每小题2分,共10分,每项只有一个正确答案,请把所选项前的字母填在括号内)1.)(2sinlim =¥®xx x p (A) 0 (B) 1 (C) ¥(D) p22.设)(x F 是)(x f 在()+¥¥-,上的一个原函数,且)(x F 为奇函数,则)(x f 是()(A) 奇函数(B) 偶函数(C) 非奇非偶函数(D) 不能确定3.ò=)(tan xdx (A) c x +cos ln (B) cx +-cos ln (C) cx +-sin ln (D) cx +sin ln 4.设)(x f y =为[]b a ,上的连续函数,则曲线)(x f y =,a x =,b x =及x 轴所围成的曲边梯形面积为()(A)òbadxx f )((B) òb adxx f )((C) òb adxx f )((D) ò-ba dxx f )(5.方程0132222=+-+++y x z y x 所表示的曲面为()(A)球(B) 柱面(C) 双曲线(D) 双曲面二.填空题(本大题共5小题,每小题2分,共10分,请把正确结果填在划线上)1.方程0333=-+axy y x 所确定的隐函数)(x y y =的导数为2.)3(tan 312y x y +=¢的通解为3.函数3x y =在处不可导4.积分ò-21121dx x = 5.二次积分òò124xxdy dx=三.计算题(本大题共14题,1-10题每题4分, 11-14题每题10分)分)1. 532+-=x x y ,求导数y ¢2.求极限11lim 31--®x x x3.已知x x xy y x sin )ln(22+=+,求=x dx dy4.ò+dx x x2cos 1sin 5.ò1arctan xdx x6.求方程22x y y y =-¢+¢¢的通解的通解 7.求)(2x f y =的一阶导数dx dy ,二阶导数22dxyd 8.试讨论函数ïîïíì=¹+=001)(1x x exx f x在0=x 处的连续性及可导性处的连续性及可导性9.求二重积分s d yxDòò22,其中D 是由直线2=x ,x y =及直线1=xy 所围成的闭合区域成的闭合区域 10.求函数)0(12³+=x xxy 在何处取最大值在何处取最大值11.设)(x f 在[]b a ,上连续,在()b a ,内二阶可导,且)()(==b f a f ,且存在点()b a c ,Î使得0)(>c f ,试证明至少存在一点()b a ,Îx ,使0)(<¢¢x f12.设函数ïîïíì>-££--<-=2161221121)(32x x x x x xx f求(1)写出)(x f 的反函数)(x g 的表达式;的表达式;(2))(x g 是否有间断点,不可导点,若有请指出。

专升本(高等数学一)模拟试卷86(题后含答案及解析)

专升本(高等数学一)模拟试卷86(题后含答案及解析)

