二次函数基本概念_图像及性质

合集下载

二次函数的图象课件

二次函数的图象课件
二次函数的图像可以呈现抛物线的形状,开口方向可能向上或向下。
二次函数的标准式和一般式
二次函数可以表示为标准式 y = a(x - h)^2 + k 或一般式 y = ax^2 + bx + c,其中 (h, k) 表示顶点 坐标。
二次函数图像的相关属性
1
开口方向和范围
2
开口向上的二次函数的最小值是负无穷大,
开口向下的二次函数的最大值是正无穷大。
范围是 y 值的取值范围。
3
最值和最值点
4
最值是函数的最高或最低点的 y 值,最值
点是函数的最高或最低点的坐标。
5
对称轴和顶点
二次函数的对称轴是通过顶点并垂直于 x 轴的直线,顶点是抛物线的最高或最低点。
零点和交点
零点是函数与 x 轴相交的点,交点是函数 与其他曲线相交的点。
总结与回顾
本次课程的主要内容 和要点
我们学习了二次函数的概念、 图像的属性、平移和伸缩的影 响,以及绘制和分析二次函数 图像的方法。
二次函数图像的应用 和拓展
二次函数图像的形态和属性在 物理、经济和工程等领域有广 泛的应用,可以用于建模和解 决实际问题。
课后习题和练习建议
通过练习,并结合实际应用进 行深入思考和拓展,加深对二 次函数图像的理解和掌握。
渐近线和渐近值
渐近线是抛物线的非实际部分趋近于的直 线,渐近值是渐近线的 y 值。
二次函数的平移和伸缩
1
伸缩变换对二次函数图像的影响
ห้องสมุดไป่ตู้
2
伸缩改变了抛物线的形状和大小,可以 使抛物线变得更宽或更窄,更高或更低。
平移变换对二次函数图像的影响
平移改变了抛物线的位置,会使得抛物 线在 x、y 轴上的相应坐标发生变化。

高考数学中的二次函数基本概念及相关性质

高考数学中的二次函数基本概念及相关性质

高考数学中的二次函数基本概念及相关性质高考数学中,二次函数是一个非常基础、重要的概念。

本文将从基本概念和相关性质两个方面,详细介绍二次函数的相关知识点。

一、基本概念二次函数,也叫做二次多项式函数,是指一个以x为自变量,x的二次多项式为函数值的函数,通常可以表示为y=ax²+bx+c。

其中,a、b、c分别是常数,a≠0。

1. 函数图像:二次函数的图像通常是一条开口朝上或开口朝下的抛物线。

如果a>0,则抛物线开口朝上;如果a<0,则抛物线开口朝下。

图像中的对称轴为x=-b/2a,抛物线的顶点坐标为(-b/2a, c-b²/4a)。

2. 零点:二次函数的零点是指函数图像与x轴的交点。

求二次函数的零点有两种方法:一种是利用求根公式,即x=[-b±√(b²-4ac)]/2a;另一种是将二次函数化为标准的完全平方公式,即y=a(x-h)²+k,其中(h, k)为抛物线的顶点坐标,直接利用完全平方公式求零点。

3. 对称性:二次函数具有轴对称性,即对于任意一点(x, y),点(-x, y)也在函数图像上。

二、相关性质除了基本概念外,二次函数还有一些重要的性质,这些性质通常在高考中频繁出现,需要认真掌握:1. 二次函数的最值:由于二次函数的函数图像是一条抛物线,因此其最值一定发生在抛物线的顶点处。

当a>0时,二次函数的最小值等于c-b²/4a,发生在点(-b/2a, c-b²/4a);当a<0时,二次函数的最大值等于c-b²/4a,发生在点(-b/2a, c-b²/4a)。

2. 二次函数的单调性:当a>0时,二次函数在其零点左右是单调递减和单调递增的;当a<0时,二次函数在其零点左右是单调递增和单调递减的。

3. 二次函数的导数:二次函数的导数f'(x)=2ax+b,是一个一次函数。

《二次函数 y=ax2的图象与性质》 知识清单

《二次函数 y=ax2的图象与性质》 知识清单

《二次函数 y=ax2的图象与性质》知识清单《二次函数 y=ax²的图象与性质》知识清单一、二次函数的基本概念在数学中,形如 y = ax²(其中 a 不为 0)的函数被称为二次函数。

