2010年12月九年级数学综合练习题(人教版)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
【5套打包】西安市初三九年级数学上(人教版)第24章圆单元综合练习题(解析版)
人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(2)一、选择题1.已知⊙O的直径CD=10 cm, AB是⊙ O的弦, AB⊥ CD,垂足为 M,且 AB=8 cm,则的长为 ()ACA. 25cm B. 45cmC. 25cm 或 4 5cm D.23cm或 43cm2.在△ABC中,若O为BC边的中点,则必有2222AB+ AC=2AO+2BO建立.依照以上结论,解决以下问题:如图1,在矩形DEFG中,已知DE= 4,EF= 3,点P在以DE为直径的半圆上运动,则22) PF+ PG的最小值为(A. 1019C. 34D.10 B.2图1图23.如图 2,在△ABC中,AB= 5,AC= 3,BC= 4,将△ABC绕点A逆时针旋转40°获得︵()△ADE,点 B 经过的路径为 BD,则图中暗影部分的面积为142533A.9πC.8π - 3 D.33+π3π -6B.4.如图 3,在平面直角坐标系xOy中,已知 A(4,0), B(0,3), C(4,3),I 是△ ABC的心里,将△ ABC绕原点逆时针旋转90°后,点I的对应点I′的坐标为 ()图 3A.( -2,3)B.( - 3,2)C.(3 ,- 2)D.(2 ,- 3)5.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P 在直线y=3x+2 3 上运动,过点P 作该圆的一条切线,切点为A,则 PA的最小值为() A. 3B. 2 C.3 D. 26.如图 4,在矩形中,G 是的中点,过,,三点的⊙O与边,分别ABCD BC A D G AB CD交于点 E,F,给出以下说法:(1) AC与BD的交点是⊙O的圆心; (2) AF与DE的交点是⊙O的圆心; (3)与⊙O 相切,此中正确说法的个数是 ()BC图 4A.0B.1C.2D.3二、填空题7.如图 5,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠ OCB=________°.图 5图 68.如图 6,在平面直角坐标系中,点 A 的坐标是(20,0),点 B 的坐标是(16,0),点 C,D在以 OA为直径的半圆 M上,且四边形OCDB是平行四边形,则点 C的坐标为________.9.如图 7,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P 为圆心,长为半径作⊙. 当⊙P与正方形的边相切时,BP的长为 ________ .PM P ABCD图7图810.如图 8,在矩形ABCD中,AB= 5,BC= 4,以CD为直径作⊙O. 将矩形ABCD绕点C旋转,使所得矩形 A′ B′ CD′的边 A′ B′与⊙ O相切,切点为 E,边 CD′与⊙ O订交于点 F,则 CF的长为________.三.解答题11.如图 9,AB为⊙O的直径,点C在⊙ O外,∠ ABC的均分线与⊙ O交于点 D,∠ C=90° .(1)CD与⊙ O有如何的地点关系?请说明原因;︵(2)若∠ CDB=60°, AB=6,求 AD的长.图 912.如图 10,在△ABC中,AB=AC,以AB为直径的半圆交AC于点 D,交 BC于点 E,延长 AE至点 F,使 EF= AE,连结 FB, FC.(1)求证:四边形 ABFC是菱形;(2)若 AD=7, BE=2,求半圆和菱形 ABFC的面积.图 1013.如图 11,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点 F.(1) 求证:AC是半圆O的切线;(2)若 F 是 AO的中点, OE=3,求图中暗影部分的面积;(3) 在 (2) 的条件下,P 是边上的动点,当+PF取最小值时,直接写出的长.BC PE BP图 1114.如图 12,在△ABC中,AD是边BC上的中线,∠BAD=∠ CAD, CE∥ AD, CE交 BA的延长线于点E, BC=8, AD=3.(1)求 CE的长;(2)求证:△ ABC为等腰三角形;(3)求△ ABC的外接圆圆心 P 与内切圆圆心 Q之间的距离.图 12答案1. [ 分析 ]C如图,连结AC, AO.∵⊙ O的直径 CD=10 cm, AB⊥ CD, AB=8 cm,1 1∴AM=2AB=2×8=4 cm, OD= OC=5 cm.当点 C地点如图①所示时,∵OA=5 cm, AM=4 cm,CD⊥ AB,∴ OM=2222,OA- AM= 5 - 4= 3(cm)∴CM=OC+ OM=5+3=8(cm),∴ AC=22225(cm) ;AM+ CM= 4 + 8= 4人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(1)一、知识梳理复习导航:阅念书p121-122 ,带着书中的问题进行复习思虑。
2010年九年级上学期数学期末综合练习题(新人教版)
九上练习20-1一. 选择题1. 下列根式中,是最简二次根式有( )﹙1﹚()()()()()()ab xx y x y x x x x 7.05;214;3;122;822⋅-+++- A .(1)(2) B.(1)(3) C.(1)(2)(3) D.(1)(3)(5)2.下面约分正确的是( )A. 1-=---y x y xB.022=--y x y xC.()()y x y x x y -=--132 3.一定是一元二次方程的是( ) A. 02=++c bx ax B.()012=++-c bx a x C.22=++c bx x a4.二次函数2+=y x A. 3 B. 25. A. 外离 B. 二. 填空题6. 7. 二次函数2-=y 开口向 时, 有最 8. 若方程22+-x x , 34--x x 有意义. , 弦CD 与AB 相交于E, 若 , 则CE=DEA O(10) B (13) C11.圆内接四边形ABCD 中, 若∠A ﹕∠B ﹕∠C=2﹕3﹕4, 则∠D= 度.12. 一条弦把圆分为2﹕3的两部分, 则这条弦所对的圆周角的度数为 .13.如图, 点O 是△ABC 的内心, ∠A=50°, 则∠BOC= °14. 如图,PA 是⊙O 的切线,A 是切点,⊙O 的半径OB ⊥OP ,AB 交OP 于C ,OB=1九上练习20-2AP=2, ∠B=10°, 那么OP=_________, ∠P= 。
15.已知0122=--x x ,那么5624+-x x 的值等于_________16.弧AB 的半经为5, 圆心角为本120°,则弧长= ,扇形面积= 为成圆锥体后的全面积为 .17.正六边形的边长为6, 则它的半径= ,边心距= ,18. 一只袋内装有2个红球、3个白球、5任意取出一球,则取得红球的概率是__________三.解答题1. 计算﹕1123----a a a a 2. 解方程﹕x x 7422-=3.一项工程, 若甲乙两对单独完成, 甲对比乙对多用5天, 若两对合作, 6天完成, 求两对独做次工程各需要多少天完成?4.如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,点D 在⊙O 上,连接AD 、BD ,∠A ﹦∠ B =30°,BD 是⊙O 的切线吗?请说明理由.。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
九年级上册数学练习题-有答案
人教版九年级上册数学测试二次根式一、填空题(每小题2分,共20分)1.中是二次根式的个数有______个. 2. 当x = 时,二次根式1+x 取最小值,其最小值为 。
3.的结果是_____________4.= 5. 实数a 在数轴上的位置如图所示:化简:1______a -=.6. 已知三角形底边的边长是6cm,面积是12cm 2,则此边的高线长 .7.若()2240a c --=,则=+-c b a .8. 计算:20102010)23()23(+-= 9. 已知2310x x -+=,则= 10.观察下列各式:===,……,请你将猜想到的规律用含自然数(1)n n ≥的代数式表示出来是. 二、选择题(每小题3分,共24分)11. 下列式子一定是二次根式的是( )A .2--xB .xC .22+x D .22-x12. 下列二次根式中,x 的取值范围是2≥x 的是( )A .2-xB .x+2C .x -2D .1x -213. 实数a b c ,,在数轴上的对应点的位置如图所示,式子线①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个 C.3个 D.4个 14. 下列根式中,是最简二次根式的是( )A .B . C. D . 15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1122-=+-x x x D .3392-•+=-x x x16.设4a ,小数部分为b ,则1a b-的值为( )A.1-C.1+D.17. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m -C .m --D .m -18. 2,则a 的取值范围是( ) A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =三、解答题(76分) 19. (12分)计算:(1) 21418122-+- (2) 2)352(-(3) (4)284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。
人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)
人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)人教版九年级上册数学第二十二章二次函数综合训练题一、单选题1.在下列表达式中,x是自变量,是二次函数的是()A.B.C.D.2.下列二次函数的图象与x轴没有交点的是()A.B.C.D.3.对于二次函数,当时,y随x的增大而增大,则满足条件的m的取值范围是()A.B.C.D.4.已知二次函数的图像上有三点,则的大小关系为()A.B.C.D.5.将抛物线向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.B.C.D.6.抛物线的部分图象如图所示,则一元二次方程的根为()A.B.,C.,D.,7.根据下列表格的对应值,判断方程(,、、为常数)一个解的范围是()A.B.C.D.8.如图,抛物线的对称轴为直线,与x轴的一个交点坐标为,如图所示,下列结论:①;②方程的两个根是;③;④当时,x的取值范围是;⑤当时,y随x增大而增大,其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题9.抛物线与y轴的交点坐标为.10.已知二次函数的图象经过点,且顶点坐标为,则二次函数的解析式为.11.抛物线向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线顶点坐标是.12.抛物线的二次项系数是;一次项系数是.13.已知函数的图象过原点,则a的值为14.若抛物线的图象与坐标轴只有两个公共点,则m的值为.15.一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则该学生推铅球的水平距离为.16.如图,抛物线与x轴交于两点,与y轴交于C点,在该抛物线的对称轴上存在点Q使得的周长最小,则的周长的最小值为.三、解答题17.抛物线经过点.(1)求这个二次函数的关系式;(2)为何值时,的值随着的增大而增大?18.抛物线的对称轴是直线,且过点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.如图,抛物线与x轴交于A、B两点,与y轴交于C点.(1)求A点和点B的坐标;(2)判断的形状,证明你的结论;(3)直接写出当时,自变量x的取值范围.20.如图,抛物线与x轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上运动到什么位置时,满足,并求出此时P点的坐标;(3)点Q是直线下方抛物线上一点,当Q运动到什么位置,的面积最大,求出面积的最大值和此时点Q的坐标.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:… 0 1 2 …… 0 5 …(1)直接写出表格当中的m值:_________;(2)直接写出这个二次函数的表达式_________;(3)在图中画出这个二次函数的图象.(4)直接写出当时,y的取值范围是_________.(5)直接写出当时,x的取值范围是_________.22.有一长为的篱笆,一面利用墙(墙的最大可用长度a为),围成中间隔着一道篱笆的长方形花圃,花圃的宽为,面积为.(1)求S关于x的函数解析式;(2)如果要围成面积为的花圃,的长是多少m?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?24.如图是二次函数的图象,其顶点坐标为.(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由.(3)在y轴上存在一点Q,使得周长最小,求此时构成的的面积.参考答案:1.D2.B3.D4.B5.D6.D7.C8.D9.10.11.12. 1 413.214.15.16./17.(1)(2)18.(1);(2);19.(1)A、B的坐标分别为:,,(2)是直角三角形,(3)有图像可得:时,或.20.(1)(2)或(3)当轴时,的面积最大,最大值为1,此时点Q的坐标为21.(1)0(2)(4)(5)22.(1)(2)花圃的长为(3)能;围法:花圃的长为,宽为,这时有最大面积23.(1)(2)当售价为65元时,每月销售该商品的利润最大,最大利润为6250元.24.(1),(2)存在,或(3)3。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)
第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
人教版数学九年级下册综合练习题(含答案)
人教版数学九年级下册综合练习题一、选择题1.计算tan 60°+|-3sin 30°|-cos245°的结果等于()A. 1 B. 2 C. 3 D. 42.下列各点中,在函数y=-图象上的是()A. (-2,-4) B. (2,3) C. (-1,6) D.3.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A. 3B.C. 3或D. 4或4.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 6个B. 7个C. 8个D. 9个5.如图所示的几何体,其俯视图是()A. B. C. D.6.下列四个立体图形中,主视图为矩形的有()A. 1个 B. 2个 C. 3个 D. 4个7.在Rt△ABC中,∠C=90°,在下列条件中不能解直角三角形的是()A.已知a和A B.已知c和b C.已知A和B D.已知a和B8.手鼓是鼓中的一个大类别,是一种打击乐器.如图是我国某少数民族手鼓的轮廓图,其俯视图是()A. B. C. D.9.一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后,心跳次数N(次)与时间s(分)的函数关系图象大致是( )A.B. C. D.10.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定二、填空题11.已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD 的面积为______________.12.圆柱的体积是100,圆柱的底面积S与高h的关系式是________________.13.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.14.如图,在平面直角坐标系xOy中,直线y=x+3与坐标轴交于A、B两点,坐标平面内有一点P(m,3),若以P、B、O三点为顶点的三角形与△AOB相似,则m=________.15.在Rt△ABC中,∠C=90°,AC=5,BC=12,则sin A=______________.16.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为_________ cm2.(结果可保留根号).17.若函数y=4x与y=的图象有一个交点是,则另一个交点坐标是__________________.18.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,则∠A=________.19.如果物体的俯视图是一个圆,该物体可能是________.(写两种可能)20.如图,A(2,1),B(1,-1),以O为位似中心,按比例尺1∶2,把△AOB放大,则点A的对应点A′的坐标为____________.三、解答题21.我们知道:选用同一长度单位量得两条线段AB、CD的长度分别是m,n,那么就说两条线段的比AB∶CD=m∶n,如果把表示成比值k,那么=k,或AB=kCD.请完成以下问题:(1)四条线段a,b,c,d中,如果______________,那么这四条线段a,b,c,d叫做成比例线.(2)已知==2,那么=__________,=________;(3)如果=,那么=成立吗?请用两种方法说明其中的理由.(4)如果===m,求m的值.22.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.23.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式; (2)蓄电池的电压是多少?(3)完成下表:(4)如果以此蓄电池为电源的用电器的限制电流不能超过10 A,那么用电器可变电阻应控制在什么范围?24.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.25.如图,已知A(-4,2),B(-2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,画出平移后的图形;(2)若△ABC内部有一点P(a,b),则平移后它的对应点Pl的坐标为__________;(3)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.26.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后解答相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.(1)求证:△C′D′E′是等边三角形;(2)求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,且DE:EF=1∶2.27.如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连接ED并延长交AB于F,交AH于H.