第5章+伏安法和极谱分析法分析
极谱分析法和伏安分析法优秀课件
E E O 0.059 lg A (id i) / k A
n
B (i) / kB
E O 0.059 lg ( AkB id i )
n
BkA i
E' 0.059 lg ( id i )
n
i
当i=1/2id时的电位即为半波电位
E=E’ 即电极电位与浓度无关,故可利 用半波电位进行定性分析
n 减小措施
加入大量的支持电解质
(3)极谱极大
n 现象 n 产生的原因
溪流运动
n 消除方法
加入小量极大抑制剂 (表面活性剂)
(4) 氧波与氢波
(5) 其他概念: 可逆与不可逆波 氧化波与还原波
Ø 可逆波: 电流只受扩散控制 Ø 不可逆波: 电流受扩散速度和 电极反应速度控制
Ø还原波(阴极波)(电 流为正)
Id正比于c的条件
依据公式: id =K c 可进行定量计算。
极限扩散电流 由 极谱图上量出, 用波高 直接进行计算。
(3) 应用方法
直接比较法 标准曲线法 标准加入法
cx
hx hs
cs
hX Kcs
H K (VX cX Vscs ) VX VS
cX
(VS
VS cS hX VX )H VX hX
③ 电流急剧上升阶段 这在半波电位附近
④ 极限扩散区
此时达到极限电流值, 称为极限电流。
C0 0
i C C0
δ→常数, id= kC , id 称为极限扩散电流
(3)涉及概念
极化 浓差极化及形成条件
极化电极A小,反应离子数/单位面积 大,Cs→0
C低 静止
极化电极与去极化电极
Zn2+
第05章 伏安与极谱分析-2
氧化波方程 P77 de = 1/2 -0.0592/z*lg [(id-i) / i]
式中,i和id是负值
综合波方程 de = 1/2 +0.0592/z*lg [ (id)c -i) / i- (id)a ] (id)c为还原电流 (id)a为氧化电流
§5.1.4 应用
1.
定量分析
尤考维奇方程 id=ksc ks=607 zD1/2m2/3t1/6 尤考维奇常数 波高测量
Current goes to zero and then becomes anodic due to the reoxidation of the produced Fe(CN)64-. The anodic current peaks and then decreases as the accumulated Fe(CN)64- Is used up by the anodic reaction. The whole process is ended.
φ
pc
-φ
φ
pa
对可逆电极过程:
ip= K z3/2AD1/2v1/2c
ipa≈ipc,
φpc=φ1/2-1.11RT/zF φpa=φ1/2+1.11RT/zF Δφp=2.22RT/zF =φpa—φpc=56/z(mV) 经验表明,若z=1,Δφp通常在55-65mV。P96
二、应用
电极反应可逆性判断:
Cyclic Voltammogram {6.0 mM K3Fe(CN)6 and 1.0 M KNO3}
Between points D and F, the current decays. Current is reversed at point F but the current continues to be cathodic because the potentials are still negative enough to cause the reduction of Fe(CN)63-. Between H and I the potential becomes positive enough so that reduction of Fe(CN)63- can no longer occur.