其中,x 是自变量,y 是因变量,a 是二次项系数。

二、二次函数 y = ax²的图象1、图象形状二次函数 y = ax²的图象是一条抛物线。

2、开口方向当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

3、对称轴抛物线 y = ax²的对称轴是 y 轴(即直线 x = 0)。

4、顶点坐标抛物线 y = ax²的顶点坐标是(0,0)。

三、二次函数 y = ax²的性质1、单调性当 a > 0 时,在对称轴左侧(即 x < 0 时),函数单调递减;在对称轴右侧(即 x > 0 时),函数单调递增。

当 a < 0 时,在对称轴左侧(即 x < 0 时),函数单调递增;在对称轴右侧(即 x > 0 时),函数单调递减。

2、最值当 a > 0 时,函数有最小值,最小值为 y = 0(在 x = 0 处取得)。

当 a < 0 时,函数有最大值,最大值为 y = 0(在 x = 0 处取得)。

3、函数值的变化对于给定的 a 值,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽。

四、a 对图象的影响1、 a 的正负决定开口方向正的 a 使得抛物线开口向上,负的 a 使得抛物线开口向下。

2、 a 的大小决定开口宽窄|a|越大,开口越窄;|a|越小,开口越宽。

例如,当 a = 2 时,抛物线 y = 2x²的开口比 a = 1/2 时抛物线 y =1/2 x²的开口窄。

五、图象的平移对于二次函数 y = a(x h)²+ k 的图象,它是由 y = ax²的图象经过平移得到的。

如果 h > 0,图象向右平移 h 个单位;如果 h < 0,图象向左平移|h|个单位。

二次函数基本概念与图象

二次函数基本概念与图象

二次函数基本概念与图象二次函数是高中数学中重要的内容之一,它在数学建模、物理学、经济学等领域有着广泛的应用。

本文将介绍二次函数的基本概念与图象及相关性质。

一、二次函数的定义二次函数是指具有形式为f(x) = ax^2 + bx + c的函数,其中a、b、c 为实数且a不等于零。

其中,a决定了二次函数的开口方向和形状,而b则决定了二次函数的图象在x轴方向上的位置,c为二次函数在y轴上的截距。

二、二次函数图象的性质1. 开口方向:当a大于零时,二次函数开口向上;当a小于零时,二次函数开口向下。

2. 顶点坐标:二次函数的顶点坐标为(-b/2a, c - b^2/4a)。

3. 对称轴:二次函数的对称轴为x = -b/2a。

4. 零点:当二次函数存在零点时,其零点可通过求解ax^2 + bx + c = 0的解得。

三、二次函数图象的变化与平移1. a的变化:改变a的值可以使得二次函数图象的开口方向发生改变,当a的绝对值增大时,开口越窄,图象变得更陡;当a的绝对值减小时,开口越宽,图象变得更平缓。