(1)求证:AH=CE; (2)如果AB=4AF,EH=8,求DF的长.28.如图,O为△ABC内一点,点D,E,F分别为OA,OB,OC的中点,求证:△DEF∽△ABC.答案解析1.【答案】D【解析】tan 60°+|-3sin 30°|-cos245°=×+3×-2=3+-=4.故选D.2.【答案】C【解析】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.3.【答案】C【解析】∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴=或=,即=或=解得,CE=3或CE=.故选C.4.【答案】B【解析】综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.5.【答案】D【解析】从上边看是一个同心圆,内圆是虚线,故选D.6.【答案】B【解析】长方体主视图为矩形;球主视图为圆;圆锥主视图为三角形;圆柱主视图为矩形;因此主视图为矩形的有2个,故选B.7.【答案】C【解析】∵已知a和A,在Rt△ABC中,∠C=90°,∴∠B=∠C-∠A,c=,b=c sin B.故选项A错误.∵已知c和b,在Rt△ABC中,∠C=90°,∴a=,sin A=,sin B=.故选项B错误.∵在Rt△ABC中,∠C=90°,已知A和B,∠A+∠B=∠C=90°,∴只能知道直角三角形的三个角的大小,而三条边无法确定大小.故选项C正确.∵已知a和B,在Rt△ABC中,∠C=90°,∴∠A=∠C-∠B,c=,b=c sin B.故选项D错误.故选C.8.【答案】A【解析】从上边看是一个同心圆,故选A.9.【答案】D【解析】正常人做激烈运动停止下来后心跳次数随着时间的延长由快到慢逐渐趋向安静时正常心跳次数,即此段时间心跳次数N(次)与时间s(分)成反比例关系,所以其图象大致是选项D中的图象.10.【答案】A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.11.【答案】【解析】如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A,根据矩形和双曲线的对称性,可得B,D,由两点间距离公式,可得AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为.12.【答案】S=【解析】根据等量关系“圆柱底面积=圆柱体积÷圆柱高”即可列出关系式.由题意,得底面积S关于高h的函数关系式是S=.13.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.14.【答案】±4或±【解析】∵直线y=x+3与坐标轴交于A、B两点,∴点A(-4,0),点B(0,3),∵P(m,3),∵∠AOB=∠OBP=90°,∴当=时,△AOB∽△PBO,∴BP=OA=4,∴m=±4;当=时,△AOB∽△OBP,∴BP==,∴m=±.15.【答案】【解析】如图所示,∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.16.【答案】(360+75)【解析】根据该几何体的三视图知道其是一个六棱柱,∵其高为12 cm,底面半径为5 cm,∴其侧面积为6×5×12=360 cm2密封纸盒的底面积为(5+10)××2×2=75cm2,∴这个密封纸盒的表面积为(75+360) m2;故答案为(360+75).17.【答案】【解析】正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么关于原点的对称点为.故答案为.18.【答案】60°【解析】∵在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,∴S=AC·BC=,∴AC=,∵tan A===,∴∠A=60°.19.【答案】圆柱或球体【解析】如果物体的俯视图是一个圆,该物体可能是圆柱或球体.20.【答案】(4,2)或(-4,-2)【解析】∵以O为位似中心,按比例尺1∶2,把△AOB放大,∴点A的对应点A′的坐标为(2×2,2×1)或(-2×2,-2×1),即(4,2)或(-4,-2).21.【答案】解(1)四条线段a,b,c,d中,如果a∶b=c∶d,那么这四条线段a,b,c,d叫做成比例线段;(2)∵==2,∴a=2b,c=2d,∴==3,==3.(3)如果=,那么=成立.理由如下:证明一:∵=,∴-1=-1,即-=-,∴=;证明二:设==k,那么a=kb,c=kd,∵==k-1,==k-1,∴=;(4)①当x+y+z=0时,y+z=-x,z+x=-y,x+y=-z,∴m为其中任何一个比值,即m==-1;②x+y+z≠0时,m===2.所以m=2或-1.【解析】(1)根据成比例线段的定义作答;(2)由==2,得a=2b,c=2d,代入计算即可求解;(3)利用等式的性质两边减去1即可证明;设==k,那么a=kb,c=kd,代入即可证明;(4)可分x+y+z=0和x+y+z≠0两种情况代入求值和利用等比性质求解.22.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.23.【答案】解(1)电流I是电阻R的反比例函数,设I=,∵图象经过(9,4),∴4=,解得k=4×9=36,∴I=;(2)蓄电池的电压是4×9=36;(3)填表如下:(4)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在3.6欧以上的范围内.【解析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(9,4),利用待定系数法即可求出这个反比例函数的解析式;(2)根据电压=电流×电阻即可求解;(3)将R的值分别代入(1)中所求的函数解析式,即可求出对应的I值,从而完成图表;(4)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.24.【答案】解延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE tan 30°=10m,在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30m,则CD=EC-ED=AB-ED=30-10=20m.【解析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC的长即可.25.【答案】解(1)如图所示,△A1B1C1即为所求;(2)∵△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,∴点P(a,b)的对应点P1的坐标为(a+4,b-1),【解析】(1)根据向右平移4个单位再向下平移1个单位得到△A1B1C1,画出平移后的图形即可;(2)根据向右平移4个单位再向下平移1个单位,可知横坐标增加4,纵坐标减小1;(3)根据以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2即可.26.【答案】(1)证明∵E′C′∥EC,E′D′∥ED,∴△OCE∽△OC′E′,△ODE∽△OD′E′,∴CE∶C′E′=OE∶OE′,DE∶D′E′=OE∶OE′,∠CEO=∠C′E′O,∠DEO=∠D′E′O,∴CE∶C′E′=DE∶D′E′,∠CED=∠C′E′D′,∴△CDE∽△C′D′E′,∵△CDE是等边三角形,∴△C′D′E′是等边三角形;(2)解画法:①在△ABC内画矩形D′E′F′G′,使点D′在AB上,点G′在AC上,且D′E′∶D′G′=1∶2;②连接AE′并延长,交BC于点E,连接AF′并延长交BC于点F,过点E作ED∥E′D′交AB于点D,过点F作FG∥F′G′,交AC于点G;③连接DG,则矩形DEFG是△ABC的内接四边形.【解析】(1)根据作法可知:E′C′∥EC,E′D′∥ED,可证得△OCE∽△OC′E′,△ODE∽△OD′E′,根据相似可证得对应边的比相等,对应角相等,即可根据对应边的比成比例且夹角相等的三角形相似,可证得△CDE∽△C′D′E′,即可得结果;(2)类似(1)的作法.27.【答案】(1)证明∵AH∥BE,D是AC的中点,∴△ADH≌△CDE,∴AH=CE.(2)解∵AB=4AF,AH∥BE,∴AF∶AB=HF∶HE=1∶4,∴HF=EH=2,∵AH∥BE,D是AC的中点,∴点D也是EH的中点,即HD=EH=4,∴FD=HD-HF=2.【解析】(1)由于点D是AC的中点,AH∥CE,由平行线的性质知,可推出△ADH≌△CDE,故可得AH=CE;(2)由平行线分对应线段成比例的性质知,AF∶AB=HF∶HE=1∶4,求得HF的值,由AH∥BE,D 是AC的中点可得,点D也是EH的中点,求得HD的值,故有FD=HD-HF.28.【答案】证明∵D、E、F分别是OA、OB、OC的中点,∴DE=AB,EF=BC,DF=AC,即==,∴ABC∽△DEF.【解析】先根据三角形中位线性质得到DE=AB,EF=BC,DF=AC,则可利用三组对应边的比相等的两个三角形相似得到结论.。
人教版九年级上册数学解答题专题训练50题(含答案)
人教版九年级上册数学解答题专题训练50题含答案一、解答题1.解方程:2630x x +-=.2.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.【答案】(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.【详解】(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?【答案】杠杆的旋转中心是点O ,旋转角是∵BOB ′(或∵AOA ′)【分析】根据旋转的定义即可得到杠杆绕支点转动撬起重物的旋转中心,旋转角.【详解】解:杠杆绕支点转动撬起重物,杠杆绕点O 旋转,所以杠杆的旋转中心是点 O ,旋转角是∵BOB ′(或∵AOA ′).【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角.4.已知,如图,直线AB 经过点()0,6B ,点()4,0A ,与抛物线22y ax =+在第一象限内相交于点P ,又知AOP 的面积为6.(1)求a 的值;(2)若将抛物线22y ax =+沿y 轴向下平移,则平移多少个单位才能使得平移后的抛物线经过点A .AOP∆的面积∴=,y3y=再把3P所以(2,3)P代入到把(2,3)5.某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.(1)若售价增加x元,则销售量是(______________)个(用含x的代数式表示);(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)6.2022年3月,举世瞩目的北京冬奥会、冬残奥会胜利闭幕.以下是2022年北京冬奥运会会徽—冬梦、冬残奥会会徽—飞跃、冬奥会吉祥物—冰墩墩及冬残奥会吉祥物—雪容融的卡片,四张卡片分别用编号A,B,C,D来表示,这4张卡片背面完全相同,现将这四张卡片背面朝上,洗匀放好.(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为;(2)将A冬梦和C冰墩墩的组合或B飞跃和D雪容融的组合称为“一套”,小明和小红依次从中随机抽取一张卡片(不放回),请你用列表或画树状图的方法求他们抽到的两张卡片恰好一套的概率.7.今年是中国共产党建党100周年,中华人民共和国成立72周年!在国庆前夕,社区便民超市调查了某种水果的销售情况获得如下信息:信息一:进价是每千克12元;信息二:当销售价为每千克27元时,每天可售出120千克;若每千克售价每降低2元,则每天的销售量将增加80千克.根据以上信息解答问题:该超市每天想要获得3080元的销售利润,又要尽可能让顾客得到实惠,求这种水果的销售单价应为多少元.【答案】这种水果的销售单价为19元【分析】设这种水果的销售单价为x 元,则有销售量为()120040x -千克,然后根据利润=销售量×单个利润即可求解.【详解】解:设这种水果的销售单价为x 元,由题意得:8.已知抛物线23y ax bx =++经过点()3,0A 和点()4,3B .(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值). 【答案】(1)243y x x =-+(2)开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-【分析】(1)由条件可知点A 和点B 的坐标,代入解析式可得到关于a 和b 的二元一次方程组,解得a 和b ,可写出二次函数解析式;(2)根据a 的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.【详解】(1)解:将点()3,0A 和点()4,3B 代入23y ax bx =++中,得933016433a b a b ++=⎧⎨++=⎩, 解得:14a b =⎧⎨=-⎩, ∵243y x x =-+(2)解:∵243y x x =-+()221x =--,1a =0>, ∵开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-. 【点睛】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用配方法确定二次函数的顶点坐标和对称轴.9.在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球实验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1)(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.10.(1)2(1)4x-=;(2)2430-+=;x xx x-=.(3)230x-+=;(4)(6)611.解方程:(用适当的方法解方程)(1)2430x x --=(2)2(1)(1)0x x x ---=(3)2542x x =-(4)2)(35)1x x --=(12.我国快递行业迅速发展,经调查,某快递公司今年2月份投递快递总件数为20万件,4月份投递快递总件数33.8万件,假设该公司每月投递快递总件数的增长率相同.(1)求该公司投递快递总件数的月增长率;(2)若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数是否达到45万件?答:若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数不能达到45万件.【点睛】本题主要考查了一元二次方程应用题中的平均增长率问题,如何正确根据题意列出一元二次方程是解题的关键.13.已知关于x的一元二次方程20ax bx c++=(a≠0)的一个根为,则244ac ba-=_____.14.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年1月份某厂家口罩产量为80万只,2月份比1月份增加了25%,4月份口罩产量为196万只.(1)该厂家2月份的口罩产量为______万只;(2)该厂家2月份到4月份口罩产量的月平均增长率是多少?【答案】(1)100(2)40%【分析】(1)用1月份的产量乘以(1+25%)即可求解;(2)设月平均增长率为x,根据题意列出一元二次方程,解方程即可求解.(1)2月份的产量为:80×(1+25%)=100(万只),故答案为:100;(2)设月平均增长率为x,根据题意有:100×(1+x)2=196,解得:x=40%,(负值舍去),故2月份到4月份的平均增长率为40%.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.15.“2019淮安清江浦国际半程马拉松赛”的赛事共有三项:A.“半程马拉松2019”、B.“纪念2019”、C.“爱跑2019”.小明和小丽参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“爱跑2019”项目组的概率为____________;(2)用树状图或列表法求小明和小丽被分配到不同项目组的概率.16.如图,∵ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将∵ABC 向右、向下分别平移1个单位长度和5个单位长度得到∵A 1B 1C 1,请画出∵A 1B 1C 1,并写出点A 1,C 1的坐标;(2)请画出∵ABC 关于原点O 成中心对称的∵A 2B 2C 2.【答案】(1)见解析,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)见解析.【分析】(1)利用点平移的坐标变换规律得出对应点的坐标,描点画出图形即可; (2)根据关于原点对称的点的坐标特征得出对应点的坐标,描点画出图形即可. 【详解】(1)如图,∵A 1B 1C 1为所作,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)如图,∵A 2B 2C 2为所作.【点睛】本题考查坐标与图形变换-平移、坐标与图形变换-旋转,熟练掌握坐标与图形变换的规律,正确得出对应点的坐标是解答的关键. 17.解方程 (1)2430x x -+= (2)()()2323x x -=- 【答案】(1)11x =,23x =. (2)13x =,25x =.【分析】(1)先把方程左边分解因式化为()()130x x --=,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程左边分解因式化为()()350x x --=,再化为两个一次方程,再解一次方程即可.【详解】(1)解:2430x x -+=, ∵()()130x x --=, ∵10x -=或30x -=, 解得:11x =,23x =. (2)()()2323x x -=-, 移项得:()()23230x x ---=, ∵()()350x x --=, ∵30x -=,50x -=, 解得:13x =,25x =.【点睛】本题考查的是一元二次方程的解法,掌握“利用因式分解的方法解一元二次方程”是解本题的关键.18.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.由表可知,共有12种等可能结果,其中小明被抽中的有6种结果,所以小明被抽中的概率为:61 122.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图1所示,是一块边长为2的正方形瓷砖,其中瓷砖的阴影部分是半径为1 的扇形.请你用这种瓷砖拼出两种不同的图案,使拼成的图案即是轴对称图形又是中心对称图形,并把它们分别画在下面边长为4的正方形中(要求用圆规画图).图1图2图3【答案】通过对轴对称图形分析作图【详解】试题分析:图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形既轴对称图形又中心对称的图形如图所示考点:旋转作图点评:本题考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图20.