(完整版)七年级数学找规律题
七年级找规律经典题汇总带
![七年级找规律经典题汇总带](https://img.taocdn.com/s3/m/7a5735656bec0975f565e203.png)
×n1.n2
-n+1
.(
)
2
2n-1
3.302 4.121
5.49
6.152n+5 7.360
(n-2)nBiblioteka 19.3n+1 10
.
2n+211.181 12.欢
8.4
欢13
.3n+114.
88
15.20 16.4n-4 17.2n
(n+1)
18.65
19.37 20
表一:
表二:
表三:
..
20、如 所示的
..
案是由正六
..
形密 而成,黑
..
色正六 形周..
..
..
..
..
第一 有六
个白色正六 形, 第n有个白色正六 形.
21、把3的正三角形各 三均分,切割获取①, 中含有1个 是1的正六 形;把4
的正三角形各 四均分,切割获取②, 中含有3个 是1的正六 形;把5的正三角形
14.先 察
1
1
2
1
=(1
1)
(1
1)=1-1=2
2
3
1
2
2
3
3
3
1
2
2
1
3
1
=(1 1)
(1 1) (1
1)=1-1=3
1
3
4
1
2
2
3
3
4
4
4
再 算
1
1
1
1
的 .
1
2
2
3
3
4
初一找规律经典题型(含部分答案)
![初一找规律经典题型(含部分答案)](https://img.taocdn.com/s3/m/5e960fa7d1f34693daef3e80.png)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
七年级数学找规律题(含答案)
![七年级数学找规律题(含答案)](https://img.taocdn.com/s3/m/7b1cdb6a6bd97f192279e982.png)
七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
七年级找规律经典题汇总带答案
![七年级找规律经典题汇总带答案](https://img.taocdn.com/s3/m/7931d72976c66137ee0619ed.png)
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖块。
七年级找规律经典题汇总带答案
![七年级找规律经典题汇总带答案](https://img.taocdn.com/s3/m/6efb01a06bec0975f465e2ea.png)
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+规律发现专题训练……1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
(完整版)七年级数学找规律题
![(完整版)七年级数学找规律题](https://img.taocdn.com/s3/m/ea1fe3a0e2bd960591c67784.png)
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。
七年级找规律经典题汇总带答案
![七年级找规律经典题汇总带答案](https://img.taocdn.com/s3/m/974cffb5312b3169a551a480.png)
七年级找规律经典题汇总带答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级找规律经典题汇总带答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级找规律经典题汇总带答案的全部内容。
一、数字排列规律题1、观察下列各算式: 1+3=4=,1+3+5=9=,1+3+5+7=16=… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n—1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:2223241+2+3+…+99+100+99+…+3+2+1=____.3、规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖 块。
初一找规律经典题型(含部分答案)
![初一找规律经典题型(含部分答案)](https://img.taocdn.com/s3/m/c6b26149a36925c52cc58bd63186bceb19e8ed13.png)
初一找规律经典题型(含部分答案)初一数学规律题应用知识汇总有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
因此,将变量和序列号放在一起比较,就更容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例如,对于数列4、10、16、22、28……,求第n位数。
我们可以发现,从第二位数开始,每位数都比前一位数增加6,增幅都是6.因此,第n位数是4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
例如,古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它们之间有一定的规律性。
要求第24个三角形数与第22个三角形数的差,我们可以通过求出第24个和第22个三角形数的值,再相减得到答案。
除了基本方法外,还可以用分析观察的方法求解。
例如,在一个面积为S的等边三角形中,我们将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形。