2. b的变化:改变b的值可以使得二次函数图象在x轴方向上平移,当b为正时,图象向左平移;当b为负时,图象向右平移。

平移的距离与|b|成正比。

3. c的变化:改变c的值可以使得二次函数图象在y轴方向上平移,当c为正时,图象向上平移;当c为负时,图象向下平移。

平移的距离与|c|成正比。

四、二次函数的特殊情况1. 完全平方式:当二次函数的顶点坐标为(0, 0)时,称其为完全平方式,表示为f(x) = ax^2。

2. 平移形式:当二次函数的顶点坐标为(h, k)时,表示为f(x) = a(x-h)^2 + k。

五、二次函数的实际应用1. 物理学上,二次函数可用于描述自由落体运动、抛物线轨迹等。

2. 经济学中,二次函数可用于描述成本、收益等与产量关系的图象。

3. 数学建模中,二次函数可用于拟合实验数据、预测趋势等。

总结:二次函数作为一种重要的函数形式,具有广泛的应用和重要的数学性质。

二次函数的图像与性质-完整版课件

二次函数的图像与性质-完整版课件

二次函数与一元二次方程关系
一元二次方程 $ax^2 + bx + c = 0$($a neq 0$)的解即为二次函数 $y = ax^2 + bx + c$ 与 $x$ 轴交点的横坐标。
当 $Delta = b^2 - 4ac > 0$ 时,二次函数与 $x$ 轴有两个交点;当 $Delta = 0$ 时,有 一个交点;当 $Delta < 0$ 时,没有交点。
• 分析:根据题意设交点坐标为$(-1, y_1)$和$(3, y_2)$,代入直线方程可得两个方程。又因为这两个点也在抛 物线上,所以代入抛物线方程也可得两个方程。联立这四个方程即可求出二次函数的解析式。
• 示例2:已知二次函数$y = ax^2 + bx + c (a • eq 0)$的图像与直线$y = x + m (m • eq 0)$相交于两点,且这两点关于原点对称,求二次函数的解析式。 • 分析:根据题意设交点坐标为$(x_1, y_1)$和$(x_2, y_2)$,由于两点关于原点对称,所以有$x_1 = -x_2$和
BIG DATA EMPOWERS TO CREATE A NEW ERA
二次函数的图像与性质-完
整版课件
汇报人:XXX
2024-01-29
• 二次函数基本概念 • 二次函数图像特征 • 二次函数性质探讨 • 典型例题分析与解答 • 实际应用场景举例说明 • 总结回顾与拓展延伸
目录
CONTENTS
零点存在性及个数判断方法
零点定义
二次函数零点存在 性判断方法
对于函数f(x),若存在x0∈D, 使得f(x0)=0,则称x0为函数 f(x)的零点。
通过判别式Δ=b^2-4ac来判断 。当Δ>0时,二次函数有两个 不相等的零点;当Δ=0时,二 次函数有两个相等的零点(即 一个重根);当Δ<0时,二次 函数无零点。

第1讲 二次函数的图像及性质

第1讲 二次函数的图像及性质

第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中重要的内容之一,它在数学以及其他科学领域中有着广泛的应用。

下面是针对二次函数的相关知识点的归纳,希望能够对您理解和掌握二次函数有所帮助。

一、基本概念1. 二次函数的定义: 二次函数是形如f(x) = ax^2+bx+c的函数,其中a、b、c为常数且a不等于零。

2. 二次函数的图像: 二次函数的图像是一个抛物线,其开口方向由二次项系数a的符号确定。

- 若a>0,则抛物线开口向上;- 若a<0,则抛物线开口向下。

二、图像的性质1. 对称轴:二次函数的图像关于直线x=-b/2a对称。

2. 最值点:二次函数的最值点即为图像的顶点,其横坐标为-x/2a,纵坐标为f(-x/2a)。

- 当a>0时,函数的最小值为f(-x/2a);- 当a<0时,函数的最大值为f(-x/2a)。

3. 零点:二次函数的零点即为使函数取值为零的x值,可通过解二次方程ax^2+bx+c=0来求得。

三、函数的变换1. 平移:二次函数可以通过改变h和k的值来进行平移操作。

- f(x)的图像向左平移|k|个单位,新函数为f(x+h);- f(x)的图像向右平移|k|个单位,新函数为f(x-h);- f(x)的图像向上平移|k|个单位,新函数为f(x)+k;- f(x)的图像向下平移|k|个单位,新函数为f(x)-k。

2. 压缩和拉伸:二次函数可通过改变a的值来改变图像的形状。

- 若|a|>1,则函数图像纵向压缩;- 若0<|a|<1,则函数图像纵向拉伸。

四、函数的性质1. 定义域:对于二次函数,其定义域为实数集R,即所有实数x都在定义域内。

2. 奇偶性:二次函数一般是偶函数,除非存在线性项b,则二次函数为奇函数。

3. 单调性:当a>0时,二次函数在抛物线的开口范围内是单调递增的;当a<0时,二次函数在抛物线的开口范围内是单调递减的。

4. 零点和交点: 二次函数与x轴的交点即为零点,与y轴的交点为常数项c,与抛物线的交点为实数解。

二次函数百科

二次函数百科

二次函数百科
摘要:
1.二次函数的定义与基本概念
2.二次函数的性质与图像
3.二次函数的应用领域
正文:
二次函数是指形如y=ax^2+bx+c(其中a≠0)的函数,其中a、b、c 为常数,x 为自变量,y 为因变量。