第5章伏安分析法
二、电解池的伏安行为
当外加电压达到Cd2+的电解 还原电压时,电解池内会发生 氧化还原反应。
阴极:Cd2+ + 2e Cd
阳极:
2OH- -2e
H2O + 1/2 O2
U外 ∝ i
U外- Ud= iR
(Cd2+)
二、电解池的伏安行为
浓差极化:由于电解过程中电极表面离子浓度与 溶液本体浓度不同而使电极电位偏离平衡电位的 现象。
,当外加电压未达分解电压时 所观察到的微小电流。
产生原因: a.由于溶液中存在微量易在滴 汞电极上还原的杂质所致. b.电容电流(由于对滴汞电极 和待测液的界面双电层充电形 成的,故又称充电电流) 消除方法:
0.0120 39.55.00
99.0 (25.0 5.00) 25.039.5
0.00120mol / L
§5-4 定性分析依据
半波电位(E1/2): 是当电流等于平均 极限扩散电流的一 半时对应的电位。 它不随被还原离子 的浓度不同而改变 ,故用半波电位来 作为定性分析的依 据。
§5-5干扰电流及其消除方法 1.残余电流:在极谱分析时
(4)电解液组成的影响
§5-3极谱定量分析方法
1.极谱定量方法一般有3种:
(1)直接比较法:在相同实验条件下,分别
测浓度为Cs的标准液及未知液的极谱波的波
高hs及hx。
Cx
hx hs
cs
从而求出未知液的浓度
同一条件指两个溶液的底液组成、温度、
毛细管、汞柱高度等保持一致。
(2)标准曲线法:配制一系列含有不同浓度的待测离 子的标准溶液,在相同的实验条件下作各个溶液的 极谱波,求出各溶液的扩散电流
第五章 伏安法和极谱分析法.
第五章伏安法和极谱分析法基本要求:1.掌握直流极谱法的基本原理及其不足之处2.掌握尤考维奇方程和极谱波方程3.理解单扫描极谱法、脉冲极谱法和阳极溶出伏安法灵敏度高的原因4.掌握循环伏安法的原理及应用伏安法(V oltammetry)和极谱分析法(Polarography)都是通过由电解过程中所得的电流-电位(电压)或电位-时间曲线进行分析的方法。
它们的区别在于伏安法使用的极化电极是固体电极或表面不能更新的液体电极,而极谱分析法使用的是表面能够周期更新的滴汞电极。
自1922年J.Heyrovsky开创极谱学以来,极谱分析在理论和实际应用上发展迅速。
继直流极谱法后,相继出现了单扫描极谱法、脉冲极谱法、卷积伏安法等各种快速、灵敏的现代极谱分析方法,使极谱分析成为电化学分析的重要组成部分。
极谱分析法不仅可用于痕量物质的测定,而且还可用于化学反应机理,电极动力学及平衡常数测定等基础理论的研究。
与两种电解过程相对应,极谱分析法也可分为控制电位极谱法(如直流极谱法、单扫描极谱法、脉冲极谱法和溶出伏安法等)和控制电流极谱法(如交流示波极谱法和计时电位法等)。
5.1 直流极谱法5.1.1 原理1.装置直流极谱法也称恒电位极谱法,其装置如图5-1所示。
它包括测量电压、测量电流和极谱电解池三部分。
图5-1 直流极谱装置示意图图5-2 饱和甘汞电极(a)和滴汞电极(b)现以测定Pb2+和Zn2+为例。
在电解池中安装一支面积小的滴汞电极,另一支面积大的饱和甘汞电极,如图5-2所示。
电解池中盛有浓度均为1.00 ×10-3mol·L-1Pb2+ 和Zn2+ 溶液以及0.1mol·L-1KCl(称为支持电解质,浓度比被测离子大50-100倍),并加入1%的动物胶(称为极大抑制剂)几滴。
电解前,通入N2除去电解液中溶解的O2。
按图5-1,以滴汞电极为阴极,饱和甘汞电极为阳极,在不搅拌溶液的静止条件下电解。
课件伏安分析法.ppt
图中a~b段,仅有微小的电流流过,这时的电流称为“ 残余电流”或背景电流。当外加电压到达Cd2+的析出电位时,
2024/10/8
8
(-0.5V~-0.6V),Cd2+开始在滴汞电极上迅速反应:
滴汞电极: 甘汞电极:
Cd2+ + 2e + Hg = Cd(Hg)(汞齐) 2Hg - 2e + 2Cl- = Hg2Cl2