当n=5时,共向外作出了4个小等边三角形;当n=k时,共向外作出了k-2个小等边三角形。
中考规律类试题在素材选取、文字表述、题型设计等方面都别具一格,旨在考察学生的创新意识与实践能力。
七年级找规律经典题汇总带答案
![七年级找规律经典题汇总带答案](https://img.taocdn.com/s3/m/cb3eb38eddccda38366baf09.png)
一、数字排列规律题之吉白夕凡创作1、时间:二O二一年七月二十九日2、不雅察下列各算式: 1+3=4=,1+3+5=9=,1+3+5+7=16=… 按此规律(1)试猜测:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字. 1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()二、几何图形变更规律题1、不雅察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、不雅察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).…… 三、数、式计算规律题1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 .2、不雅察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…按照你所发明的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、 规律发明专题训练 1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖块. 2.我国著名数学家华罗庚曾说过:“数形结合各式好,隔裂分炊万事非.”如图,在一个边长为1的正方形纸版上,依次贴上面积为,,,…,的矩形黑色纸片(n 为大于1的整数).请你用“数形结合”的思想,依数形变更的规律,计算=.4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕坚持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_条折痕 .如果对折n次,可以得到条折痕 .5. 不雅察下面一列有规律的数, 按照这个规律可知第n个数是(n是正整数)8.不雅察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式......12-1110-52第8题==1-===1-=再计算的值.21.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为25.不雅察下列图形的组成规律,按照此规律,第8个图形中有个圆.26、按照下列5个图形及相应点的个数的变更规律,试猜测第n个图中有个点.27、找规律.下列图中有大小不合的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.1、如图,用同样大小的黑色棋子按图所示的方法摆图案,依照这样的规律摆下去,第100个图案需棋子枚.4、不雅察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.5、不雅察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.6、如图①,图②,图③,图④,…,是用围棋棋子依照某种规律摆成的一行“广”字,依照这种规律,第5个“广”字中的棋子个数是,第n 个“广”字中的棋子个数是.9、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的办法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an=.(用含n 的代数式暗示)10、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为(用含n 的代数式暗示).13、用火柴棒依照如图所示的方法摆图形,则第n 个图形中,所需火柴棒的根数是.14、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.次数角形个数15、一张长方形桌子需配6把椅子,按如图方法将桌子拼在一起,那么8张桌子需配椅子把.16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包含顶点)上有n (n≥2个圆点时,图案的圆点数为Sn .按此规律推断Sn 关于n 的关系式为:Sn=.17、如图是由火柴棒搭成的几何图案,则第n 个图案中有根火柴棒.(用含n 的代数式暗示)19、不雅察表一,寻找规律.表二,表三辨别是从表一中选取的一部分,则a+b 的值为.