它是一种多项式函数,也是数学中最基本、最重要的函数类型之一。

二次函数在数学、物理、化学、工程等领域具有广泛的应用。

二次函数的性质与图像:
1.开口方向:当a>0 时,二次函数的图像开口向上,表示函数有最小值;当a<0 时,二次函数的图像开口向下,表示函数有最大值。

2.对称轴:二次函数的对称轴为x=-b/2a,即直线x=-b/2a。

3.顶点:二次函数的顶点为(-b/2a, c - b^2/4a),是函数的最值点。

二次函数的应用领域:
1.物理学:在物理学中,二次函数常常用于描述物体的位移、速度、加速度等运动规律。

2.工程学:在工程领域,二次函数被广泛应用于设计建筑物的拱形结构、机械设备的优化设计等。

3.经济学:在经济学中,二次函数可以用于描述生产成本、市场需求等经济指标的变化规律。

4.数学分析:在数学分析中,二次函数是微积分、概率论等高级数学分支的基础。

综上所述,二次函数作为一种基本的数学函数,具有重要的理论意义和广泛的应用价值。

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数图ppt课件

二次函数图ppt课件

02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件

二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件

CONTENCT

• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答

小学数学二次函数的基本概念与图像课件

小学数学二次函数的基本概念与图像课件

二次函数的图像
二次函数图像的形状:抛物线 二次函数图像的顶点:最低点或最高点 二次函数图像的对称性:关于x轴对称 二次函数图像与x轴的交点:求根公式或因式分解法
二次函数的性质
二次函数的一般



y=ax^2+bx+c,
其中a、b、c为
常数且a≠0
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的极值问题
二次函数的极值条件 极值点的计算方法 极值与函数图像的关系 极值在实际问题中的应用
二次函数的实际应用价 值
在数学竞赛中的应用
二次函数在数学竞赛中常作为压轴题出现,考察学生的综合解题能力。 通过解决二次函数问题,学生可以锻炼数学思维能力,提高数学素养。 二次函数在数学竞赛中具有较高的区分度,能够选拔出优秀的学生。 掌握二次函数的基本概念和图像是解决数学竞赛中相关问题的关键。
二次函数的图像是一个抛物线,其顶点坐标为(-b/2a, c-b^2/4a)
二次函数的开口方向由系数a决定,当a>0时,抛物线开口向上;当a<0时,抛物线 开口向下
二次函数的对称轴为x=-b/2a
二次函数的表达式
二次函数的一般形式为y=ax^2+bx+c a、b、c为常数,且a≠0 a的符号决定了抛物线的开口方向,a>0时开口向上,a<0时开口向下 b和c决定了抛物线的位置
图像的对称性
二次函数图像的对称轴是直线x=-b/2a 二次函数图像的顶点坐标为(-b/2a, f(-b/2a)) 二次函数图像的对称性可以根据对称轴和顶点进行判断 二次函数图像的对称性对于理解函数的性质和解决实际问题具有重要意义

二次函数的图像与性质课件

二次函数的图像与性质课件

一阶导数等于零的点是函数的拐点,也是单调性的分界点。通过分析这
些点的左右两侧的导数符号变化,可以判断出函数的单调性。
二次函数的极值问题
极值的概念
01
02
03
极值
函数在某点的值大于或小 于其邻近点的值,称为该 函数在该点有极值。
极大值
函数在某点的左侧递减, 右侧递增,则该点为极大 值点。
极小值
函数在某点的左侧递增, 右侧递减,则该点为极小 值点。
顶点坐标
总结词
顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点坐标可以通过公式计算得出,顶点的x坐标为-b/2a,y坐标为cb^2/4a。这个顶点是抛物线的最低点或最高点,取决于抛物线的开口方向。
对称轴
总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是抛物线的对称轴,也是顶点的x 坐标。
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于x轴对称当且仅当$a > 0$,关于y轴对称当且仅当 $a < 0$。
点对称
总结词
二次函数的图像关于某点对称。
详细描述
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于点$(h, k)$对称当且仅当 $f(h+x) = f(h-x)$且$f(k+y) = f(k-y)$。
解方程问题
总结词
通过二次函数的图像与x轴的交点,可以求 解一元二次方程的根。
详细描述
一元二次方程的根即为二次函数图像与x轴 的交点横坐标。通过观察二次函数的开口方 向和与x轴的交点数,可以判断一元二次方 程实数根的个数。