Ede = E ⊝ +
0.O59 n
lg
ABccABee
2024/10/8
20
-id = kA cA
未达到极限电流之前:
-i = kA (cA- cAe)
则:
cAe =
-id + i kA
由法拉第电解定律: cBe =
-i kB
Ede =
E
⊝
+
0.O59
n
lg(
A B
kB kA
•
id -i i
)
令:E´ = E ⊝ + 0.On59
第四节 干扰电流及其消除方法 1.残余电流 (a)微量杂质等所产生的微弱电流
产生的原因:溶剂及试剂中的微量杂质及微量氧等。 消除方法:可通过试剂提纯、预电解、除氧等; (b)电容电流(也称充电电流) 影响极谱分析灵敏度的主要因素。 产生的原因:由于汞滴表面与溶液间形成的双电层,在与 参比电极连接后,随着汞滴表面的周期性变化而发生的充电现 象所引起。分析过程中由于汞滴不停滴下,汞滴表面积在不断
消除方法: 加入强电解质(支持电解质,为惰性电解质,如KCl、HCl、 H2S04等)。加入强电解质后,被测离子所受到的静电吸引力 减小。一般支持电解质的浓度比待测物质的浓度大100倍以上。 3.极谱极大 在极谱分析过程中产生的一种特殊现象,即在极谱波刚出 现时,扩散电流随着滴汞电极电位的降低而迅速增大到一极大
第5章伏安分析法
• 极限电流由残余电流与扩散电流组成。
• 极限电流是靠由溶液本体扩散到电极
表面的金属离子所传递的,称它为扩散 电流。
外加电压U:U=(ESCE-Ede)+iR
在极谱电解过程中,i很小,iR可忽略
则U=ESCE-Ede
电解过程中,阳极产生的浓差极化很小,
ESCE保持不变。
U=-Ede(vs.SCE)
电流密度较大时,电极表面周围的金属 离子浓度由于电解反应而迅速降低,加上 搅拌又不充分,溶液本体中的金属离子来 不及扩散到电极表面来进行补充,使电极 表面的金属离子浓度比溶液本体的浓度为 小。根据Nernst方程。
E E
RT nF
lg c M
• 由于金属离子浓度cM的降低,电极电位 将偏离其原来的平衡电位而发生极化现 象。 • 由于电解时在电极表面浓度的差异而引 起的极化现象,称为浓差极化 (concentration polarization)。
在一定电位下,受扩散控制的电解电流:
i=K(c-ce)
K:尤考维奇常数
当外加电压继续增加使滴汞电极的电位变 得更负时,ce将趋近于零。 则:id=Kc
扩散电流正比于溶液中Cd2+浓度而达到极 限,不再随外加电压的增加而改变。
K:尤考维奇常数
K 607 nD
1 2
2
1 3
m
t
6
扩散电流方程式(尤考维奇公式)
§5-3 半波电位-极谱定性分析原理
半波电位(E1/2):当电流等于扩散电 位的一半时的电位,与被还原离子的浓度 无关。 设以A代表还原物质,B代表还原产物 A + ne → B cAe:A在滴汞电极表面的浓度。 cA:A在溶液中的浓度 cBe:B在滴汞电极表面的浓度
《伏安和极谱分析法》课件
伏安法的原理和应用
1
应用
2
伏安法可用于测定溶液中的金属离子浓
度、电极表面的质子反应以及电解过程
中的动力学信息。
3
原理
伏安法基于电流与电压之间的关系来分 析化学反应。
操作步骤
实验中包括电化学池的搭建、采集电流 和电压数据以及数据分析。
极谱分析法的原理和应用
1
原理
极谱分析法基于物质在特定波长光下的吸收或发射来分析其组成。
伏安法和极谱分析法的优缺点和比较
伏安法
• 优点:灵敏度高、实验步骤简单、结果准确。 • 缺点:对电极表面状态敏感、不适用于非电
化学反应。
极谱分பைடு நூலகம்法
• 优点:高精确度、广泛应用、适用于稀溶液。 • 缺点:需要仪器设备、样品处理步骤复杂。
2
应用
极谱分析法可用于定量和定性分析金属、离子、有机物和生物样品。
3
操作步骤
实验中包括样品预处理、光谱仪的设置和信号测量、数据分析和结果解释。