表一:表二: 表三:20、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有个白色正六边形.1 2 3 (1)3 5 7 (2)5 8 11 (3)7 11 15 ... .. .. .. .. (11)14a 11 1317 b21、把边长为3的正三角形各边三等分,联系得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,联系得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,联系得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的办法联系,得到的图形中含有个边长是1的正六边形.22、不雅察下列图形的排列规律(其中☆,□,●辨别暗示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2008个图形是(填名称).23、下列图中有大小不合的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,依照图示的规律摆下去,则第n幅图中有个菱形.24、如图,不雅察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有个.25、用同样大小的黑色棋子按图所示的方法摆图形,依照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式暗示)27、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发明三角形的排列规律,请写出第七行有个三角形.28、如图,用3根小木棒可以摆出第(1)个正三角形,加上2根木棒可以摆出第(2)个正三角形,再加上2根木棒可以摆出第(3)个正三角形…这样继续摆下去,当摆出第(n)个正三角形时,共用了木棒根.29、不雅察下列图形,按照变更规律推测第100个与第个图形位置相同.30、如图,用火柴棒按以下方法搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n条小鱼需要根火柴棒.(用含n的代数式暗示)参考答案(一):一、1、(1)(2)2、23 30.数列中每两个相邻数字间的差辨别是1,2,3,4,5,6,7.3、13.这一数列后面一个数是前面相邻两个数的和.4、34 .考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个.每个括号的第一个数辨别是1,2,3,……因此第100个数必定是34.二、 1、602 2、圆三、1、2、100003、109.规律发明专题训练答案1.4n+22.13.(1)5;7;9 (2)15 (3)2n-14.15;?5.n/n(n+2)12.(1)12+2a;12+3a;12+a(n-1)(2)a=2;5413.7;11;n/(n+1)+114.n/(n+1)21.9900 22.C23.(2)16;26;17824(1)13;16;(2)3n+1;(3)不克不及,3n+1=2009 3n=2008 因为2008不是3的倍数.25.n×n 26.? 27.(2n-1)/n×n1.n2-n+12.(2n-1)3.3024.1215.496.152n+57.360(n-2)8.4n-19.3n+110.2n+211.18112.欢欢13.3n+114.8815.2016.4n-417.2n(n+1)18.6519.3720.6n21.1522.正方形23.(2n-1)24.13626.3n+127.6428.2n+129.1或430.6n+2时间:二O二一年七月二十九日时间:二O二一年七月二十九日。
七年级找规律经典题汇总带答案
![七年级找规律经典题汇总带答案](https://img.taocdn.com/s3/m/6cea6567f12d2af90242e67b.png)
七年级上数学专题训练之找规律一、数字排列规律题1、观察下列各算式:1+3=4= 22,1+3+5=9=32,1+3+5+7=16=42 , 按此规律(1)试猜想: 1+3+5+7+, +2005+2007的值?(2)推广: 1+3+5+7+9+ , +( 2n-1)+ (2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、,, 聪明的你猜猜第 100 个()二、几何图形变化规律题1、观察下列球的排列规律( 其中●是实心球,○是空心球) :●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○● ,, 从第 1 个球起到第 2004 个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第 2008个图形是(填图形名称) . 三、数、式计算规律题1、已知下列等式:① 1 3=12;② 1 3+23=32;③ 1 3+23+33=62;④ 1 3+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4 , 1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,,根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+, +99+100+99+,+3+2+1=____.3、已知: 2222,3 2 3,4424, 552 5,233 3 415 15524 243 8 8, ,若10 b 10 2 b 符合前面式子的规律,则 a ba a规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:有黑色地砖 4 块;那么第 ( n ) 个图案中有白色地砖块。
(完整版)七年级数学整式的加减探索规律(习题及答案)
![(完整版)七年级数学整式的加减探索规律(习题及答案)](https://img.taocdn.com/s3/m/78a9c2a63169a4517623a381.png)
