振动测量基础知识

合集下载

振动的测量

振动的测量

8.1 振动的基础知识与信号的分类类似,机械振动根据振动规律可以分成两大类:稳态振动和随机振动,如图8.1所示。

振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。

只要测定这三个要素,也就决定了整个振动运动。

图8.1 振动的种类和特征简谐振动是最基本的周期运动,各种不同的周期运动都可以用无穷个不同频率的简谐运动的组合来表示。

本节讨论最为简单的单自由度系统在两种不同激励下的响应(即单自由度系统的受迫振动):质量块受力产生的受迫振动基础运动产生的受迫振动以利于正确理解和掌握机械振动测试及分析技术的有关概念。

在振动测量时,应合理选择测量参数。

如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由振动速度决定的,振动速度又与能量和功率有关,并决定了力的动量。

简谐振动简谐振动的运动规律可用简谐函数表示,即振动的运动规律为:(8.2)(8.3)比较式(8.1)至(8.3)可见,速度的最大值比位移的最大值导前900 ,加速度的最大值要比位移最大值导前1800 。

质量块受力产生的受迫振动如图8.2所示为单自由度系统在质量块受力所产生的受迫振动示意图。

在外力f(t)的作用下,质量块m的运动方程为:(8.4)式中c为粘性阻尼系数,k为弹簧刚度,位移y(t)为振动系统的输出。

这是一个典型的二阶系统,其系统频率响应函数H(ω)和幅频特性函数、相频特性函数ϕ(ω)分别为:(8.5a)图8.2 质量块受力所产生的受迫振动(8.5b)(8.5c)式中:ω基础运动的圆频率;ζ振动系统的阻尼比, ;。

(8.6) 由上式可见,在幅频特性图上,质量块受力产生的受迫振动其共振频率ωr总是小于系统的固有频率ωn,阻尼越小两者越靠近,因此,在小阻尼情况下可以采用ωr作为的ωn估计值;而在相频特性图上,不管系统的阻尼比为多少,在ωr/ωn=1时位移始终落后于激振力90°。

振动的测量

振动的测量

径向位移测量
当需要测量轴的径向振动时,要求轴的直径大于探头直径的三 倍以上。
每个测点应同时安装两个传感器探头,两个探头应分别安装在 轴承两边的同一平面上相隔90o±5o。由于轴承盖一般是水平 分割的,因此通常将两个探头分别安装在垂直中心线每一侧45o ,从原动机端看,分别定义为X探头(水平方向)和Y探头(垂 直方向),X方向在垂直中心线的右侧,Y方向在垂直中心线的 左侧。
考虑需测范围和仪器的动态范围,即可测量程的上 限和下 限,了解仪器的最低可测振动量级。 标定的检验,包括传感器,放大器和记录装置全套 测试系统的特性标定,定出标定值。 画出测量系统的工作方框 图,以及仪器连接草图, 标出所用仪器的型号和序 号,以便于测试系统的安 装和查校。 在选定了振级、频率范围,解决了绝缘及接地回 路等问题后,要确定测振传感器最合理的安装方 法,以及安装固定件的结构及估计可能出现的寄生 振动。
传感器需要与被测物良好接触。如果在水平方 向产生滑动,或者在垂直方向脱离接触,都会使测 试结果严重畸变 2.5.3. 固定件的结构、固定形式和寄生振动 (1)用钢螺栓, (2)用绝缘螺栓和云母垫圈 (3)用永久磁铁, (4)用胶合剂和胶合螺栓, (5)有蜡和橡胶泥粘附, (6)用手持探针。
安装方法
压电加速度计的安装方法 1.钢螺栓 2.绝缘螺栓和云母垫 3.磁铁吸附 4.胶合 5.蜡和橡胶泥粘附 6手持探头
2、振动的位移、速度、加速度指标 位移: x(t)=A*sin(2πft+φ) A-振幅,大小 f-频率,快慢
速度: v(t)=dx(t)/dt=fAcos(2πft+φ) 加速度:a(t)=dv(t)/dt=-f2Asin(2πft+φ)
¾ 三者间频率 f 不变,最大幅值呈 f 倍递增

常用振动标准知识相关

常用振动标准知识相关
美国国家标准学会标准:
1. ANSI S2.17-1980 (ASA 24-1980)American National Standard
Techniques of Machinery V高i教bration Measurement机器8振 动测量技术
五、设备振动检测标准
1、常用的振动测量与评价参考标准
2. ISO13373 Condition monitoring and diagnostics of machines Vibration monitoring of machines机器的状态监测和故障诊断--机器的 振动监测
----Part 1: Procedures for vibration condition monitoring of machines 机器振动状态监测程序
----Part 2: Data processing and analysis procedures for vibration condition monitoring of machines机器振动状态监测的数据处理和分析 程序
----Part 3: Data communication format and methods for exchanging information related to vibration condition monitoring of machines 与机器振动状态监测有关的信息交换的数据通讯格式和方法
----Part 4: Formats for presenting and displaying data used in vibration monitoring of machin高es教提供和显示机器振动监测所用的数5 据 的格式
五、设备振动检测标准