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形111A B C ∆,直接写出点1A 的坐标;(2)请画出△ABC 绕原点O 顺时针旋转90∘的图形222A B C ∆,直接写出点2A 的坐标; (3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.【答案】(1)1(3,1)A -,作图见解析,(2)2(1,1)A -,作图见解析,(3)(2,0)P ,作图见解析.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2)找出点A 、B 、C 绕原点O 顺时针旋转90°的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P . 【详解】解:(1)如图所示:点1A 的坐标(-3,1); (2)如图所示:点2A 的坐标(1,-1);(3)找出A 的对称点A′(1,-1), 连接BA′,与x 轴交点即为P ;则',PA PA = ('2,A A 重合),'',PA PB PA PB BA ∴+=+=则P 即为所求作的点,如图所示:点P 坐标为(2,0).【点睛】本题考查了利用平移,旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.21.已知关于x 的方程2390x x k --+=的两个实根为1x ,2x .且满足122x x =-,试求这个方程的两个实根及k 的值.22.嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:(下页) 解:由于a ≠0,方程ax 2+bx +c =0变形为: x 2+b ax =﹣ca ,…第一步x 2+b ax +(2b a )2=﹣c a +(2ba )2,…第二步(x +2b a )2=2244b ac a -,…第三步x +2b a =(b 2﹣4ac ≥0),…第四步x 1…第五步(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2﹣4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的求根公式是 . (2)用配方法解方程:2x 2﹣4x +1=0.23.如图,AB 是∵O 的直径,点D 在∵O 上,∵DAB=45°,BC∵AD ,CD∵AB .(1)判断直线CD 与∵O 的位置关系,并说明理由;(2)若∵O的半径为1,求图中阴影部分的面积(结果保留π).24.如图,∵O是△ABC的外接圆,AB是∵O的直径,延长AB到点E,连接EC,使得∵BCE=∵BAC(1)求证:EC是∵O的切线;(2)过点A作AD∵EC的延长线于点D,若AD=5,DE=12,求∵O的半径.25.如图O 是ABD △的外接圆,AB 为直径,点C 是AD 的中点,连结,OC BC 分别交AD 于点F ,E .(1)求证:2ABD C ∠=∠.(2)若10,8AB BC ==,求BD 的长. 【答案】(1)见解析;(2)2.8【分析】(1)由圆周角定理得出ABC CBD ∠=∠,由等腰三角形的性质得出ABC C ∠=∠,则可得出结论;(2)连接AC ,由勾股定理求出6AC =,得出222256(5)OF OF -=--,求出 1.4OF =,则可得出答案.【详解】解:(1)证明:C 是AD 的中点, ∴AC DC =,ABC CBD ∴∠=∠,OB OC =, ABC C ∴∠=∠,ABC CBD C ∴∠=∠=∠,2ABD ABC CBD C ∴∠=∠+=∠;(2)连接AC ,AB 为O 的直径,C 是AD OC ∴⊥2OA OF ∴-25OF ∴- 1.4OF ∴=又O 是AB 2BD OF ==【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系定理,勾股定理,以及三角形的外接圆与圆心,熟练掌握性质及定理是解决本题的关键.26.用公式法解方程:210x x --=.【答案】x =27.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当010x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当1012x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【答案】(1)25100(010),500(1012)y x x x y x =-+≤≤=<≤;(2)排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)2个【分析】(1)当010x ≤≤时,y 可看作是x 的二次函数,由于抛物线的顶点为(10,500),设y 与x 之间的函数解析式为:y =a (x -10)2+500,把O 点的坐标(0,0)代入即可求得a ;当1012x <≤时,累计人数保持不变,问题即可解决;(2)设第x 分钟时的排队人数为w 人,到校人数减去检测人生,即可得到w 与x 的函数解析式,根据二次函数解析式可求得其最大值=180;要全部学生都完成体温检测,根据题意得500400x -=,求解即可;(3)设从一开始就应该增加m 个检测点,由“在8分钟内让全部考生完成体温检测”,列出不等式,可求解.【详解】解:(1)当010x ≤≤时,设y 与x 之间的函数关系式为:2(10)500y a x =-+,把(0,0)代入上式得:20(010)500a =-+,解得:5a =-,故函数关系式为:25(10)500(010)y x x =--+≤≤当1012x <≤时,累计人数保持不变,即y =500.∵25100(010),500(1012)y x x x y x =-+≤≤=<≤(2)设第x 分钟时的排队等待人数为w 人,由题意可得:40w y x =-∵010x ≤≤时,2225100405605(6)180w x x x x x x =-+-=-+=--+,∵当6x =时,w 的最大值180=,∵当1012x <≤时,50040,w w x =-随x 的增大而减小,20100w ∴≤<,∵排队人数最多时是180人,要全部学生都完成体温检测,根据题意得:500400x -=解得:12.5x =答:排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m 个检测点,28.已知:如图.∵ABC和∵DEC都是等边角形.D是BC延长线上一点,AD与BE 相交于点P.AC、BE相交于点M,AD、CE相交于点N.(1)在图∵中,求证:AD=BE;(2)当∵CDE绕点C沿逆时针方向旋转到图∵时,∵APB=.【答案】(1)见解析(2)60°【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∵ACB=∵ECD=60°,求出∵BCE=∵ACD,根据SAS推出两三角形全等即可;(2)证明∵ACD∵∵BCE(SAS),得到AD=BE,∵DAC=∵EBC,根据三角形的内角和定理,即可解答.【详解】(1)证明:∵∵ABC和∵CDE为等边三角形,∵AC=BC,CD=CE,∵BCA=∵DCE=60°,∵∵ACD=∵BCE,在∵ACD和∵BCE中,AC=BC,∵ACD=∵BCE,CD=CE,∵∵ACD∵∵BCE(SAS),∵AD=BE;(2)解:∵∵ABC和∵CDE都是等边三角形,∵AC=BC,CD=CE,∵ACB=∵DCE=60°,∵∵ACB +∵BCD =∵DCE +∵BCD ,即∵ACD =∵BCE ,在∵ACD 和∵BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ACD ∵∵BCE (SAS ),∵∵DAC =∵EBC , ∵∵AMP =∵BMC ,∵∵APB =∵ACB =60°.故答案为:60°.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.29.图1,图2是小明家厨房的效果图和装修平面图(长方形),设计师将厨房按使用功能分为三个区域,区域∵摆放冰箱,区域∵为活动区,区域∵为台面区,其中区域∵、区域∵为长方形.现测得FG 与墙面BC 之间的距离等于HG 与墙面CD 之间的距离,比EF 与墙面AB 之间的距离少0.1m .设AE 为x (m ),回答下列问题:(1)用含x 的代数式表示FG ,则FG = m .(2)当AE 为何值时,区域∵的面积能达到2.34m 2?(3)测得JF =0.35m ,在(2)的条件下,在下列几款冰箱中选择安装,要求机身左右和背面与墙面之间的距离至少预留20mm 的散热空间,则选择购买 款冰箱更合适.【答案】(1)3.2-2x(2)0.7(3)B【分析】(1)用含x 的代数式表示出DH 的长,根据FG =AD -AE -DH ,代入化简,可表示出FG 的长.(2)用含x的代数式表示出GH的长,再根据长方形的面积=长×宽,可得到关于x的方程,解方程求出x的值.(3)将x的值代入计算求出EF,EJ的长,根据要求机身左右和背面与墙面之间的距离至少预留20mm的散热空间,利用A,B,C三款冰箱的尺寸,可得答案.【详解】(1)3100mm=3.1m,1900mm=1.9m∵AE=xm,DH=(x-0.1)m,∵FG=AD-AE-DH=3.1-x-(x-0.1)=3.2-2x故答案为:3.2-2x(2)解:GH=1.9-(x-0.1)=(2-x)m,∵(3.2-2x)(2-x)=2.34解之:x1=0.7,x2=2.9(舍去)∵x=0.7,∵当AE=0.7时,区域∵的面积能达到2.34m2.(3)由(2)得EF=GH=2-x=2-0.7=1.3mEJ=EF-JF=1.3-0.35=0.95m,EJ=950mm,AE=0.7=700mm,950-2×20=910mm,∵910>908且700-20>677,∵应该选择B冰箱更合适.故答案为:B.【点睛】一元二次方程的实际应用-几何问题,解题的关键是读懂题意,看清图形,根据题意设未知数,根据等量关系列一元二次方程.30.我们把能二等分多边形面积的直线称为多边形的“好线”.请用无刻度的直尺画出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个矩形组成(保留画图痕迹,不写画法)【答案】见解析【分析】图(1)过平行四边形的中心O画直线MN即可,图(2)过平行四边形和矩形的中心O,O′画直线MN即可.【详解】解:如图(1),直线MN即为所求(答案不唯一).如图(2),直线MN即为所求.【点睛】本题考查了利用中心对称图形的性质进行作图及平行四边形和矩形的性质,掌握中心对称图形的性质是解题的关键.31.幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:()1猜“是大于5的数”或“不是大于5的数”;()2猜“是3的倍数”或“不是3的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?254>>399∵为了尽可能获胜,我会选猜法(【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.32.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为_____.33.在平面直角坐标系xOy中,已知抛物线22=-+-+-(m是常数).y x mx m m22(1)求该抛物线的顶点坐标(用含m 代数式表示);(2)如果该抛物线上有且只有两个点到直线1y =的距离为1,直接写出m 的取值范围;(3)如果点1(,)A a y ,2(2,)B a y +都在该抛物线上,当它的顶点在第四象限运动时,总有12y y >,求a 的取值范围. 【答案】(1)抛物线的顶点坐标(m ,m -2);(2)2<m <4;(3)a ≥1.【分析】(1)将二次函数解析式化为顶点式求解.(2)由抛物线上有且只有两个点到直线1y =的距离为1,及抛物线开口向下可得顶点在直线y =0和直线y =2之间,进而求解.(3)由顶点在第四象限可得m 的取值范围,由y 1<y 2可得点B 到对称轴距离大于点A 到对称轴距离,进而求解.(1)∵22222()2y x mx m m x m m =-+-+-=--+-,∵抛物线的顶点坐标(m ,m -2);(2)∵抛物线开口向下,顶点坐标为(m ,m -2),∵0<m -2<2,解得2<m <4;(3)∵抛物线顶点在第四象限,∵020m m ⎧⎨-⎩><,解得0<m <2,∵抛物线开口向下,对称轴为直线x =m 且y 1>y 2,∵2(2,)B a y +在对称轴右侧,∵a +2-m >|a -m |,即a +2-m >a -m 或a +2-m >m -a ,解得a >m -1,∵0<m <2,∵a ≥1.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.34.解方程.21122x x --=-35.如图,半圆O 的直径AB=18,将半圆O 绕点B 顺针旋转45°得到半圆O′,与AB 交于点P .(1)求AP 的长.(2)求图中阴影部分的面积(结果保留π)36.某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m= ,n= ;(2)此次调查共抽取了多少名学生?(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?12337.操作发现:(1)数学活动课上,小明将已知△ABO(如图1)绕点O旋转180°得到△CDO(如图2).小明发现线段AB与CD有特殊的关系,请你写出:线段AB与CD的关系是.(2)连结AD(如图3),观察图形,试说明AB+AD>2AO.(3)连结BC(如图4),观察图形,直接写出图中全等的三角形:(写出三对即可).【答案】(1)AB=CD,AB//CD;(2)证明见解析;(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB【详解】分析:(1)根据图形旋转的性质即可得出结论;(2)根据三角形三边不等关系得AD+CD>AC,再由旋转的性质得AC=2AO,从而得出结论;(3)根据三角形全等的判定条件可得出结论.详解:(1)根据旋转的性质可得:ΔABO≅ΔCDO,∵AB=CD,∵ABO=∵CDO,∵AB//CD,故线段AB与CD的关系是:AB=CD,AB//CD;(2)在ΔACD中,AD+CD>AC又因为AB=CD,AO=OC所以AB+AD>2AO(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB.点睛:本题考查了旋转的性质,全等三角形的判定和性质等知识点.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.38.某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7∵这组成绩的中位数是_________,平均数是________;∵该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比∵中的平均数大,则丙同学“耐久跑”的成绩为________;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩39.如图,AC是∵O的弦,过点O作OP∵OC交AC于点P,在OP的延长线上取点B,使得BA=BP.(1)求证:AB是∵O的切线;(2)若∵O的半径为4,PC=AB的长.AB=.对称的点为B.(1)求点B的坐标;∠度数.(2)求AOB41.如图,在平面直角坐标系中,Rt∵ABC的顶点分别是A(﹣3,2)B(0,4)C (0,2).(1)将∵ABC以点C为旋转中心旋转180°,画出旋转后对应的∵A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.42.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)∵求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;∵求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?【答案】(1)∵y=﹣10x+1000;∵w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w (单位:元) 与售价x (单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题; (3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)∵由题意可得:y =500﹣(x ﹣50)×10=﹣10x +1000; ∵w =(x ﹣40)[﹣10x +1000]=﹣10x 2+1400x ﹣40000; (2)设销售单价为a 元,210140040000800040(101000)10000a a x ⎧-+-=⎨-+≤⎩, 解得,a =80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∵当x =70时,y 取得最大值,此时y =9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.43.如图所示,直角梯形ABCD 中,ABDC ,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的全面积.【答案】68π【分析】所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和.【详解】解:∵Rt∵AOD 中,AO =7-4=3cm ,OD =4cm , ∵AD 2=42+32=25 ∵AD =5cm ,∵所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2.故它的全面积为68πcm2.【点睛】本题考查圆锥的计算和圆柱的计算,得到几何体的形状是解决本题的突破点,需掌握圆锥、圆柱侧面积的计算公式.44.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.∵求从袋中摸出一个球是黄球的概率;∵现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?。
人教版九年级数学上册期末综合测试题(含答案)
12.
13.
14.
15.20
16.(1)解: ,
,
,
,
,
∴ , ;
(2)解: ,
,
,
或 ,
∴ , ;
(3)解: ,
化简整,得 ,
,
或 ,
∴ , .
17.(1)解:∵参与 活动的人数为36人,占总人数 ,
∴总人数 人,
则参与 活动的人数为: (人);
补全统计图如下:
(2)解:扇形 的圆心角为: ,
A.18°B.28°C.37°D.58°
10.如图,某公司准备在一个等腰直角三角形 的绿地上建造一个矩形的休闲书吧 ,其中点P在 上点N,M分别在 , 上,记 , ,图中阴影部分的面积为S,若 在一定范围内变化,则y与x,S与x满足的函数关系分别是()
A.一次函数关系,一次函数关系B.二次函数关系,一次函数关系
(3)解: 与 相交于 点,如图3,
,
为 的直径,
四边形 是 的神奇四边形,
,
, , ,
, ,
在 中, ,
,
设 ,则 ,
在 中, ,
解得 ,
即 ,
在 中, ,
,
,
.