探索规律(习题)➢例题示范例1:观察图1至图4中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为M,则M=__________(用含n的代数式表示).…图1 图2 图3 图4思路分析做图形规律的题,我们一般从两个方面来研究:(1)观察图形的构成.(2)转化.观察本题的图形,发现后面的图形总比前面的图形多3个小圆圈,可以采用分类的手段进行解决.分成原来的和增加的两类.①2+3×1②2+3×2③2+3×3④2+3×4则第n个:2+3n=3n+2.验证:当n=1时,3n+2=5,成立.故第n个图形中有(3n+2)个小圆圈.(想一想,还有其他观察角度吗?)例2:观察下列球的排列规律(其中●是实心球,○是空心球):…从第1个球起到第2 014个球止,共有实心球________个.思路分析①判断该题是循环规律,查找重复出现的结构,即循环节;②观察图形的变化规律,发现每10个球为一个循环,每个循环节里有3个实心球.故2 014÷10=201…4,201×3=603;③再从某个循环节开始查前4个球,发现有2个实心球,故总数为603+2=605(个).➢巩固练习1.如下数表是由从1开始的连续自然数组成,观察规律并完成下列各题.123456781011121314151617181920212223242526272829303132333435369…(1)表中第8行的最后一个数是_____,它是自然数______ 的平方,第8行共有________个数;(2)用含n 的代数式表示:第n 行的第一个数是_________, 最后一个数是_________,第n 行共有_________个数. 2. 将1,-2,3,-4,5,-6,…按一定规律排成下表:(1)第8行的数是_________________________________; (2)第50行的第一个数是_______.3. 下列图形由边长为1的正方形按某种规律排列而成,依此规律,则第8个图形中正方形有( )…图3图2图1A.38个 B.41个 C.43个D.48个4.如下图所示,摆第1个“小屋子”要5枚棋子,摆第2个要11枚棋子,摆第3个要17枚棋子,则摆第30个要_________枚棋子.…第3个第2个第1个5. 下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第n 个图案中白色正方形的个数为_________.…图3图2图16. 观察下列图形,根据图形及相应点的个数的变化规律,第n 个图形中点的个数为__________.图5图4图1图2图3…7. 如图1,一等边三角形的周长为1,将这个等边三角形的每边三等分,在每边上分别以中间的一段为边作等边三角形,然后去掉这一段,得到图2;再将图2中的每一段作类似变形,得到图3;按上述方法继续下去得到图4,则第4个图形的周长为________,第n 个图形的周长为________________.…图1 图2 图38. 一个纸环链,纸环按“红黄绿蓝紫”的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )红 黄 绿 蓝 紫 红 黄 绿 … … 黄 绿 蓝 紫 A .2 012B .2 013C .2 014D .2 0159. 小时候我们就用手指练习过数数,一个小朋友按图中的规则练习数数,数到2 013时对应的手指头是( ) A .大拇指B .食指C .小拇指D .无名指大拇指1234567891011121314151617181910. 如图,平面内有公共端点的八条射线OA ,OB ,OC ,OD ,OE ,OF ,OG ,OH ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,8,9,….(1)“20”在射线______________上; (2)请任意写出三条射线上的数字排列规律; (3)“2 015”在哪条射线上?➢ 思考小结1. 我们学习了数的规律、式的规律、图形规律、循环规律等,它们都有对应的操作方法.(1)数与式的规律:①_________;②_________;③处理符号;④验证. (2)图形规律:①观察图形的构成:____________________;②转化:________________________________________. (3)循环规律:①________________;②____________________.HD【参考答案】➢巩固练习1.(1)64,8,15;(2)(n-1)2+1(或n2-2n+2),n2,(2n-1).2.(1)29,-30,31,-32,33,-34,35,-36;(2)-1 226.3. C4.1795.5n+36.n2-n+17.6427,143n-⎛⎫⎪⎝⎭8. B9. C10.(1)OD(2)射线OA:8n-7;射线OB:8n-6;射线OC:8n-5;射线OD:8n-4;射线OE:8n-3;射线OF:8n-2;射线OG:8n-1;射线OH:8n.任选三个即可.(3)在射线OG上.➢思考小结1.(1)①标序号;②找结构.(2)①分类,去重,补形;②转化为数的规律或其他图形的规律.(3)①确定起始位置;②找循环节.。
(完整版)七年级找规律经典题汇总带答案
![(完整版)七年级找规律经典题汇总带答案](https://img.taocdn.com/s3/m/72296cbc43323968001c9268.png)
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
初一数学找规律题型(全)
![初一数学找规律题型(全)](https://img.taocdn.com/s3/m/e2f87202c77da26925c5b0f9.png)