振动振动测试基础知识

振动振动测试基础知识

初相角 (Initial phase)
描述振动在起始瞬间的状态。
振动位移、速度、加速度之间的关系 资料仅供参考,不当之处,请联系改正。
x
v
vx
a
振动位移
a
位移、速度、加速度都是同
xAs i nt
频率的简谐波。
速度)
vdxAsin t()
dt
2
加速度
三者的幅值相应为A、A、 A 2。
相位关系:加速度领先速度
均值 (Mean value)
又称平均值或直流分量。
x 1
T
x dt
T0
有效值
xrms
1 T x2 dt T0
资料仅供参考,不当之处,请联系改正。
简谐振动的幅值参数
平均绝对值
正峰值
有效值
峰峰值
平均值
负峰值
各幅值参数是常数,彼此间有确定关系
峰值 xp=A; 峰峰值 xp-p=2A
平均绝对值 xav=0.637A
资料仅供参考,不当之处,请联系改正。
旋转机械的振动图示 (变转速)
轴心轨迹阵 波德图与极坐标图 (Bode & Polar Plot)
升(降)速时,基频幅值和相位的变化
三维频谱图 (Cascade) 坎贝尔图 (Campber)
各转速下的频谱图的另一种表示
轴心位置
判定轴颈静态工作点和油膜厚度
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
振动相位与转子转角的关系
振动信号
参考脉冲
从参考脉冲到第一个正峰值的转角 定义振动相位。
振动相位与转子的转动角度一一对应。在平衡和故障 诊断中有重要作用。

振动测量相位分析基础知识教材

振动测量相位分析基础知识教材

图45松动问题的相位测量
不对中问题的相位表现
通过振动相位测量来发现不对中问题是较为常用的监测方法之 一,无论是平行不对中还是角不对中,通过振动相位测量,都是可 以检测到的。图46 描述了两种不对中问题的含意。
图46 轴角不对中和轴平行不对中的示意图
不对中问题的相位表现
不对中问题的振动相位特点是,在联轴节两侧的振动相位差接近 180°。振动幅值和相位角的测量应该在联轴节相邻的两个轴承座的4个 象限位置进行。为了检测不对中情况的存在,要测量的两个轴承座应该 是处在联轴节的两侧。径向振动相位对轴平行不对中问题比较敏感,而 轴向振动相位对轴角不对中问题比较敏感。在进行振动相位测量比较时, 重要的一点是,要遵守振动传感器的安装方向的规定。(若振动传感器, 安装方向搞反,会导至180°的相位移动,从而导至不对中的错误指示。 另一个需要注意的是,四个测量象限的位置要从同一个参考方向观察确 定如图47所示,避免相位数据的混乱。
振动相位分析基础知识
什么是振动?怎样利用它来进行评价机器的状态?
振动就是机器或机零件从其平衡位置所做的往复运动。 振动有三个重要的可测量的参数:幅值、频率、相位。
图1 质量块位于平衡位置且没有任何力的作用
振动传感器安装在轴承座上,传感器将拾取振动信号,并将此 振动信号通过电缆线传入到振动分析仪,如上图所示,这个在机器 轴承座上测量振动的过程可模型化为一个质量块悬挂在弹簧上。在 没有力的作用之前,它一直保持静止处于平衡位置处。
不平衡的相位 表现
图44诊断静不平衡、 力偶不平衡、动不平 衡的典型测量
不平衡的相位表现
如图44所示,比较在输入端和输出端轴承座上水平和垂直相 位差角,来确认是否有不平衡问题的存在。比较好的做法是测量 和比较输入端和输出端轴承座上水平方向的相位差角的值,如果 存在一定程度的不平衡问题,1XRPM振动幅值肯定是较高的,并且 在两个轴承座上水平方向的振动相位差等于垂直方向的振动相位 差(±30°)。这说明,转子的运动状态在水平方向和垂直方向 是相同的,否则,其主要问题可能就不会是不平衡问题了。例如, 见图44的表C,注意到在电机的两个轴承上,水平方向的振动相位 差是90°-30°=60°,垂直方向的相位差是180°-120°=60°, 这强有力地说明是不平衡问题。

振动测量分析基础知识

振动测量分析基础知识

图14 振动的时域和频域波形比较
由图可以注意到, 总振动波形是如何由一 系列小的振动波形构成 的,每一个小的振动波 形各自对应1XRPM、 2XRPM、3XRPM、等等。 将这些个别振动波形代 数相加就得到总振动的 波形,可在示波器上或 振动分析仪上显示出来。
什么是振动频谱(也称为“FFT”)?
利用示波器可观察振动波,将来自振动传感器的电信号加到示波器 的两极板上,这样就会将通过极板的电子束产生转移,从而在屏幕上显 示出振动波形。如下图所示。
图21是针对振动加速度的振动等级图。振动加速度分级也是具有 频率依赖性。如例如,在18000 CPM时,2g’s的振动是处于较差的范 围内,而在180000 CPM(3000Hz)时的2g’s振动侧是处于优秀的范 围内。
图17 实际振动转换成FFT的过程
什么时候使用位移、速度或加速度?
当对机器振动进行分析时,重要的一点是尽可能多地收集到有关 该机器的资料(如轴承类型和型号、每根轴的精确转速、齿轮的齿数、 叶轮的叶片数等)。不了解这些信息资料将会影响振动分析的准确性。 振动幅值是是振动分析中经常使用的重要振动参数之一,它于机器存 在的潜在故障问题的严重程度成正比,并且它也是显示机器状态的首 选参数之一。振动幅值的测量类型可以是位移、速度或加速度。但总 的来说更比较常用的是速度。 通常认为当测量的频率范围在600CPM(10Hz)以下时,采用位移测 量单位是很有利的。振动幅值必须有相应的振动频率值做补充说明才 能正确评估振动的严重程度。而只是简单地说“1X RPM 振动是2mils 是不够的,没有足够的信息评价机器的状态是好还是不好。例如,在 3600 CPM转速下振动2mils pk-pk 要比在300 CPM转速下振动2mils pk-pk 对设备的损坏程度要大得多(见图22)。所以,在整个频率范 围内,单独使用位移值是不能对机器进行评估的。