23.(1)பைடு நூலகம்明:∵ ,
∴ ,
∴ ,
∴弦 平分圆周角 ,
∴圆中存在“爪形 ”;
(2)延长 至点E,使得 ,连接 ,
∵ ,
∴ ,
∵ , ,
根据以上信息,解答下列问题:
(1)参与此次抽样调查的学生人数是______人,补全统计图①;
(2)图②中扇形C的圆心角度数为______度;
(3)若参加成果展示活动的学生共有3600人,估计其中最喜爱“测量”项目的学生人数是多少;
九年级数学下册 各单元综合测试题含答案共12套
人教版九年级数学下册第二十六章综合测试卷01一、选择题(每小题4分,共32分)1.已知反比例函数的图象经过点()2,1P -,则这个函数的图象位于()A .第一、第三象限B .第二、第三象限C .第二、第四象限D .第三、第四象限2.下列说法正确的是()A .在2xy =中,y 与x 成正比例B .在2xy =-中,y 与1x成反比例C .在11y x =+中,y 与1x +成反比例D .在213y x=中,y 与x 成反比例3.已知反比例函数()0ky k x=<的图象上有两点()1,A x y ,()22,B x y ,且12x x <,则12y y -的值是()A .正数B .负数C .非负数D .不确定4.(2013·四川攀枝花中考)二次函数()20y ax bx c a =++≠的图象如图所示,则函数ay x=与y bx c =+在同一直角坐标系内的大致图象是()A B C D5.面积为2的ABC △,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()A B C D6.若点()3,4是反比例函数72m y x-=图象上的一点,则此函数图象必过点()A .()6,2-B .()2,6-C .()4,3D .()3,4-7.已知反比例函数ky x=与关于x 的一次函数y kx b =+的图象的一个交点坐标为()2,1-,则点(),k b 关于y 轴的对称点是()A .()2,3-B .()2,3-C .()2,3D .()2,3--8.在同一平面直角坐标系中,函数1y x=-与函数y x =的图象的交点个数是()A .0B .1C .2D .3二、填空题(每小题4分,共32分)9.已知反比例函数()232m y m x -=-的图象过点()4,P n ,则n 的值为________.10.已知反比例函数的图象经过点(),2m 和()2,3-,则m 的值为________.11.已知反比例函数32ay x-=的图象在第二、第四象限,则a 的取值范围是________.12.已知一次函数23y x =--的图象与反比例函数ky x=的图象相交于第四象限内的一个点(),3P a a -,则这个反比例函数的解析式为________.13.反比例函数()10y x x=-<的图象应在第________象限.14.老师给了一个y 关于x 的函数解析式,甲、乙、丙、丁四位同学各指出这个函数的一条性质:甲:函数的图象不过第三象限;乙:函数的图象过第一象限;丙:当1x >时,y 随x 的增大而减小;丁:当2x <时,0y >.已知这四位同学的叙述都正确,请你写出满足上述所有性质的一个函数解析式:________________.15.如图所示,在反比例函数()20y x x=>的图象上有点1P ,2P ,3P ,4P ,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,则123S S S ++=________.16.如图所示,直线y mx =与双曲线ky x=交于A ,B 两点,过点A 作AM x ⊥轴于点M ,连接BM ,若2ABM S =△,则k 的值为________.三、解答题(共36分)17.(9分)为了绿化环境,某单位进行植树造林活动,计划每天植树0.5公顷,6天植完.(1)写出植树时间t (单位:天)与植树速度v (单位:公顷/天)之间的函数解析式.(2)天气预报报近几天有雨,该单位决定3天之内植完,那么每天至少要植树多少公顷?18.(9分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO .在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数解析式,并写出相应的自变量的取值范围.(2)当空气中的CO 浓度达到34 mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少千米每小时的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?19.(9分)如图所示,已知一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别交于A ,B 两点,且与反比例函数()0my m x=≠的图象在第一象限内交于点C ,CD 垂直于x 轴,垂足为D ,若1OA OB OD ===.(1)求点A ,B ,D 的坐标;(2)求一次函数与反比例函数的解析式.20.(9分)(2013·浙江衢州中考)如图所示,函数为14y x =-+的图象与函数()220k y x x=>的图象交于(),1A a ,()1,B b 两点.(1)求函数2y 的解析式;(2)观察图象,比较当0x >时,1y 与2y 的大小.第二十六章综合测试答案解析一、1.【答案】C【解析】设函数解析式为()0ky k x=≠.因为其图象过点()2,1P -,所以()2120k =⨯=--<,所以其图象位于第二、第四象限.2.【答案】C 3.【答案】D【解析】可分以下三种情况讨论:①若120x x <<,由反比例函数()0ky k x =<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.②若120x x <<,由反比例函数()0ky k x =<的性质可得12y y >,所以120y y ->,即12y y -的值是正数.③若120x x <<,由反比例函数()0ky k x=<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.所以12y y -的值不确定.4.【答案】B【解析】因为二次函数()20y axbx c a =++≠的图象开口向下,所以0a <.因为对称轴经过x 轴的负半轴,所以a ,b 同号,所以0b <.因为图象经过y 轴的正半轴,所以0c >.因为函数ay x=,0a <,所以图象分别在第二、第四象限.因为y bx c =+,0b <,0c >,所以图象经过第一、第二、第四象限.5.【答案】C【解析】因为y 与x 的函数解析式为()40y x x=->,所以其图象为双曲线在第一象限内的一支.6.【答案】C【解析】双曲线上任意点的横、纵坐标的积相等.7.【答案】C【解析】因为两函数的图象相交于点()2,1-,所以点()2,1-既在反比例函数的图象上,又在一次函数的图象上.把点()2,1-的坐标代入反比例函数k y x=中,得2k =-.把点()2,1-的坐标和2k =-代入一次函数y kx b =+中,得3b =,即点(),k b 为()2,3-,点()2,3-关于y 轴的对称点为()23,.8.【答案】A 二、9.【答案】1-【解析】由题意得23120m m ⎧-=-⎨-≠⎩,,解得2m =-,所以4y x -=.把4x =代入4y x -=,得1y =-,即1n =-.10.【答案】3-【解析】设反比例函数的解析式为()0ky k x=≠.由题意得()223k m ==⨯-,所以3m =-.11.【答案】32a >【解析】因为反比例函数32a y x -=的图象在第二、第四象限,所以320a -<.所以32a >.12.【答案】27y x=-【解析】将点P 的坐标(),3a a -代入一次函数的解析式得,323a a -=--,所以3a =.所以点P 的坐标为()3,9-.将点P 的坐标()3,9-代入反比例函数解析式得93k =-.所以27k =-.所以反比例函数的解析式为27y x=-.13.【答案】二【解析】反比例函数1y x=-的图象在第二、第四象限,因为0x <,所以其图象应在第二象限.14.【答案】()10y x x =>或112y x =-+(答案不唯一)【解析】此函数可以是一次函数,也可以是反比例函数.若是一次函数y kx b =+,只需0k <,图象与x 轴交于()2,0点即可;若是反比例函数k y x=,需0k >,且0x >.另外,还可以写其他函数解析式,只要满足题意即可.15.【答案】32【解析】由题意得()11,2P ,()22,1P ,323,3P ⎛⎫ ⎪⎝⎭,414,2P ⎛⎫ ⎪⎝⎭,1S为正方形,故1111S =⨯=.对于2S 来说,它的长为1,宽为点2P 的纵坐标减去点3P 的纵坐标,2211133S ⎛⎫=⨯-= ⎪⎝⎭.同理,32111326S ⎛⎫=⨯-= ⎪⎝⎭.故1231131362S S S ++=++=.16.【答案】2【解析】设(),A x y ,则(),B x y --,则OM x =,AM y =,B点到x 轴的距离为||y y AM -==,所以11222ABM AOM BOM S S S xy xy =+=+=△△△,即2xy =.所以2k =.17.【答案】(1)由题意知0.56tv =⨯,所以3t v=.即t 与v 之间的函数解析式为()30t v v=>.(2)当3t =时,有33v =,所以313v ==,即每天至少要植树1公顷.18.【答案】(1)因为爆炸前CO 浓度呈直线型增加,所以可设y 与x 的函数解析式为()110y k x b k =+≠.由图象可知1y k x b =+过点()0,4和点()7,46,所以14746b k b =⎧⎨+=⎩,,解得164.k b =⎧⎨=⎩,所以64y x =+,此时自变量x 的取值范围是07x ≤≤.因为爆炸后浓度成反比例下降,所以可设y 与x 的函数解析式为()220k y k x=≠.由图象知kiy x =过点()7,46,所以2467k =.所以2322k =.所以322y x=,此时自变量x 的取值范围是7x >.(2)当34y =时,由64y x =+,得6434x +=,5x =.所以撤离的最长时间为752-=(h ).所以撤离的最小速度为32 1.5÷=(km/h ).(3)当4y =时,由322y x=得,80.5x =,80.5773.5-=(h ).所以矿工至少在爆炸后73.5h 才能下井.19.【答案】(1)因为1OA OB OD ===,所以A ,B ,D 三点的坐标为()1,0A -,()0,1B ,()1,0D .(2)因为点A ,B 在一次函数y kx b =+的图象上,所以01k b b -+=⎧⎨=⎩,,解得11.k b =⎧⎨=⎩,所以一次函数的解析式为1y x =+.因为点C 在一次函数1y x =+的图象上,CD x ⊥轴,且1OD =,所以点C 的横坐标为1,纵坐标为112+=,即点C 的坐标为()1,2.又因为点C 在反比例函数my x=的图象上,所以2m =,所以反比例函数的解析式为2y x=.20.【答案】(1)把点A 的坐标代入14y x =-+,得41a -+=,解得3a =,所以()3,1A .把点A 的坐标代入22=k y x的,得23k =.所以函数2y 的解析式为23y x=.(2)由图象可知,当01x <<或3x >时,12y y <;当1x =或3x =时,12y y =;当13x <<时,12y y >.人教版九年级数学下册第二十七章综合测试卷01一、选择题(每小题3分,共42分)1.要做甲、乙两个形状相同的三角形框架,已有三角形框架甲,它的三边长分别是50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么符合条件的三角形共有()A .1种B .2种C .3种D .4种2.如图所示,在ABC △中,DE BC ∥,DF AB ∥,则下列等式错误的是()A .AE ADAB AC=B .CD DFAC AB=C .BE CDAE AD=D .BF BECF AE=3.在太阳光下,同一时刻物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么,影长为30m 的旗杆高为()A .20cmB .18cmC .16cmD .15cm4.如果一个三角形的一条高将这个三角形分成两个相似的三角形,那么这个三角形必是()A .等腰三角形B .任意三角形C .直角三角形D .直角三角形或等腰三角形5.如图所示,已知点M 是ABCD 上AB 边的中点,CM 交BD 于点E ,则图中阴影部分面积与ABCD 面积之比为()A .13B .14C .25D .5126.如图所示,ABC △与DEF △位似,且A 是OD 的中点,则等BCEF=()A .12B .13C .14D .237.如图所示,斜拉桥是利用一组钢索把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,图中1A B 1,22A B ,…,55A B .是斜拉桥上5条互相平行的钢索,并且1B ,2B ,3B ,4B ,5B .被均匀地固定在桥上,如果最长钢索180A B =1m ,最短钢索5520A B =m ,那么钢索33A B ,22A B 的长分别为()A .50m ,65mB .50m ,35mC .50m ,57.5mD .40m ,42.5m8.如图所示,若DAC ABC △∽△,则需满足()A .AC ABCD BC=B .CD BCDA AC=C .2CD AD DB = D .2AC BC CD= 9.如图所示,ABC △是等边三角形,它被一平行于BC 的矩形所截,AB 被截成三等份,则图中阴影部分的面积是ABC △面积的()A .19B .29C .13D .4910.如图所示,在ABC △中,3AB AD =,DE BC ∥,EF AB ∥,若9AB =,2DE =,则线段FC 的长度是()A .6B .5C .4D .311.在ABCD 中,10AB =,6AD =,E 是AD 的中点,在AB 上取一点F ,使CBF CDE △∽△,如图所示,则AF 的长是()A .5B .8.2C .6.4D .1.812.如图所示,在正方形ABCD 的外侧作等边ADE △,BE ,CE 分别交AD 于G ,H ,设CDH △,GHE △的面积分别为1S ,2S ,则()A .1232S S =B .1223S S =C .122S =D 122S =13.如图所示,把PQR △沿着PQ 的方向平移到P Q R '''△的位置,它们重叠部分的面积是PQR △面积的一半,若PQ =,则此三角形移动的距离PP '是()A .12B .2C .1D 114.(2012·贵州毕节中考)如图所示,在平面直角坐标系中,以原点O 为位似中心,将ABO △扩大到原来的2倍,得到A BO '△.若点A 的坐标是()12,,则点A '的坐标是()A .()24,B .()12-,-C .()24--,D .()2,1--二、填空题(每空3分,共18分)15.如图所示,两个三角形的关系是________(填“相似”或“不相似”),理由是________.16.在ABC △中,5AB =,2AC =,AD 平分BAC ∠交BC 于D ,DE AC ∥交AB 于E ,则BDE △与ABC△的周长之比是_____________.17.已知ABC △与DEF △相似且面积比为4:25,则ABC △与DEF △的相似比为________.18.如图所示,锐角三角形ABC 的边AB ,AC 上的高线CE ,BF 相交于点D ,请写出图中的两对相似三角形________.(用相似符号连接)19.ABO △的顶点坐标分别为()3,3A -,()3,3B ,()0,0O ,试将ABO △放大为EFO △,使EFO △与ABO △的相似比为2:1,则E 点的坐标为,F 点的坐标为________.20.如图所示,ABC △与A B C '''△是位似图形,点O 是位似中心,若2OA AA '=,8ABC S =△,则A B C S '''=△________.三、解答题(共60分)21.(10分)如图所示,90ACB CDA ∠=∠=︒,4AC =,8AB =,当AD 为何值时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.(10分)如图所示,学校的围墙外有一旗杆AB ,甲在操场上C 处直立3m 高的竹竿CD ,乙从C 处退到E 处恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离 1.5FE =m ;丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处退后6m 到1E 处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D ,与旗杆顶端B 也重合,量得114C E =m.求旗杆AB 的高.23.(12分)(2012·山东潍坊中考)如图所示,ABC △的两个顶点B ,C 在圆上,顶点A 在圆外,AB ,AC 分别交圆于E ,D 两点,连接EC ,BD .(1)求证:ABD ACE △∽△;(2)若BEC △与BDC △的面积相等,试判定ABC △的形状.24.如图所示,已知ABC △是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t (单位:s ),解答下列问题:(1)当2t =s 时,判断BPQ △的形状,并说明理由;(2)设BPQ △的面积为S (单位:2cm ),求S 与t 的函数解析式;(3)作QR BA ∥交AC 于点R ,连接PR ,当t 为何值时,APR PRQ △∽△?25.(14分)如图所示,在正方形ABCD 中,E 是BC 上的一点,连接AE ,作BF AE ⊥,垂足为H ,交CD 于F ,作CG AE ∥,交BF 于G 求证:(1)CG BH =;(2)2FC BF GF = ;(3)22FC GF AB GB=.第二十七章综合测试答案解析一、1.【答案】C【解析】由于甲和乙的对应边不确定,故有三种对应关系,即50cm 和20cm 是对应边,60cm 与20cm 是对应边,80cm 和20cm 是对应边,故选C .2.