伏安法和极谱分析法适用的样品类型
1 伏安法
适用于液态和固态样品,尤其是含有氧化还原反应的溶液。
2 极谱分析法
适用于气体、液体和固体样品,特别是需要分析其元素或化合物组成的样品。
《伏安和极谱分析法》 PPT课件
欢迎来到本次课程,我们将一起探讨伏安法和极谱分析法。这两种分析方法 在化学领域中扮演着重要角色,让我们深入了解它们的原理和应用,以及实 验操作步骤。
什么是伏安法和极谱分析法
伏安法
伏安法是一种电化学实验方法,用于研究氧化还 原反应和电化学动力学。
极谱分析法
极谱分析法是一种测定物质吸收或发射光谱的方 法,用于分析元素和化合物。
《极谱与伏安分析法》课件
感谢您的观看
THANKS
压曲线。
根据电流-电压曲线计算 被测物质的浓度或含量
。
对实验结果进行误差分 析和可靠性评估。
03
伏安分析法基础
伏安分析法的原理
1
伏安分析法是一种电化学分析方法,通过测量电 流随电位变化的关系来研究电极反应过程。
2
伏安分析法的基本原理是电位控制下的电流测量 ,通过改变电极电位来观察电流的变化,从而获 取有关电极反应的信息。
阶梯伏安法
将电极电位分成多个阶梯,并在每 个阶梯上保持恒定电位,测量相应 的电流响应,从而研究电极反应过 程。
伏安分析法的实验操作
组装实验装置
将电极、导线、电解池等仪器 组装在一起,确保连接牢固、 导电良好。
实验操作
设定合适的电位范围和扫描速 率,开始进行伏安实验,记录 电流随电位变化的曲线。
准备实验仪器和试剂
详细描述
极谱与伏安分析法在生物医学领域的应用研究涉及药物代谢、疾病诊断、生物分子检测等多个方面。 通过电化学手段对生物体内的物质进行检测,能够为药物研发、疾病诊断和治疗提供有力支持。
06
结论
总结极谱与伏安分析法的知识要点
极谱分析法
是一种电化学分析方法,通过在电解过 程中测量电流-电压曲线来研究物质的 电化学性质。
采用脉冲电压进行电解,提高了灵敏度和分辨率,适用于痕量
物质的分析。
交流极谱法
03
通过测量电解过程中的交流电流来分析物质,能够消除背景电
流的干扰,提高准确性。
极谱分析法的实验操作
实验前准备
实验操作
数据处理
结果分析
选择适当的电极和电解 液,准备好实验仪器和
试剂。
将电极浸入电解液中, 施加电压并记录电流-电
极谱分析法和溶出伏安分析法
极化电极——由于滴汞电极面积很小,电解时电流密度很大,很容易发生
浓差极化,所以,在极谱分析中,滴汞电极为极化电极。
去极化电极——而甘汞电极其面积比滴汞电极大得多,电解时电流密度
很小,一般不会发生浓差极化,在一定条件下,其电极电位不变,所以,甘 汞电极为去极化电极。 下面以电解 CdCl2 溶液为 例说明极谱分析的一般过程。将1×10-3 mol/L CdCl2 溶液加入电解池中,同时加入 0.1 mol/L KCl 作支持电解质,加入几滴极大抑制剂,通 氮除氧,调节汞滴下落速度为3~5 s/滴,以滴 汞电极为阴极,甘汞电极为阳极,在静止溶液 中进行电解。通过移动滑线电阻触点 C 的位 置,使外加电压由0~-1V间逐渐增加。每改变 一次外加电压都记下相应的电流值。然后以电 流为纵坐标,外加电压为横坐标作图,即得到 电解镉离子的电流-电压曲线,即镉离子的极 化曲线,这就是所谓的极谱图。见图5.2。
第5章 极谱分析法和溶出伏安分析 7
2. 极谱分析的基本原理
极谱分析中,外加电压、电极电位和电流等之间的关系可用电解方程表示:
V = Ea − Ed.e + iR + η
外加电压 阳极电位 滴汞电极阴极电位 电压降 过电位
由于金属在滴汞电极上的过电位一般很小,可忽略;又由于极谱电流很小, 又有大量支持电解质,故电压降也可忽略,则
id = k c
第5章 极谱分析法和溶出伏安分析 11
id = k c
