人教A版高中数学选修3-1-3.4 中国古代数学家-课件(共24张PPT)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
祖冲之的杰出成就,主要在天文历法、 机械和数学三方面。祖冲之之子祖暅也是 一个博学多才的人并子承父业,他的成就 也是在历法和数学方面。
“密率:圆径一百一十三,圆周三百五 十五;约率:圆径七,周二十二。”
——《隋书·律历志》
密率: π = 355
113
约率:π = 22
7
约率早已被阿基米德所知,但密率却是一
秦九韶
四元术 天元术
杨辉三角
主要内容
刘徽“割圆术”中的极限思想; 我国古代数学家祖冲之在计算圆周率的巨 大历史意义;
gèng
祖暅继承和完善前人对球体积的推导提出 了截面原理“祖氏原理”。
1.刘徽与割圆术
《九章算术》是用经文 在竹简写成的,历代学者对 它进行校订与注释,特别是 魏晋刘徽注,使它精湛博大 的数学理论和光彩夺目的数 学思想方法成为中华数学瑰 宝和世界数学经典名著。因 此刘徽是继希腊泰勒斯后, 世界论证数学的杰出代表之 一。
内
三外棋的体积之和
棋 等于一个长宽高皆为
立方体边长的四棱锥
的体积。
牟合方盖的八分之一
外 棋
根据上述分析可知:
V四棱锥
= ,r3所以3ຫໍສະໝຸດ V牟合方盖=(r3
-
r3 3
) 8
=
16r3 3
.
又根据刘徽的结论可知:
V球:V牟合方盖
=
π:4,即
V球:163r3
= π : 4, V球
= 4πr3 3
在推导球体积问题上,刘徽与祖暅各完成了 任务的一半,刘徽确定了“牟合方盖”之形,指 明了努力的方向,而祖暅则算出了“牟合方盖” 的体积。从而得到了正确的球体积公式。
中国古代数学家
以勤劳、智慧著称于世的我国,在 古代数学发展的历史长河中涌现了许多杰 出的数学家,为推动数学发展做出了彪炳 千古的贡献。赵爽、刘徽、祖冲之等是其 中的佼佼者,他们的丰功伟绩值得我们崇 敬,他们百折不挠的治学精神值得我们学 习。
中国古代数学家
•秦九韶的“大衍求一术” •李冶的“天元术” •朱世杰的“四元术” •杨辉的高阶等差级数公式 这些成就领先于欧洲400至600年
牟合方盖
刘徽看出《九章算术》中的球体积公式 是错误的,为正确计算球的体积,他创造了 一个新的立体图形——“牟合方盖”。
八分之一个牟 合方盖图形
完整的一个牟 合方盖图形
在一个正方体内作两个互相垂直内切 圆柱,这两个圆柱的公共部分是牟合方盖。
刘徽指出,每一个高度上的水平截面 圆与其外切正方形的面积比都为π: 4 ,因 此球体积与牟合方盖的体积之比也是 π: 4
项史无前例的创举。密率 355 = 3.141592920... ,为 113
纪念祖冲之的首创之功,“密率”因此又被称
为“祖率”。
曾经困扰刘徽的球体积问题到祖冲之时代 获得了突破。这个正确结果记载在《九章算术》 “开立圆术”之李淳风注中,称为“祖暅之开 立圆术”。
祖暅对球体积的推导也遵循了刘徽的方法, 具体做法是,先取牟合方盖的八分之一考虑它 的外切正方体,它把这个正方体又分出三个小 立体,牟合方盖的八分之一部分称为“内棋”, 三个小立体称为“外棋”。
这就是西方的“卡瓦列利原理”。
刘徽没能把它总结为一般形式并且未 能求出“牟合方盖”的体积。但他创立的 特殊形式的不可分量方法却为后人解决球 的体积问题指明了方向。
2.祖冲之和祖暅
南北朝祖冲之(429- 500)及其子祖暅计算了圆 内接正6144边形和正12288 边形的面积,得出π= 3.1415926~3.1415927求出 精确到第七位有效数字的 圆周率,领先世界达千年 之久。
这说明刘徽头脑中已经有了朴素的积分思 想的萌芽.他是中算史上第一个建立可靠的理论 来推算圆周率的数学家。
古希腊穷竭法与古代中国的割圆术极 相似,刘徽的割圆术比古希腊晚几百年, 但他的成就超过了和他同时代的数学家。
首先,阿基米德的不等式既要用到圆 的内接正多边形又要用到圆的外切正多边 形,而刘徽的不等式只需用圆内接正多边 形;其次,当时我国已使用十进位值记数, 并且算筹技术十分发达,乘方、开方都能 迅速完成数字计算比古希腊人要容易的多。
他首先肯定圆内接正多边形的面积小于圆 的面积将边数屡次加倍,从而面积增大,边数 越多则正多边形的面积越接近圆面积。