【答案】D【解析】DE BC ∥,AE AD AB AC ∴=,BE CD AE AD =,∴A ,C 正确;D F AB ∥,CDF CAB ∴△∽△,CD DFAC AB∴=,BF AD CF DC =.又AD AE DC BE =,BF AECF BE∴=,∴B 正确,D 错调,故选D .3.【答案】B【解析】设旗杆高为m x ,由题意得1.52.530x=,18x ∴=.4.【答案】D【解析】如图所示,若ADB ADC △∽△,则B C ∠=∠,AB AC ∴=,即ABC △为等腰三角形;若ADB CDA △∽△,则B CAD ∠=∠.90B BAD ∠+∠=︒ ,90CAD BAD ∠∴∠+=︒,即90BAC ∠=︒,ABC∴△为直角三角形,故该三角形为直角三角形或等腰三角形.5.【答案】A【解析】设BM E S x =△,DC AB ∥,CDE MBE ∴ △△,DE DCEB MB∴=.又因为M 是AB 的中点,AB DC =,21DE DC EB MB ∴==.2CDE MBE S DC S MB ⎛⎫∴= ⎪⎝⎭△△,即=4CDE S x△,4CDE S x ∴=△.MDE △与MBE △的高相同,2MED MEB S DES EB∴==△△,2MED x ∴=△,同理2BEC x ∴=△.23S DMB x x x ∴=+=△,又因为D M 是ABD △的中线,224DAM DMB S S x x x∴==+=△△,44312ABC D C D E BM E D AMS S S S S x x x x x ∴=++=+++= △△△阴+.41123ABCDS x S x ∴== 阴,故选A .6.【答案】A【解析】ABC △与DEF △位似,A BD E ∴∥,BC EF ∥,OA OBOD OE∴=,OBC OEF △∽△,BC OB OA EF OE OD ∴==.又因为A 是OD 的中点,12BC OA EF OD ∴==.7.【答案】A【解析】设12233445B B B B B B B B x ====.5511A B A B ∥,5511OA B OA B ∴ △△.555111A B OB A B OB ∴=,即5520=804OB OB x+,543OB x ∴=.同理333111A B OB A B OB =,222111A B OB A B OB =,334348043x x xA B x x ++∴=+,2243348043x xA B x x +∴=+.3350A B ∴=m ,2265A B =m .故选A .8.【答案】D【解析】C ∠ 是公共角,要使DAC ABC △∽△,∴只需AC CDCB AC=,即2AC CB CD = ,故选D .9.【答案】C 【解析】设AEFS x =△.由题意得AE EH HB ==,EF HG ∥,AEF AHG ∴△∽△,214AEF AHG S AE S AH ⎛⎫∴== ⎪⎝⎭△△,44AHG AEF S S x ∴==△△,43AH G AEF EH G F S S S x x x ∴=-=-=△△四边形.EF BC ∥,AEF ABC ∴△∽△,219AEF ABC S AE S AB ⎛⎫∴== ⎪⎝⎭△△.99ABC AEF S S x ∴==△△,31=93EHGF ABC S x S x ∴=四边形△.10.【答案】C【解析】DE BC ∥,EF AB ∥,四边形B F E D 为平行四边形,2BF DE ∴==.FC CE BF AE =,CE BDAE AD=,FC BD BF AD ∴=.又3AB AD =,9AB =,3AD ∴=,6BD =.6=23FC ∴,4FC ∴=.11.【答案】B 【解析】E 是AD 的中点,132DE AD =∴=.在ABCD 中,10CD AB ==,6BC AD ==.CBF CDE △∽△.CB BF CD DE ∴=,即6103BF=,1.8BF ∴=,10 1.88.2AF AB BF =-=-=.12.【答案】A【解析】设正方形的边长为x ,作EM AD ⊥于M.22EM AE x ∴==.9060150BAE BAG GAE ∠=∠+∠=︒+︒=︒,AB AE =,()1180150152AEG ∴∠=︒-︒=︒,601575EGH GAE AEG ∠=∠+∠=︒+︒=︒,同理75EHG ∠=︒,EG EH ∴=,EMH EMG ∴△≌△,∵EM CD ∥,22EMH S S ∴=△.EG EH = ,EMH CDH △∽△,2EMH CDH S ED S CD ⎛⎫∴= ⎪⎝⎭△△,即2132EMH x S S x ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭△,134EMH S S =△,211332242EMH S S S S ∴==⨯=△,即1232S S =,故选A .13.【答案】D【解析】由题意知R P RP ''∥,MP Q RPQ ' △△,2MP Q RPQS QP S QP ''⎛⎫∴= ⎪⎝⎭△△,即212=.1QP ∴'=,1PP '∴=-.14.【答案】C【解析】ABO △与A B O ''△位似,原点O 为位似中心,位似比为1:2,且不在同一象限,则点A '的横、纵坐标分别为点A 的横、纵坐标的2-倍.二、15.【答案】相似三边对应成比例,两三角形相似【解析】4652697.53===,三边对应成比例,两三角形相似.16.【答案】5:7【解析】AD 平分BAC ∠,BAD CAD ∠=∠∴.又DE AC ∥,EDA DAC ∠=∠∴,E D A E A D ∠=∠,D E A E =.DE AC ∥,BDE BCA ∴△∽△,DE BE AC BA ∴=,即525DE DE -=,107DE ∴=,105727DE AC ∴==.BDE ∴△与ABC △的周长之比为5:7.17.【答案】2:5【解析】相似三角形面积的比等于相似比的平方,面积比为4:25.相似比为2:5.18.【答案】BDE CDF △∽△,ABF ACE△∽△【解析】BF AC ⊥ ,CE AB ⊥,BFC AFB AEC BEC ∠=∠=∠=∠∴.BED CFD ∠=∠ ,BDE CDF ∠=∠,BDE CDF ∴△∽△.A A ∠=∠ ,AFB AEC ∠=∠,ABF ACE ∴△∽△.19.【答案】()6,6-或()6,6-()6,6或()6,6--【解析】把A ,B 两点的横坐标和纵坐标分别乘2或2-,即得到点E ,F 的横坐标和纵坐标.20.【答案】18【解析】2OA AA '= ,:2:3OA OA '∴=,:4:9ABC A B C S S '''=△△.8ABC S ∴=△,18A B C S '''∴=△.三、21.【答案】90ACB CDA ∠=∠=︒ ,当AB AC AC AD =时,ABC ACD △△,即844AD =,2A D ∴=.当AB ACCA CD=时,ABC CAD △△,即844CD=,2CD ∴=,AD ∴=.∴当2AD =或A D =时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.【答案】如图所示,设直线1F F 与AB ,CD ,11C D 分别交于点G ,M ,N ,令BG x =,GM y =.MD GB ∥,DM MFBG GF ∴=.又 1.5DM DC EF =-=,3MF CE ==,1.533x y=+.又1ND GB ∥,111D N NF BG GF ∴=.又1 1.5D N DM ==,136GF GM MF FF y =++=++1, 1.5463x y ∴=++,解方程组 1.5331.5463x y xy ⎧=⎪+⎪⎨⎪=⎪++⎩,得915x y =⎧⎨=⎩.∴旗杆AB 的高为9 1.510.5+=(m ).23.【答案】(1)证明:∵弧ED 所对的圆周角相等,EBD ECD ∠=∠∴.又A A ∠=∠,ABD ACE ∴△∽△.(2)解法1:BEC BCD S S = △△,BCE ABC BEC S S S =-△△△,ABD BAC BCD S S S =-△△△,ACE ABD S S ∴=△△.又由(1)知ABD ACE △△,∴对应边之比等于1,AB AC ∴=,即ABC △为等腰三角形.解法2:连接ED .BEC △与BCD △的面积相等,有公共底边BC ,∴高相等,即E ,D 两点到BC 的距离相等,ED BC ∴∥.BCE CED ∠=∠∴.又CED CBD ∠=∠,BCE CBD ∠=∠∴.由(1)知ABD ACE △∽△,ABD ACE ∠=∠∴,ABD CBD ACE BCE ∠+∠=∠+∠,ABC ACB ∴∠=∠,AB AC ∴=,即ABC △为等腰三角形.24.【答案】(1)BPQ △是等边三角形.理由:当2t =s 时,212AP =⨯=,224BQ =⨯=.624BP AB AP =∴=--=.BQ BP ∴=.又60B ∠=︒,BPQ ∴△是等边三角形.(2)过Q 作QE AB ⊥,垂足为E .由2QB t =,得2 60Q E tsin =,AP t =,故6PB t =-.()11622BPQ S BP QE t ∴=⨯=-△.(3)QR BA ∥,60QRC A ∠=∠=∴︒,60RQC B ∠=∠=︒.又60C ∠=︒,QRC ∴△是等边三角形,62QR RC QC t ∴===-.又BE t =,662EP AB AP BE t t t ∴=--=--=-.EP QR ∥,EP QR =,故四边形EPRQ 是平行四边形.PR EQ ∴=.而APR PRQ △△,PR QRAP PR ∴=,即t ,65t ∴=.∴当65t =s 时,APR PRQ △△.25.【答案】(1)BF AE ⊥ ,CG AE ∥,CG BF ∴⊥.∵在正方形ABCD 中,90ABH CBG ∠+∠=︒,且90CBG BCG ∠+∠=︒,90BAH ABH ∠+∠=︒,BAH CBG ∠=∠∴,ABH BCG ∠=∠,AB BC =,ABH BCG ∴△≌△,CG BH ∴=.(2)BFC CFG ∠=∠ ,90BCF CGF ∠=∠=︒,CFG BFC ∴△∽△,FC GFBF FC∴=,即2FC BF GF = .(3)∵在Rt BCF △中,CG BF ⊥,CBG FBC ∠=∠∴,90BGC BCF ∠=∠=︒,CBG FBC ∴△∽△.BC BG BF BC ∴=,2 BC BG BF ∴= .AB BC = ,2AB BG BF ∴= ,22FC FG BF FG AB BG BF BG ∴== ,即22FC GF AB GB=.人教版九年级数学下册第二十八章综合测试卷01一、选择题(每小题3分,共36分)1.如图所示,在正方形网格中,tan α等于()A .1B .2C .12D .52.如图所示,已知在Rt ABC △中,90C ∠=︒,4AC =,1tan 2A =,则BC 的长是()A .2B .8C .25D .453.已知α为锐角,()1cos 902α︒-=,则α∠的度数为()A .30︒B .45︒C .60︒D .90︒4.如图所示,在Rt ABO △中,斜边1AB =.若OC BA ∥,36AOC ∠=︒,则()A .点B 到AO 的距离为sin 54︒B .点B 到AO 的距离为tan 36︒C .点A 到OC 的距离为sin 36sin 54︒︒D .点A 到OC 的距离为cos 36sin 54︒︒5.将()05-,()33-,()2cos30--︒这三个实数按从小到大的顺序排列,正确的顺序是()A .()()()3235cos 30----︒<<B .()()()32cos 3053--︒--<<C .()()()3253cos 30----︒<<D .()()()32cos 3035--︒--<<6.一直角三角形的两条边长分别为3,4,则较小锐角的正切值为()A .34B .43C .34或73D .以上答案都不对7.若A ∠是锐角,且2sin 5A =,则A ∠的取值范围是()A .030A ︒︒<∠<B .3045A ︒︒<∠<C .4560A ︒︒<∠<D .6090A ︒︒<∠<8.河堤横断面如图所示,堤高 5 m BC =,迎水坡AB 的坡比为BC 与水平宽度AC 之比),则AC 的长为()A .B .10mC .15mD .9.在等腰ABC △中,一腰上的高为1,腰与底边的夹角为15°,则ABC △的面积为()A .1B C .12D .1410.若菱形的边长为1cm ,其中一内角为60°,则它的面积为()A 2B 2C .22 cmD .211.如图所示,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,且2BE AE =,已知AD =,tan BCE ∠,那么CE 等于()A .B .2-C .D .12.下图是以ABC △的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos5ACD ∠=,4BC =,AC 则的长为()A .1B .203C .3D .163二、填空题(每小题3分,共24分)13.计算2sin 60tan 30sin 45︒÷︒+︒=________.14.如图所示,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,则sin A =________.15.如图所示,P 为α∠的边OA 上一点,且P 点的坐标为()3,4,则sin cos αα+=________.16.图是某超市自动扶梯的示意图,大厅两层之间的距离 6.5 m h =,自动扶梯的倾斜角为30°,若自动扶梯运行速度为0.5 m/s v =,则顾客乘自动扶梯上一层楼的时间为________s .17.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200 m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图所示),那么,由此可知B ,C 两地相距________m .18.数学实践探究课中,老师布置给同学们一个测量学校旗杆的高度的作业.如图所示,小民所在的学习小组在距离旗杆底部10m 的地方,用测角仪(测角仪的高度忽略不计)测得旗杆顶端的仰角为60°,则旗杆的高度是________m .19.如图所示,在顶角为30°的等腰三角形ABC △中,AB AC =,若过点C 作CD AB ⊥于点D ,则15BCD ∠=︒,根据图形计算tan 15︒=________.20.如图所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得 4 m CD =,10 m BC =,CD 与地面成30°角,且此时测得1m 长的杆的影子长为2m ,则电线杆的高度约为________m .(结果保留到0.1 m 1.41≈ 1.73≈)三、解答题(共60分)21.(10分)(1)计算:()1120122|3tan 303π-⎛⎫--++︒ ⎪⎝⎭.(2)先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+-+⎝⎭,其中()20121tan 60a =-+︒.22.(8分)如图所示,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A ,B (不计大小),树干垂直于地面,量得=2 m AB ,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到1m ) 1.73≈ 1.41≈)23.(9分)一副直角三角板如图所示放置,点C 在FD 的延长线上,AB CF ∥,90F ACB ∠=∠=︒,45E ∠=︒,60A ∠=︒,10AC =,试求CD 的长.24.(12分)如图所示,梯形ABCD 是拦水坝的横截面(图中i =DE 与水平宽度CE 的比),60B ∠=︒, 6 m AB =, 4 m AD =,求拦水坝的横截面ABCD 的面积.(结果精确到20.1 m ,1.414≈)25.(10分)如图所示,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡向上走到C 处,这时,30 m PC =,点C 与点A 恰好在同一水平线上,点A ,B ,P ,C 在同一平面内.(1)求居民楼AB 的高度;(2)求C ,A 之间的距离.(精确到0.1m 1.41≈ 1.73≈ 2.45≈)26.(11分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100m 的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角是60°,然后沿平行于AB 的方向水平飞行41.9910 m ⨯到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是45°,求两海岛间的距离AB .第二十八章综合测试答案解析一、1.【答案】B 【解析】2tan ==21ααα=的对边的邻边.2.【答案】A 【解析】∵1tan 2BC A AC ==,所以122BC AC ==.3.【答案】A【解析】∵()1cos 902α︒-=,∴9060α︒-=︒,∴30α∠=︒.4.【答案】C【解析】B 到AO 的距离是指BO 的长.∵AB OC ∥,∴36BAO AOC ∠=∠=︒.在Rt BOA △中,∵90BOA ∠=︒,1AB =,∴.sin 36BOAB︒=,∴sin 36=sin 36BO AB =︒︒,故选项A 、B 均错误.过A 作AD OC ⊥于D ,则AD 的长是点A 到OC 的距离,∵36BAO ∠=︒,90AOB ∠=︒,∴54ABO ∠=︒.∵sin 36AD AO ︒=,∴·sin 36AD AO =︒.∵sin 54AOAB=,∴·sin 54AO AB -︒,∴·sin54·sin 36sin54sin36AD AB =︒︒=︒⋅︒,故选项C 正确,D 错误.5.【答案】A【解析】∵(01=,(3=-()224cos3023--⎛-︒=-= ⎝⎭,∴413-<,即((()32cos30--︒<<.6.【答案】C【解析】当4为斜边时,较小锐角的正切值为3;当4为直角边时,较小锐角的正切值为34.7.【答案】A 【解析】∵1sin302︒=,2sin 5A =,∴sinA sin 30︒<,∴30A ︒∠<.8.【答案】A【解析】∵tanBC A AC ==5AC =,∴AC =.9.