绝密★启用前初一找规律题型一、填空题(共14小题,每小题4分,共56分)1.(2016·佛山市禅城区期末考试) 观察下列一列数,探求其规律: , , ,, ,(4分),第个数是.(4分)2.(2019·苏州市昆山市期中考试) 我们知道:=;=;=;=;=;=…,仔细观察上述规律:的末位数字应为.3.(2018·惠州市惠城区期中考试) 观察下面的单项式:(4分),,,,根据你发现的规律,写出第个式子是,第个式子是.4.(2019·惠州市期末考试) 观察下列等式:①,②,(4分)③,,根据上述规律,第个等式是(用含有的式子表示).(4分)5.观察下列各数:,,,,,,试按此规律写出的第个数是.6.研究下列算式:,,,(4分),请你找出规律并用正整数表示这个规律.(4分)7.按一定规律排列的一列数依次为:,,,,,,,按此规律,这列数中的第个数是.(4分)8.下列各组数具有一定的规律性,请你根据规律写出后面的个数,并求出第个数、第个数、第个数.(1),,,,,,,,,,,,;(2),,,,,,,,,,,.(4分)9.找规律:,,,,,,,,,,…,第个数是.(4分)10.下面是按一定规律排列的一列数:,,,,,那么第个数是.11.规律题:(1),,,,,,,,,;(2)观察下列一组数:,,,,,,它们是按一定规律排列的,那么这一组数的第个数是;(3)观察下面的一列单项式:,,,,,照此规律第个单项式为.(4分)12.探索与思考观察下列等式:(1)想一想:等式左边各项幂的底数与右边幂的底数有什么关系?(2)试一试:;(3)猜一猜:可得出什么规律:(用带字母的等式表示).(4分)13.如图是用棋子摆成的“”字.(1)摆成第一个“”字需要个棋子,第二个需个棋子;(2)按这样的规律摆下去,摆成第个“”字需要个棋子,第个需个棋子;(3)是否存在这样的情况,使得其中一个图形的棋子是另一个图形棋子的倍,其中.若存在,请指出来,若不存在,请说明理由.(4分)(4分)14.观察下列单项式:,,,,,,,从中我们可以发现:(1)系数的规律有两条:系数的符号规律是; 系数的绝对值规律是; (2)次数的规律是; (3)根据上面的归纳,可以猜想出第个单项式是.二、选择题(共3小题,每小题3分,共9分)(3分)15.(2019·苏州市昆山市期中考试) 下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为,第(2)个图形的面积为,第(3)个图形的面积为,…,则第)(10)个图形的面积为(A.B.C.D.16.观察一列有规律的数:,,,,,它的第个数是( )(3分)A.B.C.D.(3分)17.观察下面数列,探究其规律:,,,,,,,按照上述规律,第个数字是( )A.B.C.D.三、解答题(共15小题,每小题5分,共75分)(5分)18.(2018·惠州市惠阳区期中考试) 请观察下列算式,找出规律并填空,,,则:(1)第十个算式是=(2)第个算式为=(3)根据以上规律,求式子的值19.(5分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)试用含有的式子表示第个等式:;(为正整数)(3)请用上述规律计算:①;②.(5分)20.(2018·苏州市昆山市期中考试) 观察下列各式:,,,(1)试用你发现的规律填空:,;(2)请你用含一个字母的等式将上面各式呈现的规律表示出来:.21.(2018·惠州市单元测试) 观察下面有规律的三行单项式:(12分)(5分),,,,,,①,,,,,,,②,,,,,,,③.(1)根据你发现的规律,第一行第个单项式为;(2)第二行第个单项式为;(3)第三行第个单项式为;第个单项式为.22.(2018·光明中学月考) 观察下列各等式:;;;.(1)你能运用上述规律求的值吗?(2)通过上述观察,你能猜想处反映这种规律的一般结论吗(用含的式子表示,为正整数).(5分)23.下数表是由从开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第行的最后一个数是,它是自然数的平方,第行共有个数;(2)用含的代数式表示:第行的第一个数是,最后一个数是,第行共有个数;(3)求第行各数之和.(5分)24.(2014·中山市期末考试)用棋子按规律摆出下列一组图形:(1)填写如表:(2)照这样的方式摆下去,则第个图形中棋子的枚数是;(3)有同学认为其中某个图形中有枚棋子,你认为对吗?说明你的理由.(5分)25.(2014·杭州市上城区期末考试) 观察下面的算式,并回答问题:(5分),,,,,按此规律计算:,,(1)计算:;(2),算式中已经写出了个分数,请写出第个分数;(3)计算:.(5分)26.(2018·中山市卓雅外国语学校期中考试) 观察下列单项式:,,,,,写出第个单项式,为了解这个问题,特提供下面的解题思路.(1)请写出第个单项式是;(2)这些单项式的系数绝对值规律是什么?请写出第个,第个单项式;(3)根据上面的归纳猜想,请猜想出第个单项式是什么?(为正整数)(5分)27.(2016·沥林中学期中考试) 依次给出下列一组数:,,,,,.(1)试按照给出的这几个数排列的规律,继续写出后面的三个数;(2)这一组数中的第个数是什么?第个数呢?28.(2019·东莞市月考) 观察下列三行数并按规律填空计算:(5分)第一行:、、、、、( )、( )第二行:、、、、、( )、( )第三行:1、、、、、( )、( )(1)请将第一行按规律填空;(2)请将第二行、第三行按规律填空;(3)取这3行每行的第10个数,并计算他们的和.(5分)29.(2016·惠景中学月考) 观察下列各式:,,.(1)猜想(的整数);(2)用你发现的规律计算:;(3)计算:.(5分)30.观察下列一串单项式的特点:,,,,,.(1)按此规律写出第个单项式;(2)试猜想第个单项式为多少?它的系数和次数分别是多少?31.(2015·中山市期中考试) 观察下面三行数:(5分),,,,,①,,,,,②,,,,,③(1)第①行数按什么规律排列?(2)第②③行数与第 ①行数分别有什么关系?(3)取每行数的第个数,计算这三个数的和.(5分)32.观察下列三行数:,,,,,①;,,,,,②;,,,,,③.(1)第①行数是按什么规律排列的?(2)第②、③行数与第①行数分别有什么关系?(3)取每行数的第个数,计算这个数的和.。