考点07 二次函数的图像与性质(解析版)

考点07 二次函数的图像与性质(解析版)

考点七二次函数的图像与性质知识点整合一、二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.三、二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小2.二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y =a (x –h )2+k ,顶点坐标为(h ,k ).2.保持y =ax 2的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例引领变式拓展考向二二次函数的图象与性质二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例引领1x=时有最小值2-,即a-当2x=-时有最大值6,即4解得:89a=,109b=-,∴1118110 333939 a b⎛-=⨯-⨯-⎝②a<0时,如图,1x =时有最大值6,即26a a b -+=当2x =-时有最小值2-,即44a a +解得:89a =-,469b =,∴11181462333939a b ⎛⎫-=⨯--⨯=- ⎪⎝⎭,故答案为:23或2-.4.定义:两个不相交的函数图象在竖直方向上的最短距离,抛物线223y x x =-+与直线y x =-【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,变式拓展【答案】②③④【分析】本题考查了二次函数图象与系数的关系,①根据抛物线开口向下可得在y轴右侧,得0b>,抛物线与x=,即对称轴是直线1【答案】②④/④②【分析】本题考查二次函数的图象和性质,结合的数学思想是解题的关键.【详解】解:将点(11933b c b c ++=⎧⎨++=⎩,。

高中教材知识点:二次函数的图像与性质

高中教材知识点:二次函数的图像与性质

高中教材知识点:二次函数的图像与性质一、知识点介绍二次函数是高中阶段数学学习的重要内容之一,它是一种关于自变量的二次多项式函数。

了解二次函数的图像与性质对于理解函数的变化规律和应用具有重要意义。

本文将详细介绍高中教材中二次函数的图像与性质,包括基本定义、图像特点、性质及常见的例题解析。

二、基本定义1. 二次函数:二次函数是一个关于自变量x 的函数,一般可以表示为f(x) = ax^2 + bx + c,其中a、b、c 是实数且 a ≠0。

2. 二次函数的图像:二次函数的图像是平面直角坐标系中的一条曲线,通常是开口向上或向下的抛物线。

三、图像特点1. 抛物线的开口方向:二次函数中的系数a 决定了抛物线的开口方向。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