【答案】A【解析】如图,过B 作BD AC ⊥,在Rt ABD △中,21530BAD ∠=⨯︒=︒,∴2AB =,∴12112ABC S =⨯⨯=△.10.【答案】A【解析】如图所示,作AE BC ⊥于点E .∵sin AE B AB=,∴()sin 1sin 60cm 2AE AB B ==⨯︒= ,∴()2=1cm 22ABCD S BC AE =⨯= 菱形.11.【答案】D【解析】∵tan BCE =∠,∴=30BCE ︒∠,∴=60B ︒∠.∵sin AD B AB =,∴6sin AD AB B ===.又2BE AE =,∴226433BE AB ==⨯=.∵tan BE BCE CE =∠,∴4tan tan30BE CE BCE ===︒∠.12.【答案】D【解析】∵AB 为直径,∴90ACB ∠=︒,∴90ACD BCD ∠+∠=︒.∵CD AB ⊥,∴90BCD B ∠+∠=︒,∴B ACD ∠=∠.∵3cos 5ACD ∠=,∴3cos =5B ,∴4tan 3B =.∵4BC =,4tan 43AC AC B BC ===,∴163AC =.二、13.【答案】2【解析】2231sin 60tan 30sin 45223222⎛︒÷︒+︒==+= ⎝⎭.14.【答案】45【解析】5AB ===,4sin 5BC A AB ==.15.【答案】75【解析】如图所示,过点P 作PB 垂直x 轴于点B .∵P 点的坐标为()3,4,∴3OB =,4PB =,∴5OP =.∴437sin cos =555PB OB OP OP αα+=+=+.16.【答案】26【解析】 6.5131sin 302h AB ===︒,∴13260.5AB t v ===(s ).17.【答案】200【解析】由题意得30CAB ∠=︒,120ABC ∠=︒,∴30ACB ∠=︒,∴CAB ACB ∠=∠,∴200 m AB BC ==.18.【答案】【解析】由题意得旗杆的高度是10tan 6010⨯︒==m ).19.【答案】2【解析】设CD x =,∵30A ∠=︒,∴2AC x =,∴2AB x =.∵tan CD A AD =,∴tan tan 30CD xAD A ===︒,∴(22DB AB AD x x =-==,∴(2tan 152x DBCD x-︒===-20.【答案】8.7【解析】如图D-6所示,延长AD ,BC ,交于点F ,作DE CF ⊥于点E .∵30DCE ∠=︒, 4 m CD =,∴ 2 m DE =,CE ===m ).∵1m 长的杆的影子的长为2m ,∴12DE EF =,∴2 4 m EF DE ==,∴(10414 m BF BC CE EF =++=+=+.∴12AB BF =,即(111478.722AB BF ==+=≈(m ).三、21.【答案】(1)解:原式=132303-+-⨯==.(2)解:原式()()()2121=11a a a a a a-++++-()()313=111a a a a a a +=+-- ,把()20121tan601a =-+︒===.22.【答案】解:设OC x =,在Rt AOC △中,∵45ACO ∠=︒,∴OA OC x ==.在Rt BOC △中,∵30BCO ∠=︒,∴·tan 303OB OC x =︒=.∵23AB OA OB x x =-=-=,解得35x =+≈.因此,C 处到树于DO 的距离CO 约为5m .23.【答案】解:如图,过点B 作BM FD ⊥于点M .在ACB △中,90ACB ∠=︒,60A ∠=︒,10AC =,∴30ABC ∠=︒,tan 60BC AC =︒=.∵AB CF ∥,∴30BCM ABC ∠=∠=︒.∴1sin302BM BC =︒== ,1cos30152CM BC === .在EFD △中,90F ∠=︒,45E ∠=︒,∴45EDF ∠=︒,∴MD BM ==15CD CM MD =-=-24.【答案】解:过点A 作AF BC ⊥,垂足为F .在Rt ABF △中,60B ∠=︒, 6 m AB =,∴sin 6sin60AF AB B ==︒=(m ),cos 6cos603BF AB B ==︒=(m ).∵AD BC ∥,AE BC ⊥,DE BC ⊥,∴四边形AFED 是矩形.∴DE AF ==, 4 m FE AD ==.在Rt CDE △中,ED i EC ==∴9EC ==(m ).∴34916BC BF FE EC =++=++=(m ).∴()()()211=4+1652.0m 22ABCD S AD BD DE +=⨯⨯≈ 梯形因此,拦水坝的横截面ABCD 的面积约为252.0 m .25.【答案】(1)解:过点P 作PD AC ⊥,垂足为D ,则45CPD PCD ∠=∠=︒,30APD ∠=︒.在Rt PCD △中,sin45CD PD PC ==︒=.易得四边形ABPD 为矩形,∴21.2AB PD ==≈(m ).(2)解:在Rt APD △中,tan AD APD PD ∠==∴AD =.∴33.4AC AD DC =+=≈(m ).26.【答案】解:如图,过点A 作AE CD ⊥于点E ,过点B 作BF CD ⊥,交CD 的延长线于点F ,连接AB .∵AB CD ∥,∴90AEF EFB ABF ∠=∠=∠=︒,∴四边形ABFE 为矩形,∴AB EF =,AE BF =.由题意可知:1100200900AE BF ==-=(m ),41.9910 m=19900 m CD =⨯.∴在Rt AEC △中,60C ∠=︒,900 m AE =,∴tan 60AE CE ===︒m ).在Rt BFD △中,45BDF ∠=︒,900 m BF =.∴900===900tan 451BF DF ︒(m )∴(1990090020800AB EF CD DF CE ==+-=+-=-m ).因此,两海岛之间的距离AB 是(20800-m .人教版九年级数学下册第二十九章综合测试卷01一、选择题(每小题3分,共36分)1.投影不可能为一条线段的是()A.线段B.正方形C.正五边形D.球2.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的3.两个不同长度的物体,在同一时刻同一地点的太阳光下,得到的投影的长度关系是()A.相等B.长的较长C.短的较长D.不能确定4.在太阳光的投影下,正方形所形成的影子可能是()A.正方形B.平行四边形或一条线段C.矩形D.菱形5.(2012·湖南益阳中考)下列命题是假命题的是()A.中心投影下,物高与影长成比例B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径6.(2012·湖北随州中考)如图所示,下列四个立体图形中,主视图与左视图相同的有()A.1个B.2个C.3个D.4个7.如图是由一些完全相同的小立方块搭成的立体图形的三视图,那么搭成这个立体图形所用的小立方块的块数是()A.5B.6C.7D.88.(2012·湖北黄冈中考)如图所示,水平放置的圆柱体的三视图是()A B C D9.用两张完全相同的矩形纸片分别卷成两个形状不同的柱面(圆柱的侧面),设较高圆柱的侧面积和底面半径分别是1S ,和1r ,较矮圆柱的侧面积和底面半径分别是2S 和2r ,那么()A .12S S =,12r r =B .12S S =,12>r r C .12S S =,12<r r D .12S S ≠,12r r ≠10.长方体的主视图与左视图如图所示(单位:cm ),则其俯视图的面积是()A .122cmB .82cmC .62cmD .42cm 11.(2012·黑龙江鸡西中考)小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图所示),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的展开图可能是()A B C D12.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A .37B .33C .24D .21二、填空题(每空3分,共24分)13.如图所示是由若干个大小相同的小正方体堆砌而成的立体图形,那么其三视图中面积最小的是________。
人教版九年级数学上册第21章、22章综合测试题(含答案)
九年级上册21章、22章测试题(答案)学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 14 小题,每小题 3 分,共 42 分)1.已知一元二次方程x2+px+3=0的一个根为−3,则p的值为()A.1B.2C.3D.42.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0, 3),则点B的坐标为()A.(2, 3)B.(3, 2)C.(3, 3)D.(4, 3)3.方程(m−2)x2−√3−mx+14=0有两个实数根,则m的取值范围()A.m>52B.m≤52且m≠2C.m≥3D.m≤3且m≠24.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①b2−4ac>0;②4a−2b+c<0;③2a−b=0;④am2+bm<a−b(m≠−1),其中正确结论的个数是()A.4个B.3个C.2个D.1个5.下列方程是一元二次方程的一般形式的是()A.(x−1)2=16B.3(x−2)2=27C.5x2−3x=0D.√2x2+2x=86.若抛物线y=ax2+bx+c如图所示,下列四个结论:①abc<0;②b−2a<0;③a−b+c<0;④b2−4ac>0.其中正确结论的个数是()A.1B.2C.3D.47.已知x2+5x+1=0,则x+1x的值为()A.5B.1C.−5D.−18.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A. B.C. D.9.对于任意实数x,多项式x2−2x+3的值是一个()A.正数B.负数C.非负数D.不能确定10.长为20cm,宽为10cm的矩形,四个角上剪去边长为xcm的小正方形,然后把四边折起来,作成底面为ycm2的无盖的长方体盒子,则y与x(0<x<5)的关系式为()A.y=(10−x)(20−x)B.y=10×20−4x2C.y=(10−2x)(20−2x)D.y=200+4x211.一人乘雪橇沿坡度为1:√3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关系为第 1 页S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米B.36米C.36√3米D.18√3米12.一边靠墙(墙长7m),另三边用14m的木栏围成一个长方形,面积为20m2,这个长方形场地的长为()A.10m或5mB.5mC.4mD.2m13.用配方法解方程x2−2x=3时,原方程应变形为()A.(x+1)2=2B.(x−1)2=2C.(x+1)2=4D.(x−1)2=414.已知抛物线y=kx2(k>0)与直线y=ax+b(a≠0)有两个公共点,它们的横坐标分别为x1、x2,又有直线y=ax+b与x轴的交点坐标为(x3, 0),则x1、x2、x3满足的关系式是()A.x1+x2=x3B.1x1+1x2=1x3C.x3=x1+x2x1x2D.x1x2+x2x3=x1x3二、填空题(共 8 小题,每小题 3 分,共 24 分)15.若AB2+AB=4,则AB=________.16.把抛物线y=x2+4x改写成y=a(x+ℎ)2+k的形式为________.17.若代数式(x−4)2与代数式9(4−x)的值相等,则x=________.18.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2, 0)与y轴相交于点C,点D在该抛物线上,坐标为(m, c),则点A的坐标是________.19.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:________.20.关于x的一元二次方程x2−6x+2k=0有两个不相等的实数根,则实数k的取值范围是________.21.观察下列各图中小球的摆放规律,若第n个图中小球的个数为y,则y与n的函数关系式为________22.如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8, 9),则这个二次函数的表达式为________,小孩将球抛出了约________米(精确到0.1m).三、解答题(共 5 小题,共 54 分)23.(10分)已知a、b、c均为有理数,判定关于x的方程ax2−3x−√5x+√2x2+c=b−1是不是一元二次方程?如果是,请写出二次项系数、一次项系数及常数项;如果不是,请说明理由.24.(10分) 如图,把一张长15cm,宽12cm的矩形硬纸板的四周各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为xcm.(1)请用含x的代数式表示长方体盒子的底面积;(2)当剪去的小正方形的边长为多少时,其底面积是130cm2(3)试判断折合而成的长方体盒子的侧面积是否有最大值?若有,试求出最大值和此时剪去的小正方形的边长;若没有,试说明理由.25.(10分)已知函数y=(9k2−1)x2+2kx+3是关于x的二次函数,求不等式k−12≥第 3 页4k+13−1的解集.26.(12分) 已知函数y =x 2−2x −3的图象,根据图象回答下列问题.(1)当x 取何值时y =0.(2)方程x 2−2x −3=0的解是什么?(3)当x 取何值时,y <0?当x 取何值时,y >0?(4)不等式x 2−2x −3<0的解集是什么?27.(12分) 如图,已知一条直线过点(0, 4),且与抛物线y =14x 2交于A ,B 两点,其中点A 的横坐标是−2.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由.(3)过线段AB 上一点P ,作PM // x 轴,交抛物线于点M ,点M 在第一象限,点N(0, 1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?答案1.D2.D3.B4.B5.C6.C7.C8.C9.A10.C11.B12.B13.D14.B15.−1+√172或−1−√17216.y =(x +2)2−417.4或−518.(−2, 0)19.y =x 2−32x20.k <9221.y =n 2−n +122.y =−18x 2+2x +116.523.解:原方程可化为:(a +√2)x 2−(3+√5)x +(c −b +1)=0,∵a 是有理数,∴当a +√2≠0,∴方程为一元二次方程,二次项系数、一次项系数及常数项分别是:a +√2,−(3+√5),c −b +1;24.解:(1)(15−2x)(12−2x)cm 2;(2)依题意得:(15−2x)(12−2x)=130,即2x 2−27x +25=0,解得x 1=1,x 2=252(不合题意,舍去),∴当剪去的小正方形的边长为1cm 时,其底面积是130cm 2;(3)设长方体盒子的侧面积是S ,则S =2[(15−2x)x +(12−2x)x],即S =54x −8x 2,S =−8(x −278)2+7298,(0<x <6), 当x =278时,S 最大值=7298,即当剪去的小正方形的边长为278cm 时,长方体盒子的侧面积有最大值7298cm 2. 25.解:∵函数y =(9k 2−1)x 2+2kx +3是关于x 的二次函数,∴9k 2−1≠0,解得:k ≠±13,k −12≥4k +13−1 3(k −1)≥2(4k +1)−6,解得:k ≤15,故不等式k−12≥4k+13−1的解集为:k ≤15且k ≠−13. 26.解:(1)由图象知,函数y =x 2−2x −3与x 轴的交点为(−1, 0),(3, 0), 所以当x =−1或3时,y =0;(2)由图象知,x 2−2x −3=0的解为x 1=−1,x 2=3;(3)由图象知,当−1<x <3时,y <0,当x <−1或x >3时,y >0;(4)不等式x 2−2x −3<0的解集为−1<x <3.27.解:(1)∵点A 是直线与抛物线的交点,且横坐标为−2,∴y =14×(−2)2=1,A 点的坐标为(2, −1),设直线的函数关系式为y =kx +b ,将(0, 4),(−2, 1)代入得{b =4−2k +b =1, 解得{k =32b =4, ∴直线y =32x +4,∵直线与抛物线相交,∴32x +4=14x 2,解得:x =−2或x =8,第 5 页当x =8时,y =16,∴点B 的坐标为(8, 16);(2)如图1,过点B 作BG // x 轴,过点A 作AG // y 轴,交点为G , ∴AG 2+BG 2=AB 2,∵由A(−2, 1),B(8, 16)可求得AB 2=325.设点C(m, 0),同理可得AC 2=(m +2)2+12=m 2+4m +5, BC 2=(m −8)2+162=m 2−16m +320,①若∠BAC =90∘,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2−16m +320, 解得:m =−12;②若∠ACB =90∘,则AB 2=AC 2+BC 2,即325=m 2+4m ++=m 2−16m +320, 解得:m =0或m =6;③若∠ABC =90∘,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2−16m +320+325, 解得:m =32;∴点C 的坐标为(−12, 0),(0, 0),(6, 0),(32, 0)(3)设M(a, 14a 2),如图2,设MP 与y 轴交于点Q ,在Rt △MQN 中,由勾股定理得MN =√a 2+(14a 2−1)2=14a 2+1, 又∵点P 与点M 纵坐标相同,∴32x +4=14a 2,∴x =a 2−166,∴点P 的纵坐标为a 2−166, ∴MP =a −a 2−166, ∴MN +3PM =14a 2+1+3(a −a 2−166)=−14a 2+3a +9, ∴当a =−32×(−14)=6,又∵2≤6≤8,∴取到最小值18,∴当M 的横坐标为6时,MN +3PM 的长度的最大值是18.。