振动监测基础知识

振动监测基础知识

一、名词和术语1. 振动的基本参量:幅值、周期(频率)和相位机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。

振动通常以其幅值、周期(频率)和相位来描述,它们是描述振动的三个基本参量。

a.幅值:表示物体动态运动或振动的幅度,它是机械振动强度的标志,也是机器振动严重程度的一个重要指标。

机器运转状态的好坏绝大多数情况是根据振动幅值的大小来判别的。

针对机械设备的振动信号,选择有效的特征参数指标,是实现状态监测的关键,常用的特征参数包括:有量纲参数: 均方根(RMS),峰值(Peak),峰峰值(Peak-Peak)。

均方根(RMS):表征信号的能量,其定义为:均方根是对机组进行状态监测最重要的指标,由于均方根振动信号的能量,当机组正常运转时,振动信号的能量处于比较稳定的状态,当机组某个零部件出现异常后,信号的能量增加,当增知到超过设定阅值时,就可以判断出机组出现异常、对于速度信号的评估,通常用均方根表示。

均方根的稳定性和趋势性较好,许多标准都采用均方根来作为状态监测的参数.ISO 10816是针对通用机械的状态监测标准,采用速度信号的RMS作为特征参数。

VDI 3834作为唯一一个针对风电机组的振动标准,采用速度和加速度的RMS作为监测指标.峰值是指某段采集的信号中的最高值和最低值,其中,最高值表示为Peak(+),最低值表示为Peak(-),由于加速度信号主要表征受力的大小,因此通常用峰值来表征加速度的大小.峰峰值(Peak-Peak)是指某段采集的信号中,最高值和最低值之间的差值,它是峰值(+)和峰值(-)之间的范围,由于峰峰值描述的是信号值的变化范围大小,因此对于位移信号,通常用峰峰值表示。

峰-峰值等于正峰和负峰之间的最大偏差值,峰值等于峰-峰值的 1/2。

只有在纯正弦波的情况下,均方根值才等于峰值的0.707 倍,平均值等于峰值的0.637倍。

而平均值在振动测量中一般则很少使用。

振动检测基本知识

振动检测基本知识

分析频率/采样点数/谱线数的设置要点1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。

根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M 即:M=Fm/ΔF 所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。

例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024=210谱线数M=N/2.56=1024/2.56=400条关于现场故障诊断要注意搜集的信息最近论坛上很多朋友发送了一些案例、求助等,对于一个现场诊断人员来说,似乎有很多信息没有注意到,或者在求助的时候没有说明,给诊断工作带来很多困难。

下面我就现场诊断人员应该注意和掌握的信息作一个简单的个人总结,不是针对某一个设备,而是针对尽可能多的设备来分析,建议大家在下现场的时候或进行求助的时侯,尽可能多地描述自己得到的信息。

1.设备基本信息①设备的型号、名牌参数:如电机级数、电压、电流;气压机的转速、临界转速等。

②设备的基本机构、性能、用途:如基础是混凝土还是钢制框架;转子是否悬臂、单级还是多级;叶轮叶片数目;是否变频调速;工作介质、密封形式等。

③工艺参数:如工艺介质、流量、压力、温度;润滑油类型、油压、温度等。

2.设备轴承形式①滚动轴承形式:深沟球轴承、角接触轴承、圆柱棍子轴承、圆锥棍子轴承、纯轴向推力轴承;滚动体是单列还是双列。

讲义0-振动分析诊断

讲义0-振动分析诊断
•线性范围和灵敏度随各种不同型号 可在很大范围内变化。
测量非转动部件的绝对振 动的加速度。 适应高频振动和瞬态振动 的测量。 传感器质量小,可测很高 振级。 现场测量要注意电磁场、 声场和接地回路的干扰。
讲义0-振动分析诊断
压电加速度传感器的典型结构
•晶体片
•三角柱
•预压簧片
•预紧环
•质量块
•晶体片
圆频率 = 2 f 为每秒钟转过的角度,单位为弧度/秒
n 初相角 (Initial phase)
描述振动在起始瞬间的状态。
讲义0-振动分析诊断
振动位移、速度、加速度之间的关系
•x
•v
•v •x

•a
n 振动位移 (Displacement)
n 速度 (Velocity)
n 加速度 (Acceleration)
•a
位移、速度、加速度都是 同频率的简谐波。
三者的幅值相应为A、A、 A 2。
相位关系:加速度领先速 度90º; 速度领先位移90º。
讲义0-振动分析诊断
•名称
振动的时域波形
波形
名称