专升本(高等数学一)模拟试卷86(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)=在(-∞,+∞)上连续,且=0,则常数a,b满足【】A.a<0,b≤0B.a>0,b>0C.a<0,b<0D.a≥0,b<0正确答案:D解析:因为f(x)=在(-∞,+∞)上连续,所以a≠-ebx.因x∈(-∞,+∞),则a≥0,又因为,所以x→-∞时,必有→∞.因此应有b<0.选D.2.设f(x-3)=e2x,则f?(x)= 【】A.e2xB.2e2x+6C.2e2xD.2e2x+3正确答案:B解析:f(x-3)=e2x=e2(x-3)+6,所以f(x)=e2x+6,f?(x)=2e2x+6,选B.3.下列函数在[1,e]上满足拉格朗日中值定理条件的是【】A.B.C.D.正确答案:B解析:lnx在[1,e]上有定义,所以在[1,e]上连续,且(lnx)?=在(1,e)内有意义,所以lnx在(1,e)内可导,选B.4.函数y=ax2+b在(-∞,0)内单调增加,则a,b应满足【】A.a>0,b=0B.a<0,b≠0C.a>0,b为任意实数D.a<0,b为任意实数正确答案:D解析:因为函数y=ax2+b在(-∞,0)内单调增加,所以y?=2ax>0,因x<0,所以a<0,此结论与b无关,所以应选D.5.∫ln2xdx= 【】A.2xln 2x-2x+CB.xln x+ln x+CC.xln 2x-x+CD.+C正确答案:C解析:分部积分法,∫ln2xdx=xln2x-∫xdlnx=xln2x-∫dx=xln2x-x+C,故选C.6.设函数f(x)在[a,b]上连续,且F?(x)=f(x),有一点x0∈(a,b)使f(x0)=0,且当a≤x≤x0时,f(x)>0;当x0<x≤b时,f(x)<0,则f(x)与x=a,x=b,x轴围成的平面图形的面积为【】A.2F(x0)-F(b)-F(a)B.F(b)-F(a)C.-F(b)-F(a)D.F(a)-F(b)正确答案:A解析:由F?(x)=f(x),则∫abf(x)dx=F(b)-F(a),而f(x)与x=a,x=b,x轴围成的平面图形的面积为S==F(x0)-F(a)-[F(b)-F(x0)]=2F(x0)-F(a)-F(b),故选A.7.函数z=ln(x2+y2-1)+的定义域是【】A.{(x,y)|1≤x2+y2≤9}B.{(x,y)|1<x2+y2<9}C.{(x,y)|1<x2+y2≤9}D.{(x,y)|1≤x2+y2<9}正确答案:C解析:要使表达式有意义,自变量x,y必须同时满足即1<x2+y2≤9,所以函数的定义域为D={(x,y)|1<x2+y2≤9},故选C.8.若∫-10dx∫01+xf(x,y)dy+∫01dx∫01-xf(x,y)dy=∫01dy∫m(y)n(y)f(x,y)dx,则【】A.m(y)=y-1,n(y)=0B.m(y)=y-1,n(y)=1-yC.m(y)=1-y,n(y)=y-1D.m(y)=0,n(y)=y-1正确答案:B解析:由题作图,D1表示∫01dx∫01-xf(x,y)dy的积分区域,D2表示∫-10dx∫01+xf(x,y)dy的积分区域,故D1+D2整个积分区域可表示为∫01dy∫m(y)n(y)f(x,y)dx=∫01dy∫y-11-yf(x,y)dx,因此m(y)=y-1,n(y)=1-y,应选B.9.设函数f(x)在[a,b]上连续,则曲线y=f(x)与直线x=a,x=b,y=0所围成的平面图形的面积等于【】A.∫abf(x)dxB.∫ab|f(x)dx|C.∫ab|f(x)|dxD.f?(ξ)(b-a)(a<ξ<b)正确答案:C10.幂级数在点x=2处收敛,则该级数在x=-1处必定【】A.发散B.条件收敛C.绝对收敛D.敛散性不能确定正确答案:C填空题11.函数f(x)=的连续区间为_________.正确答案:[0,1)∪(1,3]解析:分段函数f(x)在其每段内都是连续的,因此只需看分段点x=1,x=2处的连续情况.由=1=f(1),则f(x)在x=1处不连续.由=1=f(2),=1=f(2)则f(x)在x=2处连续.综上,f(x)的连续区间为[0,1)∪(1,3].12.双曲线y=在点(,2)处的切线方程为_________,法线方程为_________.正确答案:y-2=-4(x-),y-2=解析:y?==-4,所以切线方程为y-2=-4(x-),法线方程为y-2=13.极限=_________.正确答案:2解析:=2.14.已知函数f(x)=ax2+2x+c在点x=1处取得极值2,则a=_________,c=_________,f(1)为极_________值.正确答案:-1,1,大解析:y?=2ax+2,y??=2a,由于(1,2)在曲线y=ax2+2x+c上,又x=1为极值点,所以y?(1)=0,有解得a=-1,c=1,所以y??|x=1<0,则x=1为极大值点.15.=________.