此时,若滴汞电极电位继续变负,扩散电流也不会再增大,所以在极谱图 上出现一个平台,这就是说,这时电极达到了完全浓差极化。在这种情况 下,极限扩散电流与被测离子的浓度成正比,如上式所示,这就是极谱定 量分析的依据。 由此可见,完全浓差极化是极谱分析的前提和基础。极谱波的产生就 是由于极化电极上出现的浓差极化现象引起的,所以,其电流-电压曲线也 称为极化曲线,“极谱”的名称也由此而来。 产生浓差极化的条件: 1) 作为极化电极的面积要小,这样电流密度就很大,单位面积上起电极 反应的离子数量就很多,电极表面被还原的离子浓度就易趋近于零; 2) 溶液中被测物质的浓度要低,一般不大于10-2 mol/L,使其在电极表面 易趋近于零; 3) 溶液不搅拌,有利于在电极表面附近建立起扩散层。
第五节 极 谱 分 析 法
2. 滴汞电极电位的影响
汞滴受三种力影响:向下的重力、向上的浮力、 汞滴受三种力影响:向下的重力、向上的浮力、界面张力 浮力可忽略; 浮力可忽略; 界面张力对汞流速度的影响小于对滴汞周期的影响
( id )平均 微安; τ为滴汞周期 s; 为滴汞周期: ; 为滴汞周期 平均:微安;
----- 定量依据
浓度: 毫摩尔/升 浓度 毫摩尔 升。
三.影响极限扩散电流和半波电位的因素
(id)平均 = 607 n D 1/2 m 2/3 τ 1/6 c
(一)影响极限扩散电流的因素
1.毛细管特性: 毛细管特性: 毛细管孔的大小, m、τ:毛细管孔的大小,汞柱压力有关的常数 — 毛细管常数 m = k1 · p τ = k2 / p
(C定量依据) i ∝ C (C-Ce) (定量依据)
3 处电流随电压变化的比值最 大,此点对应的电位称为半波 电位。 极谱定性的依据) 电位。(极谱定性的依据)
极限扩散电流id
以若甘汞电极为阳极, 以若甘汞电极为阳极, 滴汞电极 为阴极,与外加电压的关系: 为阴极,与外加电压的关系:
U = (ESCE-Ede) + iR
(写出半波电位时一定要注明 写出半波电位时一定要注明) 写出半波电位时一定要注明
b. 温度、酸度、配合物 温度、酸度、
极谱波方程式
(id)平均 = 607 n D 1/2 m 2/3 τ 1/6 c
扩散电流常数: 扩散电流常数:I= 607nD1/2
取决于待测物质的性质) (n和D取决于待测物质的性质) 和 取决于待测物质的性质
5-伏安法和极谱分析法
影响扩散电流的因素
id 6 0 7 z D m 被测物浓度 毛细管常数和扩散电流常数
扩 散 电 流 常 数 I 607 zD =
1 2
1 2
2 3
t c K sc
1 6
id m t c
2 3 1 6
=
id 毛细管常数c
I与物质本性zD有关,不同实验室间可以利用I比较各自结果的一致性
海洛夫斯基 和志方益三
捷克斯伐克化学家, 海洛夫斯基
第一台极谱仪
“极谱”名称由来:电极极化谱,电极电位随外 加电压而改变所产生的电流“谱图”。
10
伏安法/极谱法的分类
控制电位极谱法:电位(电压)是通过仪 器主动调节的变量,电流是被动记录的因 变量 控制电流极谱法:电流是电化学仪器主动 输出的变量,电压是被动测量的因变量
流流过电极,符合法拉第定律。电极电位在部分情况下 偏离能斯特方程,称为过电位。
均能得到物质的浓度、总含量等信息。 电位分析法的困难:可选择范围窄、每次测一种离子。 电解分析法的困难:1.总量分析,慢;2.只能先电解
还原电位高的金属再分析单位低的金属;3.对不同电解 质环境中的还原反应往往难以把握。
控制极限扩散电流大小的因素
在电极反应速度很快,并消除迁移和对流电流后,电流 大小取决于电化学反应物(去极剂)向电极的扩散通量 (单位时间内扩散的总量)。 菲克第一定律(了解):单位面积上,浓度梯度越大, 扩散通量越大。其数学表达式如:
dC J D dx
dC f DA dx
认为流量总为正
了解:在这一部分,电极电位变 化小,而电流变化试剂。
分析:[Cd2+]s浓度越小,电极电位向哪个方向移动?