七年级上册找规律数学题
![七年级上册找规律数学题](https://img.taocdn.com/s3/m/e5704ea7951ea76e58fafab069dc5022aaea46b9.png)
七年级上册找规律数学题一、数字规律题。
1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。
- 所以第n个数是n^2。
2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。
- 所以第n个数是( - 1)^n + 1n。
3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。
- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。
4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。
5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。
二、图形规律题。
6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。
7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。
七年级数学找规律题(最新整理)
![七年级数学找规律题(最新整理)](https://img.taocdn.com/s3/m/64907bc65ff7ba0d4a7302768e9951e79b89697d.png)
七年级数学找规律题(最新整理)归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2 的平方,1+3+5=9=3 的平方,1+3+5+7=16=4 的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007 的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 173、请填出下面横线上的数字。
1 1 2358214、有一串数,它的排列规律是 1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第 100 个数是什么?5、有一串数字 3 6 10 15 21第 6 个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第 2005 个数是().A.1B.2 C.3 D.47、100 个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这 100 个数的前两个数依次为 1,0,那么这 100 个数中“0”的个数为个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第 1 个球起到第 2004 个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:11+2+3+…+99+100+99+…+3+2+1= .3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+ n 1 nn 1,其中n是正整数.现2在我们来研究一个类似的问题:1×2+2×3+… nn 1 =?观察下面三个特殊的等式1 2 1 1 2 3 0 1 232 3 1 2 3 4 1 2 333 4 1 3 4 5 2 3 43 将这三个等式的两边相加,可以得到1×2+2×3+3×4= 1 345 203 读完这段材料,请你思考后回答:⑴1 2 2 3 100 101⑵1 2 3 2 3 4 nn 1n 2⑶1 2 3 2 3 4 nn 1n 24、已知:2 2 22 2 ,3 3 32 3,4 4 42 4 ,5 5 52 53388 1515 2424…,若10 b 102 b 符合前面式子的规律,则a baa参考答案:一、1、(1)1004 的平方(2)n+1 的平方2、23 30。
七年级(上)数学【找规律】经典题汇总带答案
![七年级(上)数学【找规律】经典题汇总带答案](https://img.taocdn.com/s3/m/ccbab510561252d380eb6ec8.png)