讲义0-振动分析诊断
若干幅值参数的定义
n 瞬时值 (Instant value)
•x = x(t)
振动的任一瞬时的数值。
•参考脉冲
•K’ •K
•t •1转
n 在转子上刻印键相标记K ,在轴承座上布置键相传感器K (光电式或涡流式),其输出为相位参考脉冲。
n 参考脉冲是测量相位的基准。 n 参考脉冲也可用于测量转子的转速。
讲义0-振动分析诊断
振动相位与转子转角的关系
•振动信号
•参考脉冲
n 从参考脉冲到第一个正峰值的转角 定义振动相位。

振动试验基本知识

振动试验基本知识

专业知识1、振动试验基本知识1.1 振动试验方法试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。

为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。

正弦振动试验正弦振动试验控制的参数主要是两个,即频率和幅值。

依照频率变和不变分为定频和扫频两种。

定频试验主要用于:a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。

b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。

扫频试验主要用于:●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。

●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。

●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点有无改变,以确定产品通过耐振处理后的可靠程度。

随机振动试验随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。

前两种是随机试验,后两种是混合型也可以归入随机试验。

电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。

1.2 机械环境试验方法标准电工电子产品环境试验国家标准汇编(第二版)2001年4月汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。

其中常用的机械环境试验方法标准:(1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击(2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法试验Eb和导则:碰撞(3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法试验Ec和导则:倾跌与翻倒(主要用于设备型产品)(4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法试验Ed和导则:自由跌落(5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动(正弦)(6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法试验Fd:宽频带随机振动——一般要求(7)GB/T 2423.12-1997 电工电子产品环境试验第2部分:试验方法试验Fda:宽频带随机振动——高再现性(8)GB/T 2423.13-1997 电工电子产品环境试验第2部分:试验方法试验Fdb:宽频带随机振动——中再现性(9)GB/T 2423.14-1997 电工电子产品环境试验第2部分:试验方法试验Fdc:宽频带随机振动——低再现性(10)GB/T 2423.15-1997 电工电子产品环境试验第2部分:试验方法试验Ga和导则:稳态加速度(11)GB/T 2423.22-1986 电工电子产品基本环境试验规程温度(低温、高温)和振动(正弦)综合试验导则(12)GB/T 2423.24-1995 电工电子产品环境试验温度(低温、高温)/低气压/振动(正弦)综合试验导则GJB150.1~150.20-86 军用设备环境试验方法标准中共包括1个总则和19个试验方法,以美国军用标准MIL-STD-810C或810D为依据制订,其中涉及机械环境试验的是:(1)GJB150.15-86 军用设备环境试验方法加速度试验(2)GJB150.16-86 军用设备环境试验方法振动试验(3)GJB150.17-86 军用设备环境试验方法噪声试验(4)GJB150.18-86 军用设备环境试验方法冲击试验(5)GJB150.20-86 军用设备环境试验方法飞机炮振试验依据MIL-STD-810F修订的GJB150即将颁布。

3-振动测试分析技术

3-振动测试分析技术
3 测试位置(监测点)
相对轴位移
§ 3.3振动测试方案
3 测试位置(监测点)
相对轴膨胀
§ 3.3 振动测试方案
4 测试周期:
定期、随机、巡检、在线监测,企业的要求, 国家的规定,分析的需要等。
§ 3.3 振动测试方案
5 振动评定标准:
• 绝对法
根据相应的国际标准、国家标准、行业标准等, 如: ISO, GB, API 等。
直接测量参数的选择
振动位移、振动速度和振动加速度三者的幅值之间的关系 与频率有关,所以,在低频振动场合,加速度的幅值不大 ;在高频振动场合,加速度幅值较大。考虑到三类传感器 及其后续仪器的特性,并根据振动频率范围而推荐选用振 动量测量的范围。
§ 3.2 振动测试的仪器设备
传感器的合理选择
灵敏度
传感器的灵敏度越高,可以感知越小的变化量,即被测量 稍有微小变化时,传感器即有较大的输出。但灵敏度越高 ,与测量信号无关的外界噪声也容易混入,并且噪声也会 被放大。因此,灵敏度高的传感器往往要求有较大的信噪 比。过高的灵敏度会影响其适用的测量范围。
轴承上
75
50
轴上(靠近 轴承)
150
100
3000 25 50
3600 ≥6000
21
12
44
20
§ 3.2 振动测试方案
5 振动评定标准:
绝对法
在制定上述振动标准时,假设: 机组振动为单一频率的正弦波振动; 轴承振动和转子振动基本上有一固定的比
值,因此可利用轴承振动代表转子振动; 轴承座在垂直、水平方向上的刚度基本上
§ 3.2 振动测试的仪器设备
传感器的合理选择 线性范围
传感器都有一定的线性范围,在线性范围内输出与输入成 比例关系。线性范围愈宽,表明传感器的工作量程愈大。