极谱分析的基本原理解析
实际开始发生电解反应时的电压, 其值大于理论分解电压(D点) c. 产生差别的原因
超电位(η)、电解回路的电压降 (iR)的存在。则外加电压应为:
E外 = (E阳 + η阳)- (E阴 + η阴) + iR 理论分解电压小于实际分解电压的原因是由于超电位的存在,但超电 位是如何产生的呢?
多功能极谱仪
极限扩散电流id
平衡时,电解电流仅受扩 散运动控制,形成极限扩散电 流id。 (极谱定量分析的基础)
图中处电流随电压变化的 比值最大,此点对应的电位称 为半波电位。 (极谱定性的依据)
滴汞电极-阴极;饱和甘汞电极-阳极
阴极:Cd2+ + 2e- + Hg 阳极:2Hg - 2e- + 2Cl外加电压U表示为:
此,i-Ede曲线与i-U曲线接近重合,i-Ede曲线称为极谱波。
(3)滴汞电极的特点 a. 电极毛细管口处的汞滴很小,易形成浓
差极化; b. 汞滴不断滴落,使电极表面不断更新, 重复性好。(受汞滴周期性滴落的影响,汞 滴面积的变化使电流呈快速锯齿性变化);
c. 氢在汞上的超电位较大; d. 金属与汞生成汞齐,降低其析出电位,使碱金属和碱 土金属也可分析; e. 汞容易提纯,有毒。
E(Cu/Cu 2 ) 0.337 0.059 lg[Cu2 ] 0.307 (V) 2
E(O2/H
2O)
1.229
0.059 4
lg
[O2 ][H [H 2O]
]
1.22
(V)
电池电动势为:E = 0.307 - 1.22 = -0.91 (V)
第五章极谱与伏安分析法习题
第五章极谱与伏安分析法一、简答题1.伏安和极谱分析时一种特殊情况下的电解形式,其特殊表观在哪些方面2.极谱分析法采用的滴汞电极具有哪些特点在极谱分析法中为什么常用三电极系统3.什么是极化电极什么是去极电极试结合极谱分析加以说明。
4.何谓半波电位它有何性质和用途5.何谓极谱扩散电流方程式(也称尤考维奇方程式)式中各符号的意义及单位是什么6.影响极谱扩散电流的因素是什么极谱干扰电流有哪些如何消除7.极谱的底液包括哪些物质其作用是什么8.直流极谱法有哪些局限性应从哪些方面来克服这些局限性》9.试比较单扫描极谱法及循环伏安法的原理、特点和应用等方面的异同点。
10.试述脉冲极谱法的基本原理,为什么示差脉冲极谱法的灵敏度较高11.极谱催化波有哪些类型各类催化波产生的过程有何不同12.试述溶出伏安法的基本原理及分析过程,解释溶出伏安法灵敏度比较高的原因。