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论. 解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确, 下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2 的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方⋯按此规律(1)试猜想:1+3+5+7+⋯+2005+2007的值?(2)推广:1+3+5+7+9+ ⋯+(2n-1)+ (2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 123 5 8 _______ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、⋯⋯聪明的你猜猜第100 个数是什么?5、有一串数字3 6 10 15 21 ___ 第6 个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、⋯,那么第2005 个数是(). A.1 B.2 C.3 D.47、100 个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“ 0”的个数为 ___ 个.二、几何图形变化规律题1、观察下列球的排列规律(其中•是实心球,○是空心球):•○○••○○○○○•○○••○○○○○•○○••○○○○○•⋯⋯从第1 个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4 ,1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=2,5 ⋯根据你所发现的规律,请你直接写出下面式子的结果:21+2+3+⋯+99+100+99+⋯+3+2+1= .13、1+2+3+⋯+100=?经过研究,这个问题的一般性结论是 1+2+3+⋯+ n 1n n 1 ,其中n是正整数 . 现在我们来研究一个类似的问题: 1×2+2×3+⋯n n 1= ? 观察下面三个特殊的等式11 2 1 2 3 0 1 23 12 3 2 3 4 1 2 33 13 4 3 4 5 2 3 431将这三个等式的两边相加,可以得到1×2+2×3+3×4= 13 4 5 203 读完这段材料,请你思考后回答:⑴22 3100 101⑵1 23 2 34nn 1 n2⑶1 232 34 nn 1 n24、 已知:2 2 22 2,3 3323,4 4 2 4 5 42,552 254, 3388 15 15 24b 2 b 则a b ⋯若10102符合前面式子的规a a参考答案:一、1、(1)1004的平方( 2)n+1的平方2 、23 30 。
数列中每两个相邻数字间的差分别是 1,2,3,4,5,6,7。
3、13。
这一数列后面一个数是前面相邻两个数的和。
4、34 。
考虑时,可以从第一个数开始, 每 3个数加一个括号 (1,2,3),(2,3,4),(3,4,5),⋯⋯ 一共加了 33 个括号,剩下的一个必是第 100 个。
每个括号的第一个数分别是 1,2,3,⋯⋯因此第 100 个数必然是 34。
5、28。
3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第 6 个是 28。
其实一般这类的规律题 无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加 1 或减 1。
6、A 7 、33二、 1、 602 2 、圆33 33 3 2三、 1、 13233343531522 、10000111 3、 ⑴ 343400 或100 101 102⑵ n n 1 n 2 ⑶ n n 1 n 2 n 33344、109.规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案: 那么第( n )个图案中有白.色.地砖 块。
3. 有一列数:第一个数为 x 1=1,第二个数为 x 2=3,第三个数开始依次记为 x 3,x 4,⋯, x n ;从第二个数 开始,每个数是它相邻两个数和的一半。
(如: x 2= x 1 x 3)2(1) 求第三、第四、第五个数,并写出计算过程; (2) 根据( 1)的结果,推测 x 8= ;(3) 探索这一列数的规律,猜想第 k 个数 x k = . (k 是大于 2的整数)4. 将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线) . 继续对折,对折时每次折痕与上次 的折痕保持平行,连续对折三次后,可以得到 7 条折痕,那么对折四次可以得到 _ 条折痕 . 如果对折 n 次,可以得到 条折痕 .1,2,3,4,5,6 3,8,15,24,35,48根据这个规律可知第 n 个数是 (n 是正整数)第(4) 个图案中有黑色地砖 4块;2. 我国著名数学家华罗庚曾说过: “数形结合百般好,隔裂分家万 事非。
”如图,在一个边长为 1 的正方形纸1, 1, 48 形结合”的思想,依数形变化的规, 1n的矩形彩色纸片 (n 为大于 1 的整数) n请你用1, 2,数第 3题11 2412n7. 按照一定顺序排列的一列数叫数列 ,一般用 a 1,a 2,a 3,⋯, a n 表示一个数列,可简记为 {a n }. 现有数列{ a n }满足一个关系式: a n+1=a n 2-na n +1,(n=1,2,3, ⋯,n), 且a 1=2.根据已知条件计算 a 2, a 3, a 4的值,然后 进行归纳猜想 a n = .(用含 n 的代数式表示)8. 观察下面一列数: -1 ,2,-3,4,-5,6,-7,...,将这列数排成下列形式 按照上述规律排下去,那么第 10 行从左边第 9 个数 -1 是. 2 -3 4-5 6 -7 -910 -11 12 -13 14 -15 16第8题9. 观察下列等式 9-1=816-4=12 25-9=16 36-16=20这些等式反映自然数间的某种规律,设 n(n ≥1)表示自然数,用关于 n 的等式表示这个规律为10.如图是阳光广告公司为某种商品设计的商标图案, 图中阴影部分为红色。
若每个小长方形的面积都 1, 则红色的面积是 。