正确答案:1解析:本式为型极限,=1.16.过点M0(1,1,-2)且与直线l1:垂直的平面方程为________.正确答案:2x+3y+z-3=0解析:由题可知所求平面方程一般式的系数满足关系=C,可设此一般式为2x+3y+z+D=0,带入点M0坐标可求得D=-3,故该平面方程为2x+3y+z -3=0.17.设二元函数z=ln(x+y2),则=________.正确答案:dx解析:dz=dy,代入x=1,y=0得dz=dx.18.设z=u2.lnv,u=,v=,则dz=________.正确答案:y3dx+3xy2dy解析:把u,v代入z=u2lnv中,有z==xy3.故于是dz==y3dx+3xy2dy.19.通解为C1e-x+C2e-2x的二阶常系数线性齐次微分方程是________.正确答案:y??+3y?+2y=0解析:设所求微分方程的特征方程为r2+qr+p=0,由题可知该方程的两个根分别为-1和-2,代入特征方程解得p=3,q=2,故所求微分方程为y??+3y?+2y=0.20.设x2+x为f(x)的原函数,则∫01xf?(x)dx=________.正确答案:1解析:由题可知f(x)=2x+1,f(x)=2,所以∫01xf?(x)dx=∫012xdx=1.解答题21.设y=正确答案:本题考查复合函数的求导.可利用链式法则求解.22.设f(x)=e3x,求正确答案:直接求解法f?(x)=3e3xf?(lnx)=3e3lnx=3x323.已知f(π)=1,且∫0π[f(x)+f??(x)]sinxdx=3,求f(0).正确答案:由于∫0π[f(x)+f??(x)]sinxdx=∫0πf(x)sinxdx+∫0πf??(x)sinxdx,对∫0πf??(x)sinxdx采用凑微分和分部积分后与∫0πf(x)sinxdx相加,代入条件即可求出f(0).因为∫0π[f(x)+f??(x)]sinxdx=∫0πf(x)sinxdx+∫0πf??(x)sinxdx,而∫0πf??(x)sinxdx=∫0πsinxdf?(x)=sinx.f?(x)|0π-∫0πf?(x)cosxdx=-∫0πcosxdf(x)=-f(x)cosx|0π-∫0πf(x)sinxdx=f(π)+f(0)-∫0πf(x)sinxdx所以∫0π[f(x)+f??(x)]sinxdx=f(π)+f(0)=3.又f(π)=1,所以f(0)=2.24.设φ(x)=-2+∫-1x(t2-1)dt,试求φ(x)的极值.正确答案:这是一道求函数极值的题.只要用常规求极值的方法去解就可以了.不过在求函数的导数时要注意变上限积分的导数公式的应用,用(∫axd(t)dt)?=f(x).由φ?(x)=x2-1=0,得x=-1或x=1.又φ??(x)=2x,且φ??(-1)=-2<0,φ??(1)=2>0,故当x=-1时,φ(x)取极大值φ(-1)=-2+∫-11(t2-1)dt=-2;当x=1时,φ(x)取极小值φ(1)=-2+∫-11(t2-1)dt=-2-25.求由曲线y=2-x2,y=x(x≥0)与直线x=0围成的平面图形绕x轴旋转一周所生成的旋转体体积.正确答案:就一般情况而言,如果有两条曲线y=f(x),y=g(x)(假设f(x)≥g(x))与x=a,x=bx=π∫ab[f2(x)-g2(x)]dx.具体解法如下:由平面图形a≤x≤b,0≤y≤y(x)所围成的平面图形绕x轴旋转一周所生成的旋转体体积为Vx=π∫aby2(x)dx画出平面图形的草图(如图所示),则所求体积为0≤x≤1,0≤y≤2-x2所围成的平面图形绕x轴旋转一周所生成的旋转体体积减去0≤x≤1,0≤y ≤x所围成的平面图形绕x轴旋转一周所生成的旋转体体积.当x≥0时,由V=π∫01[(2-x2)2-x2]dx=π∫01(4-5x2+x4)dx=26.求椭圆=1所围成图形的面积A.正确答案:因为椭圆的面积A被坐标平分为四等分,所以只需求出在第一象限所围的面积A1,再乘以4即可,即A=4A1=4∫0aydx,具体解法如下:椭圆关于两坐标轴都对称,所以椭圆所围成的图形面积A=4A1,其中A1为该椭圆在第一象限的曲线与两坐标轴所围成图形面积,所以A=4A1=4∫0aydx将y在第一象限的表达式y=代入上式,可得A=4∫0a令x=acost,则dx=-asintdt,且当x=0时,t=;当x=a时,t=0,则所以A=4A1=4×=πab.27.将f(x)=e-2x展开为x的幂级数.正确答案:28.欲围造一个面积为15 000平方米的运动场,其正面材料造价为每平方米600元,其余三面材料造价为每平方米300元,试问正面长为多少米才能使材料费最少?正确答案:设运动场正面围墙长为x米,则宽为.设四面围墙高相同,记为h.则四面围墙所用材料费用f(x)为:令f?(x)=0得驻点x1=100,x2=-100(舍掉).f??(x)=f??(100)>0由于驻点唯一,且实际问题中存在最小值,可知x=100米,侧面长150米时,所用材料费最小.。