2. 邻域与单调性:二次函数的图像在抛物线的开口处有一个顶点,抛物线在这个顶点的邻域内是单调递增或单调递减的。

四、性质1. 零点与因式分解:二次函数的零点是方程f(x) = 0 的解,可以通过因式分解或求根公式来得到。

2. 对称性:二次函数的图像关于顶点对称。

即,若(h, k) 是抛物线的顶点,则点(2h, k) 也在抛物线上。

3. 最值:当抛物线开口向上时,最小值为顶点的纵坐标;当抛物线开口向下时,最大值为顶点的纵坐标。

五、例题解析1. 图像特点例题:题目:根据二次函数的表达式f(x) = 2x^2 - 3x + 1,确定该二次函数的开口方向和顶点。

解析:根据系数 a 的值,可以确定开口方向。

由题目中的系数可知 a = 2,因此抛物线开口向上。

顶点可以通过求解抛物线的顶点坐标得到。

根据顶点公式,顶点的横坐标为x = -b/2a,纵坐标为f(x) = f(-b/2a)。

代入系数的值,得到顶点的坐标为(-(-3)/2(2), f(-(-3)/2(2))) = (3/4, 13/8)。

2. 性质应用例题:题目:已知二次函数f(x) = ax^2 + bx + c,其图像与x 轴交于两点,且顶点的纵坐标为4。

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

《二次函数的图像》ppt课件

《二次函数的图像》ppt课件

二次函数的顶点及其性质
顶点坐标
指引如何求解二次函数的顶点坐 标。
凹凸性
讨论二次函数图像的凹凸性及其 与二次函数的系数关系。
图像特点
解释顶点与图像特点的关系,如 开口方向、对称轴和伸缩。
二次函数与判别式
判别式的定义
解释二次函数的判别式及其含义,如何通过判别式判断函数图像的性质。
判别式的示例
提供实际的例子,演示如何使用判别式确定二次函数图像的形状。
二次函数的图像
二次函数的概念。了解二次函数的基本定义和特点,包括函数的二次项、一 次项和常数项。
二次函数的标准式和一般式
1 标准式
介绍二次函数的标准形式,形如y=ax^2释二次函数的一般形式,形如y=ax^2+bx+c。
二次函数图像的基本性质
开口方向
讲解二次函数图像的开口方向, 以及如何通过系数判断。
对称轴
解释二次函数图像的对称轴, 如何确定并绘制。
顶点坐标
介绍二次函数图像的顶点坐标 的求法,以及其意义。
二次函数图像的平移、翻转和伸缩
1
平移
说明二次函数图像的平移,如何改变顶
翻转
2
点的横纵坐标。
讨论二次函数图像的翻转,如何改变函
数的开口方向。
3
伸缩
探讨二次函数图像的伸缩,如何调整二 次函数图像的形状和大小。
二次函数与实际问题的应用
介绍二次函数在实际问题中的应用,如抛物线的运动轨迹、物体的抛体运动 等。

(完整)二次函数的定义、图像及性质

(完整)二次函数的定义、图像及性质

二次函数的定义、图像及性质一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、基本形式1。

二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2.2y ax c =+的性质:(上加下减)3。

()2y a x h =-的性质:(左加右减) 4。

()2y a x h k =-+的性质:三、二次函数图象的平移1。

平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2。

平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成cm x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图。

二次函数的图像与性质课件

二次函数的图像与性质课件

面积问题
矩形面积问题
通过二次函数表示矩形面 积与边长之间的关系,解 决最大面积问题。
三角形面积问题
利用二次函数表示三角形 面积与高或底之间的关系, 求解最大或最小面积。
梯形面积问题
通过二次函数表示梯形面 积与上底、下底和高之间 的关系,解决面积优化问 题。
利润问题
总利润与销售量关系
利用二次函数表示总利润与销售量之间的关系,找到最大利润点。
韦达定理的应用
韦达定理可用于求解一元二次方程的两个根的平方和、倒数和等问题,简化计算过程。同时,在解决 与二次函数相关的问题时,韦达定理也具有重要的应用价值。例如,在求解二次函数的顶点坐标、对 称轴等问题时,可以利用韦达定理进行求解。
PART 05
二次函数在实际问题中应 用
REPORTING
WENKU DESIGN
定价策略
通过二次函数分析商品定价与销售量、成本之间的关系,制定最优 定价策略。
成本控制
利用二次函数表示成本与产量之间的关系,寻求最低成本方案。
抛物线型问题
抛物线顶点与对称轴
01
通过二次函数的图像分析,确定抛物线的顶点坐标和对称轴方
程。
抛物线开口方向与最值
02
根据二次函数的系数判断抛物线的开口方向,并找到函数的最
与x轴交点
二次函数与x轴的交点即为方程的根。当Δ=b^2-4ac>0时,方程有两个不相等的实根,图像 与x轴有两个交点;当Δ=0时,方程有两个相等的实根(重根),图像与x轴有一个交点;当 Δ<0时,方程无实根,图像与x轴无交点。
PART 03
二次函数性质探讨
REPORTING
WENKU DESIGN
伸缩变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数基本概念,图像及性质
定义:一般地,如果
c b a c bx ax y ,,(2
++=是常数,)0≠a ,那么y 叫做x 的
二次函数. 函数
2y ax bx c
=++的结构特征:
2.二次
⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵
a b c
,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.
3.二次函数的基本形式 (1)二次函数基本形式:
2
y ax =的性质: a 的绝对值越大,抛物线的开口越小。

(2)
2y ax c
=+的性质:上加下减。

a 的符

开口方向 顶点坐标 对称

性质
0a >
向上
()00,
y
轴 0x >时,y 随x 的增大而增大;0
x <时,
y
随x 的增大而减小;0x =时,
y
有最小值0.
0a <
向下
()00,
y
轴 0x >时,y 随x 的增大而减小;0
x <时,
y
随x 的增大而增大;0x =时,
y
有最大值0.
a 的
符号
开口方向 顶点坐标 对称轴
性质
a >
向上
()
0c ,
y

0x >时,y 随x 的增大而增大;0x <时,y 随x
的增大而减小;0x =时,
y
有最小值c .
y x
O
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档