13.脉冲极谱的主要特点是什么14.单扫描极谱与普通极谱的曲线图形是否有差别为什么15. 在极谱分析中,为什么要使用滴汞电极16. 在极谱分析中,影响扩散电流的主要因素有那些测定中如何注意这些影响因素17.为何说极谱分析是一种特殊的电解分析18.在极谱分析中,为什么要加入大量支持电解质$19.极谱分析的定量依据是什么有哪些定量方法20.影响扩散电流的主要因素有哪些测定时,如何注意这些影响影响因素二、填空题型笔录式极谱仪由三部分组成,即主机、记录仪和。
2.滴汞电极的滴汞面积很,电解时电流密度很,很容易发生极化,是极谱分析的。
3.极谱极大可由在被测电解液中加入少量物质予以抑制,加入可消除迁移电流。
4. 是残余电流的主要部分,这种电流是由于对滴汞电极和待测液的形成的,所以也叫。
5.选择极谱底液应遵循的原则:好;极限扩散电流与物质浓度的关系;干扰少等。
6.我国生产的示波极谱仪采用的滴汞时间间隔一般为7s,在最后s才加上我的以观察i-v曲线。
;7.示波极谱仪采用三电极系统是为了确保工作电极的电位完全受的控制,而参比电极的电位始终保持为的恒电位控制体系,所以i-v即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制电位极谱法(如直流极谱法、单扫描极谱法、脉冲 极谱法和溶出伏安法等); 控制电流极谱法(如交流示波极谱法和计时电位法等)。 我们这里只介绍控制电位极谱法。
4
§5.1 直流极谱法
一、原理
1. 装 置 直流极谱法也称恒电位极谱 法。它包括测量电压、测量 电流和极谱电解池三部分。
特 点:(与电重量分析和库仑分析法比较) 特殊的电解方法——通过由电解过程中所得的电流-电位
(电压)(i ~ , V)或电位-时间( ~ t)曲线进行分析的方法。
指示电极面积小,分析物浓度低,溶液静止——浓差极化 现象明显。 所以指示电极又称极化电极。
3
定 义: 伏安法和极谱法:是一种特殊的电解方法。以小面积、 易极化的电极作工作电极,以大面积、不易极化的电极 为参比电极组成电解池,电解被分析物质的稀溶液,由 所测得的电流-电压特性曲线来进行定性和定量分析的 方法。当以滴汞作工作电极时的伏安法,称为极谱法, 它是伏安法的特例。
极化电极 ——指示电极——小面积的滴汞电极 去极化电极 ——参比电极——大面积的饱和甘汞电极
极谱过程是一种特殊的电解过程,由电解方程得:
V SCE de ir
电解时饱和甘汞电极的电极反应为:
2Hg 2Cl
Hg 2Cl2 2e
其电极电位(298K)为:
SCE
Hg22 ,Hg
0.0592 lg 2
第五章 伏安法和极谱分析法
Voltammetry and Polarography
基本要求: 1. 掌握直流极谱法的基本原理及其不足之处; 2. 掌握尤考维奇方程和极谱波方程; 3. 理解单扫描极谱法、脉冲极谱法和阳极溶出 伏安法灵敏度高的原因; 4. 掌握循环伏安法的原理及应用.