振动基础知识

振动基础知识

振动基础知识基本概念和基础知识⼀、常见的⼯程物理量⼒、压⼒、应⼒、应变、位移、速度、加速度、转速等(⼀)⼒:⼒是物体间的相互作⽤,是⼀个⼴义的概念。

物体承受的⼒可以有加载⼒,也可以有动态⼒,我们常测试的⼒主要是动态⼒,即给结构施加⼒,激发结构的某些特性,便于测试了解其结构特性,如模态试验⽤的⼒锤。

(⼆)应⼒应变:材料或构件在单位截⾯上所承受的垂直作⽤⼒称为应⼒。

在外⼒作⽤下,单位长度材料的伸长量或缩短量,称为应变量。

在⼀定的应⼒范围(弹性形变)内,材料的应⼒与应变量成正⽐,它们的⽐例常数称为弹性模量或弹性系数。

(三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。

位移的单位可以⽤µm 表⽰。

进⼀步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。

通常我们测试的都是动态位移量。

有⾓位移、线位移等。

(四)振动速度:质量块在振荡过程中运动快慢的度量。

质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动⽅向之前,必须停下来。

质量块的振动速度在平衡位置处达到最⼤值,在此点处质量块已经加速到最⼤值,在此点以后质量块开始减速运动。

振动速度的单位是⽤mm/s来表⽰。

(五)振动加速度:被定义为振动速度的变化率,其单位是⽤有多少个m/s2 或g 来表⽰。

由下图可见加速度最⼤值处是速度值最⼩值的地⽅,在这些点处质量块由减速到停⽌然后再开始加速。

(六)转速:旋转机械的转动速度(七)简谐振动及振动三要素振动是⼀种运动形式――往复运动d=Dsin(2πt/T+Φ)D――振动的最⼤值,称为振幅T――振动周期,完成⼀次全振动所需要的时间f――单位时间内振动的次数,即周期的倒数为振动频率,f = 1/T (Hz) (1)频率 f ⼜可⽤⾓频率来表⽰,即ω= 2π/T (rad/s)ω和f的关系为ω= 2πf (rad/s) (2)f =ω/2π(Hz) (3)将式(1)、(2)、(3)代⼊式可得d =D sin(ωt+Φ)=Dsin(2πft+Φ)可以⽤正⽞或余⽞函数描述的振动过程称之为简谐振动振动三要素:振幅D、频率f和相位Φ(⼋)、表⽰振动的参数:位移、速度、加速度振动位移: d = DsinωtDπ)振动速度: v = Dωcosωt =Vsin(ωt +2V= Dω振动加速度:a = -Dω2sinωt =Asin(ωt +π)A=-Dω2(九)振动三要素在⼯程振动中的意义1、振幅○振幅~物体动态运动或振动的幅度。

振动测量基础知识

振动测量基础知识
机器振动分析基础知识
基本概念和理论
• • • • • • 振动及其根源 质量、弹性和阻尼 正弦波 幅值、频率和相位 随机振动和冲击 时域和频域 • • • • 位移、速度和加速度 固有频率和共振 机械阻抗 临界转速
什么是振动
• 振动-系统对激励的响应 F • 系统- 机器 结构 SYSTEM 管道 流体,气体 以上的结合 • 激励-引起系统运动的力作用或扰动 • 响应-所有力作用于系统上产生的运动 有的振动是有用的 任何机器都产生振动 V
不平衡的相位表现
比较转子两端轴承座上水平和垂直相位差,确认不平衡 1XRPM振动幅值肯定是较高的,并且在两个轴承座上水平方向的振 动相位差等于垂直方向的振动相位差(±30°)。这说明,转子 的运动状态在水平方向和垂直方向是相同的,否则,其主要问题 可能就不会是不平衡问题了。
松动问题的相位表现
有些机械松动问题,通过振动相位测量是可以发现的,已经可 靠紧固的机械部件应该是与其它部件间同步运动,在各个零部件之 间不应该存在显著的幅值和相位的变化,如果在相互配合的零部件 之间存在振动幅值和相位的变化,那么机械松动问题的存在是值得 怀疑的。
• 推荐应用在振源频率超 过5000Hz以上,如齿轮 啮合频率、电机笼条通 过频率、叶片通过频率 等,这些振源在很多情 况下会产生多阶谐频
水平安装转动机械振动 加速度/速度等级图表
振动速度幅值直接与机 器的状态有关
振动速度在10-2000Hz频 率范围内不存在对频率 的依赖关系。振源频率 范围5-5000Hz时,一般 选择测量振动速度 一台转速为1800 RPM的 机器,7.6mm/s的振动与 另一台转速为10000 RPM,振动也为 7.6mm/s的机器,具有同 样的振动损坏程度。