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽普通专升本高等数学真题试卷及参考答案

2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。

专升本(高等数学一)模拟试卷120(题后含答案及解析)

专升本(高等数学一)模拟试卷120(题后含答案及解析)

专升本(高等数学一)模拟试卷120(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,无穷小x+sinx是比x 【】A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:本题考查了无穷小量阶的比较的知识点.因=2,所以选C.2.设函数f(x)在点x0的某邻域内可导,且f(x0)为f(x)的一个极小值,则等于【】A.—2B.0C.1D.2正确答案:B解析:本题考查了函数的极值的知识点.因f(x)在x=x0处取得极值,且可导,于是f′(x0)=0,又=2f′(x0)=0.3.设函数f(x)=e—x2,则f′(x)等于【】A.—2e—x2B.2e—x2C.—2xe—x2D.2xe—x2正确答案:C解析:本题考查了一元函数的一阶导数的知识点.因f(x)=e—x2,则f′(x)=e —x2.(—2x)= —2xe—x2.4.函数y=x—arctanx在(—∞,+∞)内【】A.单调增加B.单调减少C.不单调D.不连续正确答案:A解析:本题考查了函数的单调性的知识点.因y=x—arctanx,则y′=1—≥0,于是函数在(—∞,+∞)内单调增加.5.设∫f(t)dx=ex+C,则∫xf(1—x2)dx为【】A.xe1—x2+CB.(1—x2)2+CC.e1—x2+CD.e1—x2+C正确答案:D解析:本题考查了换元积分法求不定积分的知识点.另解:将∫f(x)dx=ex+C两边对x求导得f(x)=ex,则∫xf(1—x2)dx=∫xe1—x2dx=.6.设Φ(x)=∫0x2tantdt,则Φ′(x)等于【】A.tanx2B.tanxC.sec2x2D.2xtanx2正确答案:D解析:本题考查了复合函数(变上限积分)求导的知识点.因Φ(x)=∫0x2tantdt 是复合函数,于是Φ′(x)=tanx2.2x=2xtanx2.7.下列反常积分收敛的【】A.∫1+∞B.∫0+∞C.∫1+∞D.∫1+∞正确答案:D解析:本题考查了反常积分的敛散性的知识点.由当p≤1时发散,p>1时收敛,可知应选D.注:本题容易看出A选项发散.而B选项,故此积分发散.对于C选项,由=∫1+∞lnxd(lnx)==+∞,故此积分发散.8.级数是【】A.绝对收敛B.条件收敛C.发散D.无法确定敛散性正确答案:C解析:本题考查了p级数的敛散性的知识点.级数的通项为an=,此级数为p级数.又因,所以级数发散.9.方程x2+y2=R2表示的二次曲面是【】A.椭球面B.圆柱面C.圆锥面D.旋转抛物面正确答案:D解析:本题考查了二次曲面(圆柱面)的知识点.由方程特征知,方程x2+y2=R2表示的二次曲面是圆柱面.10.曲线y=【】A.有水平渐近线,无铅直渐近线B.无水平渐近线,有铅直渐近线C.既有水平渐近线,又有铅直渐近线D.既无水平渐近线,也无铅直渐近线正确答案:C解析:本题考查了曲线的渐近线的知识点.对于曲线y=,因=1,故有水平渐近线y=1;又= —∞,故曲线有铅直渐近线y= —1.填空题11.函数F(x)=(x>0)的单调递减区间是________.正确答案:0<x<解析:本题考查了函数的单调区间的知识点.由F(x)=令F′(x)=0,得,故当0<x<时,F′(x)<0,F(x)单调递减.12.设f″(x)连续,z==________.正确答案:yf″(xy)+f′(x+y)+yf″(x+y)解析:本题考查了二元函数的混合偏导数的知识点.13.设I=x2ydxdy,D是圆域x2+y2≤a2,则I=________.正确答案:0解析:本题考查了利用极坐标求二重积分的知识点.