1
历 史: 1922年J. Hegrovsky创立了极谱学; 1934年D. Ilkovic
此时电流达极限值,该电流称为极限电流 il ,极限电流扣除
残余电流ir后为极限扩散电流,简称扩散电流id:
i i1 ir id K[Cd 2 ]
该扩散电流id与被测物质的浓度成比例,这是定量分析的基础。
9
在极谱分析中,滴汞电极称为极化电极,它的电位随外加电 压的变化而变化。参比电极的表面积较大,没有明显的浓差 极化现象,它的电位很稳定,不随外加电压而变化,称为去 极化电极。极谱波的产生是由于在极化电极上出现浓差极化 现象而引起的,所以其电流-电位曲线称之为极化曲线,极 谱的名称也是由此而来的。
8
电极表面的浓度梯度为: c
=[Cd 2 ]-[Cd 2 ]s
x 电极表面
理论和实践均表明,扩散电流i与扩散速度成正比,而扩散速 度与扩散层中的浓度梯度成正比,故
i Cd 2 - Cd 2 s K Cd 2 - Cd 2 s
当滴汞电极的电位负至一定数值时, [Cd 2 ]s 0
Cd 2 2e Hg
Cd (Hg)
de
0'
0.0592 [Cd 2 ]s
lg
2
[Cd (Hg )]s
电极表面的[Cd2+]s决定于电极电位。电极电位变负,滴 汞电极表面的Cd2+迅速还原,电流急剧上升
由于在汞表面电活性物质的产 生或消耗,会在汞滴周围形成 一扩散层,其厚度δ约0.05mm。 在扩散层内随着离开汞滴表面 距离增加,浓度从小到大。
浓差极化现象的建立,一般需要具有下列条件:
(1)作为极化电极的表面积要小,这样电流密度就很大,单 位面积上起电极反应的离子数量就很多,cs就易于趋近于零; (2)溶液中被测定物质的浓度要低,cs也就易于趋近于零; (3)溶液不搅拌,有利于在电极表面附近建立扩散层。
10
3、极化电极和去极化电极
在双电极系统中
导出扩散电流方程式——建立了经典极谱定量分析的 理论基础;
导出极谱波方程——建立了极谱定性分析的理论基础; 30—50年代,发展迅速,文献达数万篇;提出了交流示波 极谱、单扫描、交流、方波极谱; 60年代,提出了脉冲极谱法。
2
极谱定量分析的范围: 从简单的金属粒子——其它的无机离子、有机物 从滴汞电极——悬汞、金、铂、碳电极等 检测范围从10-2~10-5——10-7~10-8, 10-8~10-10(溶出伏安法)
1、尤考维奇方程 在消除了迁移电流和对流电流后,极谱电流完全受去极 剂向电极表面的扩散速度控制。去极剂在滴汞电极表面 发生反应使其浓度降低,滴汞电极周围形成一薄层扩散 层,产生浓度梯度。对于线性扩散,根据Fick第一定律, 每秒通过扩散而到达电极表面的被测离子的量f,与电极 面积A和浓度梯度成正比,即
de (vs.SCE) (V ir)
若电解池的内阻很小,且极谱电流仅微安数量级,电压降可以忽略, 则
de (vs.SCE) V
滴汞电极的电位完全随外加电压的改变而改变,它就成为极化电极。
极化与去极化是相对的,在极谱波的电流急剧上升部分,滴汞 电极具有去极化的性质 。
电活性物质称为去极剂?12二、受扩散控制的电解电流
称为极谱波。
6
2.极谱波的形成 残余电流部分 电流上升部分 极限扩散电流部分
在极谱波上可以测得扩散电流id,同时还可测得半波电流1/2
(半波电位对应于扩散电流值的一半时的电位值.将在后面详细讨论)。
极谱波形以及相关的参数id和1/2是反映极谱性质
的重要标志。 7
当电位负至Cd2+的析出电位时,Cd2+在滴汞电极上还原并 与汞形成汞齐:
Ksp (Hg2Cl2 ) 0.0592lg[Cl ]
0.264 0.0592 lg[Cl ]
SCE
[Cl ]
电流密度
11
i滴汞电极面积A,c;(A小,c小)i小(约微安数量级)。
微安数量级的电流流过大面积的饱和甘汞电极,其电流密度 小,则[C1-]几乎不变,从而使饱和甘汞电极的电位基本不 变,成为去极化电极。
自1922年J.Heyrovsky开创极 谱学。1918年他研究毛细管
曲 线 记 录i~ 时发现重现性
非常好,后三年他专门研究
i~的关系,1922年发表。
5
在电解池中,以大面积的饱和甘汞电极为阳极,小面积的 滴汞电极为阴极,在不搅拌溶液的静止条件下电解。
用极谱仪自动记录i-V或i-de曲线,得台阶形的锯齿波,