极限方法
刘徽的“割圆术”
割之弥细,所 失弥少,割之 又割,以至于 不可割,则与 圆合体而无所
失矣。
刘徽计算到192边形, 求得3.1416,含有极限 思想。
割圆术
从刘徽割圆术看出,他明 确地多次使用了极限思想,并 采取了对面积进行无穷小分割, 然后求其极限状态的和的方式 解决圆面积问题的方法。
总结
刘徽是中国古代数学理论的奠基人,是中 算史上第一个建立可靠的理论来推算圆周率 的数学家。
祖冲之求出精确到第七位有效数字的圆周 率,领先世界达千年之久。
祖暅则算出了“牟合方盖”的体积,得到 了正确的球体积公式。
谢谢
懂得如何避开问题的人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在 永远是家,走出去看到的才是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观 财富买不来好观念,好观念能换来亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵 人与人之间的差别,主要差在两耳之间的那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路 时候要找一条出路!孩子贫穷是与父母的有一定的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选 有什么态度,就会有什么行为;有什么行为,就产生什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种 一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑制,会变成生活的必需品, 随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作 定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失 永远不会失去自己!这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断 是智慧!世上本无移山之术,惟一能移山的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!学一分退让 宜;增一分享受,减一分福泽。念头端正,福星临,念头不正,善人行善,从乐入乐,从明入明;行恶,从苦入苦,骨宜刚,气宜柔,志宜大,胆宜小,心宜虚 慧宜增,福宜惜,虑不远,忧亦近。人之所以痛苦,在于追求错误的东西。你目前拥有的,都将随着你的而成为他人的。那为何不现在就给真正需要的人呢?如 往,凡做事应有余步。我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬得起来。见己不是,万善之门。见人不是,诸恶之根。为了向别人、向世界 努力拼搏,而一旦你真的取得了成绩,才会明白:人无须向别人证明什么,只要你能超越自己。没有哪种教育能及得上逆境。如果你想成功,那么请记住:遗产 第一、学习第二、礼貌第三、刻苦第四、精明第五。任何的限制,都是从自己的内心开始的。失败只是暂时停止成功,假如我不能,我就一定要;假如我要,我 无论你如何为他人着想,烦你的人眼里,你就是居心叵测;不管你怎样据理力争,不懂你的人心里,你就是胡搅蛮缠。最后你会发现,有些事不是你做错了,而 人;有些人不是不理解你,而是根本不想懂你。不管怎样,生活还是要继续向前走去。有的时候伤害和失败不见得是一件坏事,它会让你变得更好,孤单和失落 每件事到最后一定会变成一件好事,只要你能够走到最后。工资是发给日常工作的人,高薪是发给承担责任的人,奖金是发给做出成绩的人,股权是分给能干忠 誉是颁给有理想抱负的人,辞退信将
割圆术
刘徽是中国古代数学理论的奠基人。他的 主要贡献:
创造了割圆术,运用朴素的极限思想计算 圆面积及圆周率;建立了重差术;重视逻辑推 理,同时又注意几何直观的作用。其中割圆术 对中国古算的影响尤其深远。
《九章算术》中关于求圆面积的古法“周 三径一”是不精确的,刘徽在方田章的“圆田 术”中用割圆术计算圆周率,开创了中国数学 发展史上圆周率研究的新纪元。