2024-2025学年人教版九年级数学上册第一阶段《第21—24章》综合练习题(附答案)
2024-2025学年人教版九年级数学上册第一阶段《第21—24章》综合练习题(附答案)一.选择题(共18分)1.下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1B.αβ=﹣1C.α2+α=1D.α2+β2=1 3.抛物线y=﹣3(x﹣4)2﹣5的对称轴是()A.直线x=4B.直线x=5C.直线x=﹣4D.直线x=﹣5 4.如图,A、C、B是⊙O上三点,若∠AOC=36°,则∠ABC的度数是()A.22°B.54°C.36°D.18°5.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③△BDE≌△BDC;④BD⊥CE;⑤若∠ABE+∠AEB=22.5°,则AD =CD.其中结论正确的个数是()A.2个B.3个C.4个D.5个6.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣2﹣10123…y…﹣40220﹣4…下列结论:①抛物线开口向下;②当﹣1<x<2时,y>0;③抛物线的对称轴是直线;④函数y=ax2+bx+c(a≠0)的最大值为2.其中所有正确的结论为()A.①②③B.①③C.①③④D.①②③④二.填空题(共18分)7.已知关于x的一元二次方程2x2﹣mx﹣m=0的一个根是,则m的值为,另一个根为.8.在平面直角坐标系中,P(,0),将P绕O点逆时针旋转60°,得到的点的坐标为.9.如图,AB是⊙O的直径,∠BAC=30°,D是弧AC上任意一点,则∠D=.10.已知关于x的一元二次方程(m﹣2)x2+x﹣1=0有两个不相等的实数根,则m的取值范围是.11.如图,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C按逆时针方向旋转后得到△A'B'C,点A'恰好落在BC边上,则图中阴影部分的面积为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M 是BC的中点,N是A'B'的中点,连接MN,若BC=2,∠ABC=60°,则线段MN的最大值为.三.解答题(共84分)13.若关于x的一元二次方程x2+bx﹣2=0有一个根是x=2,求b的值及方程的另一个根.14.如图,大桥的圆拱的跨度CD是80米,拱高EF是20米,求这个圆拱所在的圆的半径.15.阅读下面材料:小明在解方程(2x﹣3)2+4(2x﹣3)﹣5=0时,发现括号内的代数式是完全相同的,于是采用了如下方法:令t=2x﹣3①,则原方程为t2+4t﹣5=0.解得t1=﹣5,t2=1,分别代入①后算出了x的值.解决以下问题:(1)直接写出方程(2x﹣3)2+4(2x﹣3)﹣5=0的根为;(2)利用材料中的方法求抛物线y=(5x+6)2﹣(5x+6)﹣12与x轴的交点坐标;(3)直接写出方程(2x2+1)2﹣9(2x2+1)=0有个实根.16.如图,已知△ABC为直角三角形,∠A=30°,∠ACB=90°,BC=4,D是直线AB 上一点.以CD为斜边作等腰直角三角形CDE,求AE的最小值.17.已知:射线AB.求作:△ACD,使得点C在射线AB上,∠D=90°,∠A=30°.作法:如图,①在射线AB上取一点O,以O为圆心,OA长为半径作圆,与射线AB相交于点C;②以C为圆心,OC为半径作弧,在射线AB上方交⊙O于点D;③连接AD,CD.则△ACD即为所求的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OD.∵AB为⊙O的直径,∴∠ADC=°.∵OD=OC=CD,∴△OCD等边三角形.∴∠DOC=60°.∵点A,D都在⊙O上,∴∠DAC=.(填推理的依据)∴∠DAC=30°.△ACD即为所求的三角形.18.二次函数y=ax2+bx+c(a≠0)的自变量x与对应的函数y的值(部分)如表所示:x……﹣3﹣2﹣1012……y……m71﹣117……解答下列问题:(Ⅰ)求这个二次函数的解析式;(Ⅱ)表格中m的值等于;(Ⅲ)在直角坐标系中,画出这个函数的图象;(Ⅳ)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.19.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,销量为件;(用含x的式子表示)(2)为了扩大销售,尽快减少库存,商场决定采取降价措施.但需要平均每天盈利1200元,求每件衬衫应降价多少元?20.如图,AB是⊙O的直径,点C在⊙O上,点E是的中点,延长AC交BE的延长线于点D,点F在AB的延长线上,EF⊥AD,垂足为G.(1)求证:GF是⊙O的切线;(2)求证:CE=DE;(3)若BF=1,EF=,求⊙O的半径.21.如图,在平面直角坐标系中,直线y=2x+4与x轴,y轴分别交于A,B两点,抛物线y=ax2+x+c(a≠0)经过A,B两点与x轴相交于点C.(1)求抛物线的解析式;(2)若点M为直线BC上方抛物线上任意一点,当△MBC面积最大时,求出点M的坐标;(3)若点P在抛物线上,连接PB,当∠PBC+∠OBA=45°时,请直接写出点P的坐标.参考答案一.选择题(共18分)1.解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:A.2.解:∵方程x2+x﹣1=0的两实根为α、β,∴α+β=﹣1,αβ=﹣1,α2+α﹣1=0,∴α2+α=1.∴α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3.观察选项,只有选项D符合题意.故选:D.3.解:∵抛物线y=a(x+h)2+k的对称轴是直线x=﹣h,∴抛物线y=﹣3(x﹣4)2﹣5的对称轴为直线x=4.故选:A.4.解:∵∠AOC=36°,∴∠ABC=∠AOC=×36°=18°.故选:D.5.解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.故①正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°﹣90°=90°.∴BD⊥CE;故④正确;②∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故②正确;③∵BD⊥CE,∴BE2=BD2+DE2,在Rt△BCD中,∵BC2=CD2+BD2,而ED不一定等于CD,∴BE不一定等于BC,∴△BDE≌△BDC不一定成立,故③错误;⑤∵∠ABE+∠AEB=22.5°,∴∠BAE=180°﹣(∠ABE+∠AEB)=157.5°,∴∠DAC=360°﹣∠EAD﹣∠BAC﹣∠BAE=360°﹣90°﹣90°﹣157.5°=22.5°,Rt△BDE中,∠ABD=90°﹣∠DEA﹣(∠ABE+∠AEB)=90°﹣45°﹣22.5°=22.5°,又∵∠ABD=∠ACE.∴∠ACE=ABD=22.5°,∴∠ACE=∠DAC,∴AD=CD,故⑤正确.故选:C.6.解:由表格可知,抛物线的对称轴是直线x==,故③正确,由抛物线的对称轴可知,当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故抛物线y=ax2+bx+c的开口向下,故①正确,由表格数据可知,当﹣1<x<2时,y>0,故②正确;根据表格数据可知当x=时,y>2,故抛物线的最大值大于2,故④错误,故选:A.二.填空题(共18分)7.解:将x=代入2x2﹣mx﹣m=0,∴+﹣m=0,∴m=1,设另外一根为x,∴x==,∴x=1,故答案为:1,1.8.解:∵P(,0),将P绕O点逆时针旋转60°到点A,如图,∴OA=OP=,∠AOP=60°,作AB⊥x轴于点B,∴∠OAB=30°,∴OB=OA=,∴AB==.所以点A的坐标为(,).故答案为:(,).9.解:∵AB是直径,∴∠ACB=90°,∵∠BAC=30°,∴∠ABC=60°,∵∠ADC+∠ABC=180°,∴∠ADC=180°﹣60°=120°,故答案为:120°.10.解:根据题意得:m﹣2≠0,解得:m≠2,Δ=1+4(m﹣2)>0,解得:m,综上可知:m且m≠2,故答案为:m且m≠2.11.解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,=×CD×DB′=×1×=,∴S△CDB′S扇形B′CB==,﹣S△CDB′=﹣,则阴影部分的面积为:S扇形B′CB故答案为:﹣.12.解:连接CN.在Rt△ABC中,∵∠ACB=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵NB′=NA′,∴CN=A′B′=2,∵CM=BM=1,∴MN≤CN+CM=3,∴MN的最大值为3,故答案为3.三.解答题(共84分)13.解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣2,解得t=﹣1,b=﹣1,即b的值为﹣1,方程的另一个根为﹣1.14.解:延长EF到O,使得OC=OE,则O为圆心,∵EF为拱高,∴OE⊥AB,∴CF=CD=40(米),设圆弧所在圆O的半径为x米,则OF=(x﹣20)米,在Rt△OCF中,由勾股定理得:CF2+OF2=OC2,即402+(x﹣20)2=x2,解得:x=50,答:圆弧所在圆的半径为50米.15.解:(1)令t=2x﹣3①,则原方程为t2+4t﹣5=0,解得t1=﹣5,t2=1,把t1=﹣5,t2=1分别代入①得:2x﹣3=﹣5或2x﹣3=1,解得x=﹣1或x=2,故答案为:x=﹣1或x=2;(2)令y=0,则(5x+6)2﹣(5x+6)﹣12=0,令5x+6=t①,则原方程为t2﹣t﹣12=0,解得t1=﹣3,t2=4,把t1=﹣3,t2=4分别代入①得:5x+6=﹣3或5x+6=4,解得x=﹣或x=﹣,∴抛物线y=(5x+6)2﹣(5x+6)﹣12与x轴的交点坐标为(﹣,0),(﹣,0);(3)令2x2+1=t①,则原方程为t2﹣9t=0,解方程得:t1=0,t=9,把t1=0,t=9代入①得:2x2+1=0(不成立)或2x2+1=9,解得x=±2.∴方程(2x2+1)2﹣9(2x2+1)=0有两个实数根,故答案为:2.16.解:如图,作CH⊥AB于H,取CD的中点O,连接OE,OH,EH,作AG⊥EH交EH 的延长线于G.∵∠CED=∠CHD=90°,CO=OD,∴OE=OH=OC=OD,∴C,E,H,D四点共圆,∴∠EHC=∠EDC=45°,∴∠AHG=90°﹣∠EHC=45°,∴点E的运动轨迹是直线GH,当AE与AG重合时,AE的值最小,在Rt△ABC中,∵BC=4,∠CAB=30°,∴AC=BC=4,AH=AC•cos30°=6,∵AG⊥HG,∴∠G=90°,∵∠AHG=∠GAH=45°,∴AG=GH=AH=3,∴AE的最小值为3,17.解:(1)补全的图形如图所示:(2)连接OD.∵AB为⊙O的直径,∴∠ADC=90°.∵OD=OC=CD,∴△OCD等边三角形.∴∠DOC=60°.∵点A,D都在⊙O上,∴∠DAC=∠DOC(一条弧所对的圆周角等于它所对圆心角的一半),∴∠DAC=30°.△ACD即为所求的三角形.故答案为:90,(一条弧所对的圆周角等于它所对圆心角的一半).18.解:(Ⅰ)由表格可知,该函数有最小值,当x=0时,y=﹣1,当x=﹣1和x=1时的函数值相等,即该二次函数图象的开口方向向上,对称轴是直线x=0,顶点坐标为(0,﹣1),设二次函数为y=ax2﹣1,把x=1,y=1代入得,1=a﹣1,解得a=2,∴二次函数的解析式为y=2x2﹣1;(Ⅱ)把x=﹣3代入y=2x2﹣1得,y=17;∴m=17,故答案为17;(Ⅲ)在直角坐标系中,画出这个函数的图象如图:(Ⅳ)将这个函数的图象向右平移2个单位长,向上平移1个单位长,则平移后的二次函数解析式为y=2(x﹣2)2.19.解:(1)∵每件衬衫降价x元,∴每件衬衫的利润为(40﹣x)元,销量为(20+2x)件.故答案为:(40﹣x);(20+2x).(2)依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵为了扩大销售,增加盈利,尽快减少库存,∴x=20.答:每件衬衫应降价20元.20.(1)证明:连接OE,如图所示,∵点E是的中点,∴∠CAE=∠EAB,∵OA=OE,∴∠EAB=∠OEA,∴∠CAE=∠OEA,∴OE∥AD,∴∠OEF=∠AGE,∵EF⊥AD,∴∠AGE=90°,∴∠OEF=∠AGE=90°,∴GF是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠AEB=∠AED=90°,∵∠BAE=∠DAE,AE=AE,∴△ABE≌△ADE(ASA),∴BE=DE,∵点E是的中点,∴BE=CE,∴CE=DE;(3)解:方法一:∵∠AEO+∠OEB=90°,∠OEB+∠BEF=90°,∴∠AEO=∠BEF,∵∠AEO=∠OAE,∴∠OAE=∠BEF,∵∠BFE=∠EFA∴△EFB∽△AFE,∴,∴,∴AF=2,∴AB=AF﹣BF=2﹣1=1,∴⊙O的半径为.方法二:设半径为x,则OF=x+1,在Rt△OEF中,,解得x=.∴⊙O的半径为.21.解:(1)直线y=2x+4,当x=0时,y=4;当y=0时,则2x+4=0,解得x=﹣2,∴A(﹣2,0),B(0,4),∵抛物线y=ax2+x+c点B(0,4),∴c=4,把A(﹣2,0)代入y=ax2+x+4,得4a﹣2+4=0,解得a=﹣,∴抛物线的解析式的解析式为y=﹣x2+x+4.(2)如图1,作MG⊥x轴于点G,交BC于点F,抛物线y=﹣x2+x+4,当y=0时,则﹣x2+x+4=0,解得x1=﹣2,x2=4,∴C(4,0),OC=4,设直线BC的解析式为y=kx+4,把C(4,0)代入y=kx+4,得4k+4=0,解得k=﹣1,∴y=﹣x+4,设M(m,﹣m2+m+4),则F(m,﹣m+4),∴MF=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,=OG•MF+CG•MF=OC•MF,∵S△MBC=×4(﹣m2+2m)=﹣m2+4m=﹣(m﹣2)2+4,∴S△MBC=4,∴当m=2时,S△MBC最大∴点M标为(2,4).(3)如图2,在x轴上取点D(2,0),作射线BD交抛物线于另一点P,∵OB=OC=4,∠BOC=90°,∴∠OBC=∠OCB=45°,∵OB⊥AD,OA=OD=2,∴AB=DB,CD=OC﹣OD=4﹣2=2,∴∠OBA=∠OBP,∴∠PBC+∠OBA=∠PBC+∠OBP=∠OBC=45°,设直线BP的解析式为y=nx+4,则2n+4=0,解得n=﹣2,∴y=﹣2x+4,由得,,∴P(6,﹣8);如图2,作CE⊥x轴,使CE=CD=2,连接BE交抛物线于另一点P′,则E(4,2),∵∠OCE=90°,∠OCB=45°,∴∠BCE=∠BCD=45°,∵BC=BC,∴△BCE≌△BCD(SAS),∴∠P′BC=∠PBC,∴∠P′BC+∠OAB=∠PBC+∠OBA=45°,设直线BP′的解析式为y=rx+4,则4r+4=2,解得r=﹣,∴y=﹣x+4,由得,,∴P′(3,),综上所述,点P的坐标为(6,﹣8)或(3,).。
人教版数学九年级上册《二次函数的图像和性质》综合练习(附答案)
22.1二次函数图像性质 综合练习题(附答案)1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。
2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。
3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。
4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。
5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。
6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。
求:(1)求出此函数关系式。
(2)说明函数值y 随x 值的变化情况。
7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。
2、()k h x a y +-=2的图象与性质 1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。
2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。
3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。
4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。
5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。
(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)
第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
人教版九年级上册数学 第21章 一元二次方程 单元综合练习题