振动测量分析基础知识

振动测量分析基础知识

振动测量分析基础知识振动测量分析是指对物体振动特性进行测量和分析的过程,常用于工程领域的振动分析、故障诊断和结构健康监测。

在进行振动测量分析时,需要掌握一些基础知识,包括振动的基本概念、振动测量的方法、振动信号的分析与处理等。

一、振动的基本概念1.振动:物体围绕其中一位置或平衡位置作往复或周期性运动的现象。

2.振动的主要参数:振幅、周期、频率、相位和相位差。

3.振动的分类:自由振动和受迫振动,以及简谐振动和非简谐振动。

二、振动测量的方法1.直接法:通过直接接触目标物体或其附近的测点,使用传感器实时测量振动信号。

常用的传感器有加速度计、位移传感器和速度计等。

2.非接触法:通过无线传感技术、光学传感技术或红外线传感技术等,对远离目标物体的振动信号进行测量。

常用的传感器有激光测振仪、红外线摄像机和毫米波雷达等。

3.振动传感网络:通过多个传感器分布在目标物体上,实现多点同时测量和数据采集,进行全局振动监测和分析。

三、振动信号的分析与处理1.时域分析:通过对振动信号的波形进行观察和分析,得到信号的振幅、周期、频率以及时间变化规律。

2.频域分析:将时域信号转换为频域信号,通过傅里叶变换等方法,得到信号的频率成分和能量分布,可进行频谱分析和频率响应分析。

3.相位分析:通过测量不同测点的相位差,可以获得信号的相位关系和振动传播速度。

4.整频带法:对振动信号进行整个频率范围的分析,用于诊断和评估整个系统的振动特性。

5.专频法:对振动信号在特定频率范围内的分析,用于更精确地检测特定故障或异常情况。

振动测量分析在工程领域有着广泛的应用,例如在机械设备的故障诊断中,可以通过振动信号的分析来判断设备的健康状况和故障原因;在建筑物结构健康监测中,可以通过振动传感器对结构的振动参数进行实时监测,预防和诊断结构损伤等。