用极坐标计算I=x2ydxdy=∫02πdθ∫0ar3cos2θsinθ.rdr=∫02πcos2θsinθdθ∫0ar4dr=—∫02πcos2θdcosθ∫0ar4dr==0.注:本题也可用对称性求出.由于D为x2+y2≤a关于x轴对称,且f(x,y)=x2y关于y为奇函数,则=0.14.设f(x)=ax3—6ax2+b在区间[—1,2]的最大值为2,最小值为—29,又知a>0,则a,b的取值为________.正确答案:解析:本题考查了函数的最大、最小值的知识点.f′(x)=3ax2—12ax,f′(x)=0,则x=0或x=4,而x=4不在[一1,2]中,故舍去.f″(x)=6ax—12a,f″(0)= —12a,因为a>0,所以f″(0)<0,所以x=0是极值点.又因f(—1)= —a —6a+b=b—7a,f(0)=b,f(2)=8a—24a+b=b—16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b—16a= —29,即16a=2+29=31,故a=.15.设曲线y=,则该曲线的铅直渐近线为________.正确答案:x= —1解析:本题考查了曲线的铅直渐近线的知识点.故铅直渐近线为x= —1.16.当p________时,级数收敛.正确答案:>1解析:本题考查了利用比较判别法求函的敛散性的知识点.因当p>1时收敛,由比较判别法知p>1时,收敛.17.求=________正确答案:解析:本题考查了不定积分的知识点.18.幂级数的收敛半径R=________.正确答案:1解析:本题考查了幂级数的收敛半径的知识点.19.方程y″—2y′+5y=exsin2x的特解可设为y*=________.正确答案:xex(Asin2x+Bcos2x)解析:本题考查了二元常系数微分方程的特解形式的知识点.由特征方程为r2—2r+5=0,得特征根为l±2i,而非齐次项为exsin2x,因此其特解应设为y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).20.=________.正确答案:解析:本题考查了反常积分的知识点.解答题21.设sin(t.s)+ln(s—t)=t,求的值.正确答案:在sin(t.s)+ln(s—t)=t两边对t求导,视s为t的函数,有cos(t.s)(s+t.s′)+.(s′—1)=1,而当t=0时,s=1,代入上式得=1.22.设f(x)=∫x0te—t2dt,求f(x)在[1,2]上的最大值.正确答案:∵f′(x)= —xe—x2,∴f(x)在[1,2]上单调递减,∴它的最大值是f(1),而23.如果,试求∫f(x)dx.正确答案:24.求sinx3sin2xdx.正确答案:25.计算,其中D为圆域x2+y2≤9.正确答案:26.计算,其中D是由y=x和y2=x围成.正确答案:注:本题若按另一种次序积分,即这个积分很难求解,因此可知,二重积分化成二次积分求解时,要注意选择适当的顺序.27.设2sin(x+2y—3z)=x+2y—3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y—3z)=x+2y—3z两边对x求导,则有2cos(x+2y—3z).,注:本题另解如下:记F(x,y,z)=2sin(x+2y—3z)—x—2y+3z,则=2cos(x+2y—3z).(—3)+3,=2cos(x+2y—3z).2—2,=2cos(x+2y—3z)—1,28.讨论曲线y=的单调性、极值、凸凹性、拐点.正确答案:y=,令y′=0得x=e.而y″=,而y″=0,得x=e2.当x→1时,y→∞,则x=1为垂直渐近线.当0<x<1时,y′<0,y″<0,故y单调下降,上凸.当1<x<e时,y′<0,y″>0,故y单调下降,下凸.当e<x<e2时,y′>0,y″>0,故y单调上升,下凸.当e2<x<+∞时,y′>0,y″<0,故f(x)单调上升,上凸.当x=e时,y有极小值2e,且(e2,e2)是拐点.。