人教版九年级上册数学第21章一元二次方程单元综合练习题一.选择题1.对于已知a2+2a+b2﹣4b+5=0,则b2a=()A.2 B.C.﹣D.2.已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,那么(a+1)x2+ax﹣a2+a+2=0的根是()A.0,﹣B.0,C.﹣1,2 D.1,﹣23.若方程x2﹣8x+m=0可以通过配方写成(x﹣n)2=6的形式,那么x2+8x+m=5可以配成()A.(x﹣n+5)2=1 B.(x+n)2=1C.(x﹣n+5)2=11 D.(x+n)2=114.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2﹣3x+2=0是2倍根方程B.若m+n=0且m≠0,则关于x的方程(x﹣2)(mx+n)=0是2倍根方程C.若关于x的方程(x﹣2)(mx+n)=0是2倍根方程,则m+n=0D.若2m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0 是2倍根方程5.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A.B.4 C.2D.56.观察下列表格,一元二次方程x2﹣x=1.1的一个解x所在的范围是()x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9x2﹣x 0.11 0.24 0.39 0.56 0.75 0.96 1.19 1.44 1.71A.1.5<x<1.6 B.1.6<x<1.7 C.1.7<x<1.8 D.1.8<x<1.97.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣48.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是()A.11 B.12 C.11或12 D.159.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8 C.6 D.010.把一块长与宽之比为2:1的铁皮的四角各剪去一个边长为10厘米的小正方形,折起四边,可以做成一个无盖的盒子,如果这个盒子的容积是1500立方厘米,设铁皮的宽为x厘米,则正确的方程是()A.(2x﹣20)(x﹣20)=1500 B.10(2x﹣10)(x﹣10)=1500C.10(x﹣10)(x﹣20)=1500 D.10(2x﹣20)(x﹣20)=150011.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②B.①②④C.①②③④D.①②③12.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD、BC的中点G、H,再折出线段AN,然后通过沿线段AN折叠使AD落在线段AH上,得到点D 的新位置P,并连接NP、NH,此时,在下列四个选项中,有一条线段的长度恰好是方程x2+x﹣1=0的一个正根,则这条线段是()A.线段BH B.线段DN C.线段CN D.线段NH二.填空题13.一元二次方程(x﹣2)(x+3)=x+1化为一般形式是.14.若关于x的方程(m﹣1)+4x﹣2=0是一元二次方程,则m的值为.15.若关于x的一元二次方程x2+2x+m=0的一根为﹣1,则m的值是.16.若关于x的方程(a+3)x|a|﹣1﹣3x+2=0是一元二次方程,则a的值为.17.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=.18.若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.三.解答题19.已知x1,x2是关于的x方程x2﹣x+a=0的两个实数根,且=3,求a的值.20.已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.21.是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.22.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m的值.23.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.24.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为;(2)分式不等式的解集为;(3)解一元二次不等式2x2﹣3x<0.25.某小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动.为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一.经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.。
人教版2023-2024学年九年级数学上册期末复习综合练习题(含答案)
2023-2024学年人教版九年级数学上册期末复习综合练习题(第21—26章)一、选择题(共10小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B . C . D .2.在不透明的袋子中装有 9个白球和 1个红球,它们除颜色外其余都相同,从袋中随意摸出 1个球,则下列说法中正确的是()A .“摸出的球是白球”是必然事件B .“摸出的球是红球”是不可能事件C .“摸出的球是白球”的可能性不大D .模出的球有可能是红球3.对于y =3(x -1)2+2的性质,下列叙述正确的是( )A .顶点坐标为(-1,2) B .对称轴为直线x =1C .当x =1时,y 有最大值2 D .当x ≥1时,y 随x 增大而减小4.若反比例函数的图象经过点(-2,3),则该函数的图象不经过的点是( )A .(3,-2)B .(1,-6)C .(-1,6)D .(6,1)5. 如图,点A ,B ,C 在⊙O 上,若∠C =110°,则∠AOB 等于( )A .100°B .110°C .120°D .140°6.如图,将Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,连接AD ,若∠B =65°,则∠ADE 等于( )A .30° B .25° C .20° D .15°7.如图,在等腰直角三角形ABC 中,AB =AC =4,点O 为BC 的中点,以O 为圆心作半圆O 交BC 于点M ,N ,半圆O 与AB ,AC 相切,切点分别为点D ,点E ,则半圆O 的半径和∠M ND 的度数分别为( )A .2,22.5° B .3,30° C .3,22.5° D .2,30°8.如图所示,要设计一座1m 高的抽象人物雕塑,使雕塑的上部(腰以上)AB 与下部(腰以下)BC 的高度比,等于下部与全部(全身)AC 的高度比,雕塑的下部应设计为( )A .mB .mC .mD .m9.已知m 、n 是一元二次方程x 2+x -2024=0的两个实数根,则代数式m 2+2m +n 的值等于第5题图第6题图第8题图第7题图( )A .2020 B .2021 C .2022 D .202310.二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc >0;②3a +c >0;③(a +c )2-b 2<0;④a +b ≤m (am +b )(m 为实数).其中结论正确的为( )A .①④B .②③④C .①②④D .①②③二、填空题.方程的根是.若关于x 的一元二次方程13.一个不透明的袋子里有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出的球都是红球的概率是________.14.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为________.15.在同一平面直角坐标系内,将函数y =2x 2+4x -3的图象向右平移2个单位长度,再向上平移2个单位长度得到的图象的顶点坐标是________..如图,在中,点在上,连接,,点在上,连接,BCE =45°,若,的面积为,则的长为.三、解答题(本大题共 8 小题,共 72 分)17.(8分) 解方程:(1)x 2-5x -1=0; (2)x (x -5)=2(x -5)18.(8分)【问题情境】数学活动课上,老师指导同学们开展“调查某社区每个家庭五月份的用水量”的实践活动.【实践发现】善思小组随机抽查了某社区20个家庭五月份的用水量(单位:吨),调查中发现,每户家庭五月份的用水量在3~7吨范围内,整理数据如下:五月份用水量(吨)户数【实践探究】分析数据如下:平均数中位数众数方差五月份用水量(吨)【问题解决】(1)上述表格中:______,______,______;(2)甲同学说:“估计该社区,有一半以上的家庭五月份用水量不超过5吨.乙同学说:“根据样本数据,估计该社区200户家庭中五月份用水量不超过5吨的约有120户.”上面两位同学的说法中,合理的是______同学(填“甲”或“乙”)(3)该社区决定从五月份用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、乙两户的概率.第16题图第10题图19.(8分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=5,求⊙O的直径.20.(8分)如图,△ABC的顶点坐标分别为A(-4,5),B(-5,2),C(-3,4)(1)画出与△ABC关于原点O对称的△A1B1C1,并写出点A1的坐标为 ;(2)D是x轴上一点,使DB+DC的值最小,写出点D的坐标;(3)P(t,0)是x轴上的动点,将点C绕点P顺时针旋转90°至点E,直线y=-2x+5经过点E,则t的值为 .21.(8分)如图,已知反比例函数的图象与一次函数的图象在第一象限交于A(1,3),B(3,m)两点,一次函数的图象与x轴交于点C.(1)求反比例函数和一次函数的表达式;(2)当x为何值时,y2>0?(3)已知点P(0,a)(a>0),过点P作x轴的平行线,在第一象限内交一次函数的图象于点M,交反比例函数的图象于点N.结合函数图象直接写出当PM>PN时,a的取值范围.22.(10分)已知在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针方向旋转,得到△ADE,旋转角为α(0°<α<90°),直线BD与CE交于点F.(1)如图1,当α=45°时,求证:CF=EF;(2)如图2,在旋转过程中,当α为任意锐角时,①∠CFB的度数是否变化?若不变,请求出它的度数;②结论“CF=EF”,是否仍然成立?请说明理由.23.(10分)某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?24.(12分)二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2023-2024学年人教版九年级数学上册期末复习综合练习(一)参考答案一、选择题二、填空题 11. 12.13.14.15.16.如图,绕点逆时针旋转,点与对应,点与对应,绕点逆时针旋转,点与对应,点与对应 ∵,,,∴旋转后与重合,与重合,∴,,∵,,∴,∴点,,三点共线,,∴,∴,,,∴∴,,在,由勾股定理得:,∴,,∴,故答案为:.三、解答题17.解:(1)∵a =1,b =-5,c =-1,∴△=(-5)2-4×1×(-1)=29,∴,12345678910B DBDDCAADB∴,;(2)移项可得x(x-5)-2(x-5)=0,∴(x-5)(x-2)=0,∴x-5=0或x-2=0,∴x1=5,x2=2.18.(1)解:依题意,,,故答案为:,,.(2)由表格可知,调查的20户中,五月份用水量不超过5吨的有(户),占调查户数的,∴估计该社区200户家庭中五月份用水量不超过5吨有(户),∴甲同学的说法合理;故答案为:甲;(3)画树状图如下:共有12种等可能的结果,其中恰好选到甲、乙两户的结果有2种,∴恰好选到甲、乙两户的概率为19.(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=5,∴2OA=2PD=25.∴⊙O的直径为25.20.解:(1)△A1B1C1如图所示,A1(4,-5);(2)作点B关于x轴的对称点B′,连接CB′交x轴于点D,此时BD+CD的值最小;(3)作CH⊥x轴于H,EK⊥x轴于K.∵∠CHP=∠CPE=∠PKE=90°,∴∠CPH+∠HCP=90°,∠CPH+∠EPK=90°,∴∠PCH=∠EPK,∵PC=PE,∴△PCH≌△EPK(AAS),∴PK=CH=4,EK=PH=t+3,∴OK=4+t,∴E(4+t,t+3),∵点E在直线y=-2x+5上,∴t+3=-2(4+t)+5,t=-2,故答案为-2.21.解:(1)∵反比例函数的图象过点A(1,3),∴,∴k1=3,∴反比例函数表达式为:;∵点B(3,m)在函数的图象上,∴,∴B(3,1).∵一次函数的图象过点A(1,3),B(3,1),∴,解得,∴一次函数的表达式为:;∴反比例函数和一次函数的表达式分别为,.(2)∵当y2=0时,,x=4,∴C(4,0),由图象可知,当x<4时,y2>0.(3)如图,由图象可得,当1<a<3时,PM>PN.22.解:(1)当α=45°时,由旋转可知:AB=AD,AC=AE,∠CAB=∠CAE=45°,∠ADE=∠ABC=90°∵AB=AD,∴∠ABD=∠ADB=67.5°,∴∠CDF=∠ADB=67.5°,∵AC=AE,∠AEC=∠ACE=67.5°.∴∠ACE=∠CDF=67.5°,∴CF=DF.在Rt△CDE中,∠CED=∠EDF=90°-67.5°=22.5°,∴EF=DF.∴CF=EF(2)①∠CFB的度数不变,∠CFB=45°.∵△ABD与△ACE均为顶角为α的等腰三角形,所以底角相等,即∠ABD=∠ACE.设AC与BF的交点为O,则∠AOB=∠COF.∵∠ABD+∠AOB+∠CAB=∠ACE+∠COF+∠CFB=180°,∴∠CFB=∠CAB=45°.②结论“CF=EF”,仍然成立.证明如下:如图,作EG∥CB交BF延长线于点G.∵∠ABD=∠ADB,又∵∠EDG+∠ADB=∠CBF+∠ABD=90°,∴∠EDG=∠CBF.∵ EG∥CB,∴∠G=∠CBF=∠EDG,∴EG=ED.又ED=BC,∴EG=BC.∴△FEG≌△FCB.∴EF=CF23.解:(1)z=(x-18)y=(x-18)(-2x+100)=-2x2+136x-1 800.(2)由z=350,得350=-2x2+136x-1 800,解得x1=25,x2=43.∴销售单价定为25元或43元时,厂商每月能够获得350万元的利润.把z=-2x2+136x-1 800配方,得z=-2(x-34)2+512.因此,当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元.(3)结合(2)及函数z=-2x2+136x-1 800的图象(如图所示)可知,当25≤x≤43时,z≥350.又由限价为32元,得25≤x≤32.根据一次函数的性质,得y=-2x+100中y随x的增大而减小,∴最低成本是18×(-2×32+100)=648(万元).答:每月的最低制造成本需要648万元.24.(1)将B、C两点的坐标代入,得,解得.∴二次函数的解析式为.(2)存在点P,使四边形POP′C为菱形;.设P点坐标为(x,x2-2x-3),PP′交CO于E.若四边形POP′C是菱形,则有PC=PO;.连接PP′,则PE⊥CO于E,∵C(0,-3),∴CO=3,又∵OE=EC,∴OE=EC=.∴y=−;∴x2-2x-3=−,解得(不合题意,舍去).∴存在这样的点,此时P点的坐标为(,).(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2-2x-3),设直线BC的解析式为:y=kx+d,则,解得:.∴直线BC的解析式为y=x-3,则Q点的坐标为(x,x-3);当0=x2-2x-3,解得:x1=-1,x2=3,∴AO=1,AB=4,S四边形ABPC=S△ABC+S△BPQ+S△CPQ.=AB•OC+QP•BF+QP•OF.=×4×3+(−x2+3x)×3.=−(x−)2+.当x=时,四边形ABPC的面积最大.此时P点的坐标为(,−),四边形ABPC的面积的最大值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合练习题2010.12
1.关于x 的方程2
(1)04
k
kx k x +++
=有两个不相等的实数根,k 的取值范围是 。
2.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,若任意组合穿着,则穿着“衣裤同色”的概率是 。
3.一个扇形的半径是12cm ,圆心角的度数是90°,把它做成一个圆锥的侧面,则圆锥的高是
4.一个圆锥的母线长为10
5.一条弦把圆分为2∶36.顶角为1207.长为10 cm .在母线OF 蚂 蚁从杯口的点E 为 。
8、设b a ,9.若关于x 10.若13-m 11是 。
)012=+-k x 有实数根,那么实数k 的取值范,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,
C AB =30°,BC =2,O 、H 分别为边AB 、AC 的中点,将A 1BC 1的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为 。
15.如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA ,动点P 从点A 出发,
图14
A H
B O
C 1O 1H 1A 1C
以πcm/s 的A 立即停止.当点P 运动的时间为_________s 时,BP 与⊙O 相切.
16.如图所示,
AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.
(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.
17.如图,在△ABC
⊙O 经过点D 。
(1)求证: BC 是⊙O (2)若BD=5, DC=3,
18.线交x 轴于点D ,连接+5 3 .
⑴求点D 的坐标和⑵求点C ⑶求证:CD 是⊙M
19.美化城市,改善人们的居住环境已成为城市建设的一项重要内容。
我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示)。
(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为 公顷,比2002年底增加了 公顷;在2001年,2002年,2003年这三个中,绿地面积最多的是 年; (2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试04,05两绿地面积的年平均增长率。
x。