随着传感器技术和信号处理算法的不断发展,振动测量分析的精度和应用范围也在不断扩大,对振动的研究和应用产生了积极的推动作用。

振动测量方法和标准

振动测量方法和标准

振动测量方法和标准振动测量是一种用于评估机械设备运行状况和故障诊断的重要工具。

通过测量机械设备产生的振动信号,可以获得有关设备结构的信息以及潜在故障的迹象。

正确选择适当的振动测量方法和遵循相应的标准,对于准确评估设备状况和制定维护计划至关重要。

本文将探讨振动测量方法和标准的相关内容。

1、振动测量方法1.1 加速度传感器加速度传感器是一种广泛用于振动测量的传感器。

它可以测量垂直方向和水平方向的加速度。

该传感器将振动转化为电信号,进而分析并显示振动特性。

加速度传感器具有高频响应和较低的成本,适用于连续振动监测和机械故障诊断。

1.2 速度传感器速度传感器可以测量振动的速度。

它适用于低频振动测量和对振动的整体评估。

速度传感器可以直接测量振动,并提供振动速度的输出信号。

与加速度传感器相比,速度传感器具有较低的灵敏度和频率响应,但在某些应用中仍然具有一定的实用价值。

1.3 位移传感器位移传感器可以测量振动的位移。

它适用于低频振动测量和对机械设备结构变化的评估。

位移传感器可以直接测量振动的位移,并提供相应的输出信号。

位移传感器通常具有较低的频率响应和较高的灵敏度,适用于对振动幅值的精确测量。

2、振动测量标准2.1 ISO 10816系列标准ISO 10816系列标准是振动测量中最常用的国际标准之一。

该系列标准规定了振动测量的一般要求,以及根据不同类型的机械设备和应用的振动限值。

这些标准提供了一种测量和评估机械设备振动水平的一般方法,并提供了用于判断机械设备运行状况的准则。

2.2 ASME标准ASME标准适用于美国机械工程师学会制定的振动测量标准。

这些标准更加具体和详细,适用于各类机械设备和应用。

ASME标准提供了更为细致的振动测量方法和评估准则,有助于更准确地判断设备的运行状况,并制定相应的维护计划。

2.3 DIN标准DIN标准是德国国家标准组织制定的振动测量标准。

这些标准被广泛用于欧洲地区。

DIN 标准与ISO标准相似,提供了一种测量和评估机械设备振动的方法和准则。

振动监测基本常识

振动监测基本常识

案例二:桥梁结构的振动监测
总结词
桥梁结构的振动监测对于保障桥梁安全具有重要意义,可以及时发现桥梁损伤和潜在的 安全隐患。
详细描述
桥梁在受到车辆、风、地震等外部激励时会产生振动。通过安装振动传感器和采集振动 数据,可以对桥梁的结构状态进行实时监测。通过对振动数据的分析,可以判断桥梁的 稳定性、损伤情况和承载能力,及时发现潜在的安全隐患并进行维修,确保桥梁的安全
如桥梁、建筑、大 坝等结构的振动监 测。
02
CATALOGUE
振动监测基础知识
振动信号的描述
振动信号的时域描述
包括振幅、相位、频率等参数,用于分析振动的动态特性。
振动信号的频域描述
通过傅里叶变换将时域信号转换为频域信号,用于分析振动的频率 成分。
振动信号的能量分布
描述振动能量在各频率段上的分布情况,有助于判断振动的来源和 影响。
振动监测基本常识
contents
目录
• 振动监测概述 • 振动监测基础知识 • 振动监测技术与方法 • 振动监测标准与规范 • 振动监测案例分析
01
CATALOGUE
振动监测概述
定义与目的
定义
振动监测是对设备或结构的振动特性 进行测量、分析和评估的过程,以了 解其运行状态和性能。
目的
振动监测的主要目的是及时发现设备 故障、评估设备性能、预测潜在风险 ,并采取相应的维护措施,确保设备 安全、稳定、高效地运行。
02
03
安装方式确定
布置要点
根据设备类型和监测要求,选择 合适的安装方式,如固定式、便 携式等。
合理布置测点,确保能全面监测 设备的振动情况,同时考虑便于 后续维护和数据采集。
振动监测的数据采集与处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器振动分析基础知识
基本概念和理论
• • • • • • 振动及其根源 质量、弹性和阻尼 正弦波 幅值、频率和相位 随机振动和冲击 时域和频域 • • • • 位移、速度和加速度 固有频率和共振 机械阻抗 临界转速
什么是振动
• 振动-系统对激励的响应 F • 系统- 机器 结构 SYSTEM 管道 流体,气体 以上的结合 • 激励-引起系统运动的力作用或扰动 • 响应-所有力作用于系统上产生的运动 有的振动是有用的 任何机器都产生振动 V
不平衡的相位表现
比较转子两端轴承座上水平和垂直相位差,确认不平衡 1XRPM振动幅值肯定是较高的,并且在两个轴承座上水平方向的振 动相位差等于垂直方向的振动相位差(±30°)。这说明,转子 的运动状态在水平方向和垂直方向是相同的,否则,其主要问题 可能就不会是不平衡问题了。
松动问题的相位表现
有些机械松动问题,通过振动相位测量是可以发现的,已经可 靠紧固的机械部件应该是与其它部件间同步运动,在各个零部件之 间不应该存在显著的幅值和相位的变化,如果在相互配合的零部件 之间存在振动幅值和相位的变化,那么机械松动问题的存在是值得 怀疑的。
振动相位及其应用
相位反映机器某一部分的振动与另一部位振动的相互关系。相位分析 是一个强有力的工具,可用于协助查找故障源。 许多设备问题都会引起1X较大振动(如,不平衡、不对中、偏心、轴 弯曲、软地脚、齿轮断齿、共振、紧固螺栓松动等),也有些问题可 以在2X或3X RPM处产生较大的振动。面对这些问题及可能产生的频率 成分,很难确定振动的原因。
两种振动
• 整体振动
– 质量刚体
• 压力波
– 源于接触点的力在材料中纵波传递 – 以声音在介质中的速度(铁,5000m/s)
加速度传感器可测量两者,速度传感器只测量前者
力和响应
• 振动的根源是力,力激起和维持振动
– 转子质量不平衡-离心力-轴应力-轴承和机座 – 不平衡,不对中,转子弯曲,齿轮偏心。当转速和 负荷稳定时,这些力导致稳态或稳定幅值振动
• 推荐应用在振源频率超 过5000Hz以上,如齿轮 啮合频率、电机笼条通 过频率、叶片通过频率 等,这些振源在很多情 况下会产生多阶谐频
水平安装转动机械振动 加速度/速度等级图表
振动速度幅值直接与机 器的状态有关
振动速度在10-2000Hz频 率范围内不存在对频率 的依赖关系。振源频率 范围5-5000Hz时,一般 选择测量振动速度 一台转速为1800 RPM的 机器,7.6mm/s的振动与 另一台转速为10000 RPM,振动也为 7.6mm/s的机器,具有同 样的振动损坏程度。
在一台300RPM的风机上测量振动位移、速度、加速度的比较
(a)位移频谱图 (b)速度谱 (c)加速度谱
能否在频谱图中看到极其重 要的轴承故障频率,取决于 对测量幅值类型的选择
固有频率和共振
• 固有频率取决于弹性(刚度)和质量 • 简谐系统固有频率
• 机械系统的振动响应取决于激励的频率
– 在固有频率以下,输入的力主要克服系统弹性,系统刚性占 主导 – 在固有频率以上,系统质量惯性占主导,输入的力主要克服 系统惯性 – 系统刚性力与惯性力总是180相位差 – 刚性力不随频率改变,惯性力与频率的平方成正比 – 当刚性力与惯性力相等抵消,系统没有约束 – 共振:系统激励频率等于固有频率
共振
• 幅值响应放大,对金属部件 很容易放大10-100倍 • 理论上幅值可放大的无限大, 唯一制约是系统阻尼 • “扩音板”现象,可能是声 学问题而不是振动问题。但 板也可能共振属振动问题
阻尼
• 所有材料具有内部阻尼 • 金属的阻尼非常小 • 塑料、橡胶、纸、土壤阻尼较高 ----用于控制振动
在每个轴承座上测量振动相位,能使问题的确定容易些。
振动相位测量
使用频闪灯测量振动相位 通过参考标记来读取相位 角,误差较大
在转子上设参考标记, 在静子上设置角度盘
在静子上设参考标记, 在转子上设置角度盘
振动相位测量
光电传感器测量相位,静止的光电头对准安装在转动部件的反光带。
振动诊断中利用相位分析
1800RPM 泵的典型振动频率机器频谱位置
振动传感器
速度传感器
加速度传感器
加速度、速度、位移 传感器的动态范围 和频率响应
加速度传感器安装与频率响应
滤波
高通滤波
低通滤波
带通滤波
带阻滤波
频谱分析仪
频谱参数• 幅值参数: Nhomakorabea– 加速度、速度、位移、解调 定义: 需要什么 结果
• 频率范围 Fmin - Fmax • 谱线数
• 振动能量在结构中取最小阻抗路径
机械阻抗
• 机械阻抗是机械系统阻止振荡力传递的特性 • 理想机械部件:
– 阻尼器:阻抗对不同频率阻抗恒定 – 质量:阻抗随频率增加 – 弹簧:阻抗随频率减小。弹簧通过高频振动,对高 频隔振效果差
临界转速
• 转子旋转进入共振状态的转速 • 临界转速与转子固有频率不完全相等
在垫板(BASE PLATE)和支 承混凝土基础(CONCRETE BASE)之间存在着显著的振动幅 值和相位的变化,这说明,很可 能是由于在两部件间的水泥灌浆 不充分所引起的。
不对中问题的相位表现
联轴节两侧轴承的振动相位差接近180°。振动幅值和相位角的测量 应该在联轴节相邻的两个轴承座的4个象限位置进行。
带有键相计,采样开始在键相脉冲表明轴处于 参考位置时。
采样、抗混淆
采样定理 抗混淆滤波
FFT: 采样频率=2.56Fmax
1024->400 2048->800 4096->1600
未加抗混淆滤波
有抗混淆滤波
窗函数
• 窗函数用来整理信号block 的形状使其边缘光滑以防止 频谱泄漏。
• 通常使用汉宁窗,其他窗: 汉明窗,平顶窗,矩形窗... • 影响分辨率:窗口系数
问题:在频谱的频率范围以外可能存在相当大的振动成分
解调分析
高通滤波 取包络 FFT
2k-20kHz 带通滤波的选择
轴承监测
• 解调频谱作为一个早期指示参数 • 检查正常频谱和解调频谱:
– 都没有故障频率,状态良好,作为基线继续监测 – 只在解调频谱存在故障频率,早期故障指示,或需 要润滑 – 在两种频谱中都存在谱峰值,计划下一次维修更换 – 只在正常频谱中存在峰值,同时在解调频谱中噪声 水平升高,立即更换
• 即使机器稳态运行,也不是完全重复性周期 • 其它力的响应
– 共振,外界干扰,管道扰动等随机因素
旋转机器可视为机械振荡器 所有机器的振动表现为稳态随机振动
随机振动和冲击脉冲
• 随机振动不能重复自身,不能确定频率
– 流体漩涡,紊流,摩擦,风,轮胎噪声,泵气穴
• 真正的随机振动在频域表现为水平线,如果观察时间 足够,如2分钟,所有频率将出现。 • 冲击脉冲是单事件瞬态过程
人的感官
• 人耳可感知空气振动 20Hz-20kHz, 40Hz带宽。是大部分机器振动 的频率范围 • 机器振动频率范围可到10kHz,大部分5kHz以下 • 人手可感知100Hz以下的振动,更高频率需听声音 • 100Hz电气嗡嗡声 • 轴承特征频率(3/4个)50-500Hz • 金属接触冲击产生1000-10000Hz,金属撞击声 • 大部分结构共振发生在100-5000Hz • 流体气穴 3000-5000Hz
Our 4 samples 4个用于平均 for 的样本 averaging.
触发类型,叠加
窗将末尾的值置零,允许这个区域 的叠加会减少采样时间。
没有键相计,从一个任意点开始记录进行平均 数量足够的数据。
触发类型,无键相叠加
50%的叠加是最常用的。
66.7%也是合适的值。
时间同步平均
tacho pulse
v
d