普通高校专转本统一考试试卷高数模拟试卷A

普通高校专转本统一考试试卷高数模拟试卷A

x ∑241普通高校专转本统一考试试卷高等数学模拟试卷2注意事项1、考生务必将密封线内的各项目及第2页右下角的座位号填写清楚。

2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效。

3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟。

一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。

1.已知x →0时,f (x )=x 2(cos x -1)与g (x )=ax n 是等价无穷小,则常数a ,n 的值为()A.a =-12,n =4 B.a =2,n =4 C.a =1,b =42 D.a =-2,n =42.设函数f (x )=⎛11-⎞,则其第一类间断点为()⎜e x 1⎟(x 2-1)A.x =-1⎝⎠B.x =0 C.x =1 D.x =0和x =-123.设函数Φ(x )=⎰sin x te t dt ,则函数Φ(x )的导数Φ'(x )等于()A.x 3e x 2-1e sin x sin 2x 2C.2x 3e x 2-1e sin x s in 2x 2B.2x 3e x 2+1e cos x s in 2x 2D .x 3e x 2-1e sin x cos 2x 24.下列级数条件收敛的是()∞∞∞n n ∞n !A.∑(-1) B.∑(-1)(ln (n +1)-ln n ) C.∑tan n 2 D.(n +1n =15.曲线y =n =1x sin (x -2)x 2-4有()条渐近线。

n =1n =1)A.0 B.1 C.2 D.32'⎛π⎞6.已知函数y =f (x )的一个原函数为cos x ,则⎰f ⎜-3x +⎟dx =()⎝⎠A.-1cos 6x +C 3 B.3cos 6x +C C.1cos 6x +C 3 D.-3cos 6x +C⎰n ⋅3⎰1二、填空题(本大题共6小题,每小题4分,满分24分)17.已知lim(ax +e x )sin x =1,则常数a =x →08.函数y =2x 3+3x 2+5x -1的凹区间为π9.2-2x 2(tan x +cos x )dx =......10.设a =1,b =2,若a +b =1,则a -b =11.设函数z =xe xy ,则dzx =1=y =0∞n 12.幂级数∑n x n =1的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限lim ⎛1-1⎞⎝⎠14、设函数y =y (x )由方程2y +e xy =x 所确定,求,x =0x =015、求不定积分⎰xarc sin xdx π16、计算定积分20x -1sin xdxdy dx d 2y dx 2π⎩y +2⎧x =2t ⎪17、求过直线x -1==z 且平行于直线⎨y =3+t 的平面方程。

普通高校专转本统一考试试卷高数模拟试卷七

普通高校专转本统一考试试卷高数模拟试卷七

1
解:只有选项 A 的结果是 ,其它都是 1
2
2、设 f (x) ⎪⎧⎨
x2
sin1 x
,
x
0

x
0
处可导,则
a, b 的值为(
B)
⎩⎪ ax b, x 0
A、 a 0,b 1 B、 a 0⎧, ⎪
解:本题先利用连续,即
b0 lim
x0
C、
x2 sin
a1
x
1,b 0 D、 a 1, b 1 0
3、下列积分值为零的是( D)
A、
0dx
B 、 1 1 dx 3
1 x
C 、 1 (ex e x )dx D、 1 x sin xdx
1
1 cos x
解:A 显然不对;B 我们知道是瑕积分而且是发散的,即结果为无穷大;C 中的被积函数显
然是个偶函数,结果当然不是零;那么只剩下 D 了,它的被积函数是一个奇函数,所以为
1
于是
2
1
f (x, y) y ,这里
f
2
(x,
y)
f
即是指
x
x
x
6 、 f (x)
1 1 x
1 2 x

x
0
处展开为幂级数时的收敛区间为(
A)
A、(1,1)
B、(2, 2)
C、
(
1
,
1 )
D、(3, 3)
22
11
解:本题只是求收敛区间,不要我们写出展开式,那就简单多了,对于 f (x)