11.如下图,从 A 地到 C 地,可供选择的方案是 走水路、走陆路、走空中 . 从 A 地到 B 地有 2 条水 路、2 条陆路,从 B 地到 C 地有 3条陆路可供选择,走空中从可供选择的方案有 ( )A .20种B .8种C . 5 种D .13种12.某校的一间阶梯教室,第 1 排的座位数为 12,从第2 排开始,每一排都比前一排增加 a 个座位。
( 1)请你在下表的空格里填写一个适当的代数式:第 1 排的 座位数第 2 排的座 位数第3排的座 位数第 4 排的座 位数⋯第 n 排的 座位数12 12 + a⋯2)已知第 15 排座位数是第 5 排座位数的 2 倍,求 a 的值,并计算第 21排有多少座位?13. 探索:⑴一条直线可以把平面分成两部分,两条直线最多可以把平面分成 4 部分,三条直线最多可 以把平面分成 部分,四条直线最多可以把平面分成 部分,试画图说明;⑵ n 条直线最多可以 把平面分成几部分?£¨μú9 aìí? £?A 地不经B 地直接到C 地. 则从 A 地14.先观察11=(1 1) (1 1)=1-1= 21 2 2 3 1 2 23 3 31 11 1 1 1 1 1 11 31 2 2 33 4=(12)(23)(3 4)=1-4=4再计算1 1 1 1 的值.1 2 2 3 3 4 n(n 1)15.. 观察下列顺序排列的等式:9×0+1=1 9 ×1+ 2= 11 9 ×2+3=21 9 ×4+5=41 ⋯,猜想:第 21 个等式应为:16.我们把分子为 1的分数叫做单位分数 . 如1 ,1,1 ⋯,任何一个单位分数都可以拆分成两个不同的2 3 4 单位分数的和,如 1 =1 1,1=1 1 ,1 =1 1 ,⋯2 3 6 3 4 12 4 5 20(1)根据对上述式子的观察,你会发现 1=1 1 . 请写出□,○所表示的数; □5 ○(2)进一步思考,单位分数 1 (n 是不小于 2的正整数)= 1 1 ,请写出△,☆所表示的式。
n ☆ △17.你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合, 再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条, 如下面草图所示。
请问这样第 __________________________________________________________________________________ 次可拉出 256 根面条。
18.我国古代的“河图”是由 3×3 的方格构成,每个格内均有数目不等 的点图,每一行、每一列以及每条对角线上的三个点图的点数之和 均相等.如图,给出了“河图”的部分点图,请你推算出 M 处所对应 B .-150的点图A .·B .··19.计算 1 2 3 456A. -2008B. - 1004 C 20.观察右图并寻找规律, x 处填上的数字是C .D 2007 2008 的结果是(1 D. 0C.-158D .-16221.若“!”是一种数学运算符号,并且 1!=1,2!=2×1=2,3!=3×2×1=6, 4 ! =4×3×2×1,⋯,则 100! 的值为98!其中从第三个数起,每一个数都等于它前面两个数的和 . 现以这组数中的各个数作为正方形的边长值构造如下正方形:仔细观察图形,上表中的 x 16 , y26 .若按此规律继续作长方形,则序号为⑧的长方22.如图,平面内有公共端点的六条射线 OA 、OB 、OC 、OD 、OE 、 OF ,从射线 OA 开始按逆时针依次在射线上写出数字 1、2、3、4、5、6、7⋯, 则数字“ 2008”在( )A .射线 OA 上B .射线 OB上C .射线 OD 上 D .射线 OF上(1) 左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图 , 小正方形中的数字表示在该位置 小正方体的个数 , 请你画出该几何体的主视图和左视图发现有这样一组数: 1,1,2,3,5,8,13,⋯,再分别依次从左到右取 2个、3 个、4个、5 个⋯正方形拼成如下长方形并记为①、②、③、④、2111 1 112 3①② ③序号①②③④⋯ 周长610xy⋯(2) 意大利著名数学家斐波那契在研究兔子繁殖问题时, 12 52④相应长方形的周长如下表形周长是24.( 本题满分 10 分 ) 如图,将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,⋯⋯⋯,请你根据以上操作方法得到的正方形的 个数的规律完成各题 (3) 按照上述方法,能否得到 2009个正方形 ?如果能,请求出 n ;如果不能,请简述理由25.观察下列图形的构成规律,根据此规律,第 8 个图形中有 个圆.5 , 79 16第 n个数为 规律发现专题训练答案 1.4n+2 2.1 3.(1)5;7;9 (2)15 (3)2n-1 4.15;? 5.n/n(n+2)(1) 将下表填写完整; (2)(2) a nn 26. 观察下面图形,按规律在 两.个.箭头所指的“田”字格内分别27、观察下面一列数,按某种规律在横线上填上适当的数: ,6.457.n+18.909.? 10.5 11.D12.(1)12+2a;12+3a;12+a(n-1)(2)a=2;54 13.7;11;n/(n+1)+1 14. n/(n+1)15.9 ×20+21=20116.(1)6;30(2)n+1;n(n+1)17.8 18.C 19.B 20.D 21.9900 22.C 23. (2)16;26;17824(1)13;16;(2)3n+1;(3) 不能, 3n+1=2009 3n=2008 因为 2008不是 3的倍数。