a
v
a
位移、速度和加速度
• 位移测量强调低频 • 位移必须振动频率 做补充才能正确评 估振动的严重程度 例,60Hz下振动 2mils P-P要比5Hz 下振动2mils P-P 对 设备的损坏程度要 大得多 • 推荐应用10Hz以下
水平安装转动机械振 动位移/速度等级图表
• 加速度强调的是高频 • 评价机器振动状态时也 具有频率依赖性。例如, 在300Hz时2g要比在 3000Hz时的2g振动程度 要严重得多
• 大多数的不对中问题是平行不对中和角不对中同时存在的,单纯的角 不对中或平行不对中是很少见的。 • 测量的相差越是接近180°,不对中的可能性就越大,不管这个相位 差是轴向测量的还是径向测量的。
轴承座是做前后振动,还是做扭转振动:测量轴向1、2、3、4点上的 振动相位
如果,1、3两测点相位相差180度,说明 轴承存在上、下翅起, 相位显示轴承座是在做平面运 动 如果在测点2、和测点4之间的相位相差 180度,说明轴承座左右扭曲振动,可能 是由于轴弯曲或轴承翅起引起。
不平衡的相位表现
径向振动相位测量,分析不平衡问题 在相邻且位置相差90度的测点上,测得的振动相位相差约90度。 如果此相位角较大地偏离90度,意味着存在着一个除不平衡以外的 其它问题。
– 位移 um – 速度 mm/s – 加速度 g
• P, P-P, RMS, AVG
相位
• • • • 相位:0-360°。测量时间间隔 参考点:反光标记 光电相位传感器 高点。动平衡时,需确定高点
相位差: 机器某一位置相对于另一位 置处的振动运动关系
时域和频域
频谱分析是机器监测最强的工具
钢琴C中音: 周期 3.9ms
频率256Hz
谐频:512Hz 768Hz
典型振动信号的频谱
简谐波形及其频谱 脉冲波形及其频谱
方波形及其频谱
简谐拍波及其频谱
相关文档
最新文档