11
20、求由曲线 y 1 与直线 y x 和 x 2 及 x 轴所围平面图形的面积,及此平面图形绕 x 轴旋转一周得 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所得旋转体的体积。
24、设函数 y f (x) 满足 x f t dt f x ex ,求微分方程 y" y' f x 的通解。 0
11. 设函数 z z x, y 由方程 yz xz2 1确定,则 z
y x0
y1
1
n
12. 幂级数 n1 nan x 1 的收敛区间为 1,3,则常数a
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
ex e x 2x 13、求极限lim
x0 x sin x
⎧ x t sin x 1
n1

n⎠
D. 4
n!
D.
2n
n1
5.设区域 D 是顶点分别为 A(1,1),B(2,2)和 C(4,0)的三角形区域,则 d ( ) D
B. 2
C.3
3D.
6.函数
f
x
x
3
2
x3
的极值点有
2
()
A. 1 个 B. 2 个 C. 3 个 D. 4 个
二、填空题(本大题共 6 小题,每小题 4 分,满分 24 分)
1.设 f x sin x ln 1 t dt , g x x3 x4 ,当 x 0 时,则( 0

A. f x 与 g x 是等价无穷小
B. f x 是比 g x 高阶的无穷小
C. f x 是比 g x 低阶的无穷小
D. f x 与 g x 是同阶,但非等价无穷小
2. 5.函数 f x ⎨⎧ x2 , x 1 在 x 1 处可导,则( )
⎩ ax-b, x 1
A. a 1,b 1
B. a 2, b 1
C. a 2, b 1
D. a 2, b 1
1
3.曲线 y
1 共有(
1 ex
)条渐近线。
A. 1
B. 2
4.下列级数收敛的是( )
nn
A. 1
n1
n 1
B. ln n 1 lnn n1
C. 3
n⎛
1⎞
C. 1 ⎜ 1 cos ⎟
7. 设 lim ⎛
x ax ⎞
2
8 ,则a _____
x⎜⎝ x a ⎟⎠
1
1+ ln y 1
8. 交换二次积分次序 dy
f (x, y)dx
0
y1
9. 已知 D x y2 1 x, x 1 ,则 x2 sin ydxdy
.
.
. D.
10. 设 a (1,2,1),b (0,1,1) ,若 a b 与 a 垂直,则常数
xy
19、计算二重积分 yd ,其中 D x, y x2 y2 1, x2 y2 2x, y 0 。 D
20、把 f x
x 展开成 x2 1
x 2 的幂级数。
四、证明题(每小题 9 分,共 18 分)
21、证明:当0 x 1时,1 2x ln x x2 。
⎧ (x) ex 1
dy
14、设函数 y y(x) 由参数方程⎨ ⎩
所确定,求
y t cos t
dx
15、求不定积分
x2
1 1
dx
ln 2
16、计算定积分
ex 1dx
0
⎧ xyz2
17、求通过点(1,1,1)与直线⎨ ⎩
的平面方程。
y 2z 1
2 z
18、设
z
yf
(sin x, xy) ,其中函数
f
具有二阶连续偏导数,求
22、

f
(x)
⎪ ⎨
x
,
⎪⎩
2,
x 0 ,其中(0) 0,' (0) 1,证明:函数 f 在 x 0 处连续。
x0
五、综合题(每小题 10 分,共 20 分)
23、设由曲线 y 1 ,直线 y x 及直线 x 2 围成的平面图形为 D,试求(1)D 的面积;(2)把 D 绕 y 旋转 x
普通高校专转本统一考试试卷
高等数学 模拟试卷
注意事项
1、 考生务必将密封线内的各项目及第 2 页右下角的座位号填写清楚。 2、 考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效。 3、 本试卷共 8 页,五大题 24 小题,满分 150 分,考试时间 120 分钟。
一、选择题(本大题共 6 小题只有一项是符合要求的, 请把所选项前的字母填在题后的括号内)。
相关文档
最新文档