北师大版七年级数学上册应用一元一次方程--追赶小明 (3)
北师大版七年级上册数学5.3.3 一元一次方程的应用-追赶小明PPT课件
多少呢?
80×5
的这段8路0x程是多少呢?学
180x
校
爸爸所行的路程是多少呢?
思考:小明走后面的这段路与爸爸从家里出发到追上小明 所用的时间有什么关系?
探究新知
等量关系:爸爸行的路程=小明行的路程
80×5
80x
出
学
发
追及 校
180x
解:(1)设爸爸追上小明用了x分钟,根据题意,得 180x = 80x + 80×5.
答:听到回声时,汽车离山谷640 m.
课堂检测
基础巩固题 3.一个车队共有n(n为正整数)辆小轿车,正以36 km/h的速 度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为 5.4 m,甲停在路边等人,他发现该车队从第一辆车的车头 到最后一辆车的车尾经过自己身边共用了20 s的时间,假设 每辆车的车长均为4.87 m.求n的值.
巩固练习
敌我两军相距25km,敌军以5km/h的速度逃跑,我军同 时以8km/h的速度追击,并在相距1km处发生战斗,问战 斗是在开始追击后几小时发生的?
解:设战斗是在开始追击后x小时发生的. 根据题意,得 8x-5x=25-1. 解得 x=8.
答:战斗是在开始追击后8小时发生的.
探究新知
议一议 根据下面的事实提出问题并尝试去解答. 育红学校七年级学生步行到郊外旅行.七(1)班的学生组成 前队,步行的速度为4千米/小时,七(2)班的学生组成后队, 速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派 一名联络员骑自行车在两队之间不间断地来回进行联络,他骑 车的速度为12千米/小时. 问题1:后队追上前队用了多长时间?
解方程得:x = 1.5
答:联络员在前队出发后1.5小时后第一次追上前队.
北师大版七年级上册数学应用一元一次方程—追赶小明课件
1.会借线段图分析行程问题. 2.各种行程问题中的规律及等量关系. 同向追及问题: ①同地不同时——甲时间+时间差=乙时间;
甲路程=乙路程. ②同时不同地——甲路程+路程差=乙路程;
甲时间=乙时间. 相向的相遇问题: 甲路程+乙路程=总路程; 甲时间=乙时间.
3.解决行程问题的一般步骤:
问题的 已知条件
分析:甲所用时间=乙所用时间; 甲路程+乙路程=甲乙相距路程
6x
相遇 4x
解析:设经过x秒后两人相遇,
小丽
小红 根据题意可得 6x 4x 100
100米
解,得 x 10
答:经过10秒后两人相遇。
【问题解决】 学习了本节课的知识你能帮助小兔子解决它的问题吗?
乌龟
出发点
小白兔
1000 101x
解析:设经过x秒兔子追上乌龟,
画出 线段图
找出 等量关系
回答
检验
列方程 并求解
的速度为_2_0_0_米/ 分; 3.小明家距离车站2400米,他以4米/秒的速度骑车到达车站需_1_0_
分钟.
【趣味小故事】
我们小时候听过了龟兔赛跑的故事,都知道乌 龟最后战胜了小白兔,小白兔不服气,便邀请乌龟 进行第二次比赛,并且礼让乌龟先跑1000米,然后 以101米/分的速度奋起直追,而乌龟仍然以1米/分 的速度爬行,设小白兔需要x分钟后追上乌龟,则 可列方程为:
D.3(x-4)=25.2
【解析】选C.由题意得,3小时后两人走的路程为3(4+x),可
得到方程:3(4+x)=25.2.
2.已知A,B两地相距30千米.小王从A地出发,先以5千米/时 的速度步行0.5小时,然后骑自行车,共用了2.5小时到达B 地,则小王骑自行车的速度为? 【解析】设小王骑自行车的速度为x千米/时,由题意得: 5×0.5+(2.5-0.5)x=30,解方程得:x=13.75.
北师大版七年级数学上册5.6《 应用一元一次方程——追赶小明》课件
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
小明
小彬
若设x s后小明能追上小彬.
10
小明
小彬
4x 6x
追及点 追及点
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
3.(潜江·中考)元代朱世杰所著的《算学启蒙》里有 这样一道题: “良马日行二百四十里,驽马日行一百五十里,驽马先 行一十二日,问良马几何追及之?”请你回答:良马几 天可以追上驽马. 【解析】设良马x天可以追上驽马,根据相等关系:驽马 先行一十二日的路程+驽马x天行的路程=良马x天行的路 程,可列方程12×150+150x=240x,解得x=20. 故良马20天可以追上驽马.
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
【解析】(1)设x s后两人相遇,由题意得 4x+6x=100, 10x=100, x=10,
答:10 s后两人相遇.
(2)设x s后小明追上小彬, 由题意得 6x-4x=10 2x=10 x=5
初中数学北师大版七年级上册应用一元一次方程——追赶小明课件
6 应用一元一次方程——追赶小明
感悟新知
知识点 1 行程问题
• 1. 行程问题中的基本关系式 •路程= 速度× 时间, •时间= 路程÷ 速度, •速度= 路程÷ 时间.
知1-讲
感悟新知
知1-讲
2. 行程问题中的相等关系 (1)相遇问题中的相等关系:
①若甲、乙相向而行,甲走的路程+ 乙走的路程= 甲、 乙出发点之间的路程; ②若甲、乙同时出发,甲用的时间= 乙用的时间.
根据题意,得 65z+85(0.5+z)=450. 解得 z=16603. 因此,慢车行驶16603 h 两车相遇.
感悟新知
知1-练
例2 李成在王亮的前方10 米处,若李成每秒跑7 米,王亮 每秒跑7.5 米,两人同时起跑,问:王亮跑多少米可 以追上李成?
解题秘方:此题是追及问题,属于“同时不同地”的 类型,可根据“王亮跑的路程- 李成跑的路程=10 米” 列方程求解.
1. 在行程问题的三个量(路程、速度、时间)中,一个
量已知,另一个量设元,则第三个量用来列方程.
2. 在相遇和追及问题中,若两者同时出发,则时间
相等,利用两者路程之间的关系列方程.
3. 航行问题中涉及顺和逆的问题,只要路线相同,
则路程不变.
感悟新知
知1-练
例 1 A,B 两地相距280 m,甲、乙两人同时相向而行, 甲从A 地每秒跑8 m,乙从B 地每秒跑6m,那么几秒 后甲、乙两人相遇?
感悟新知
知1-练
(1)两车同时开出, 相向而行, 那么两车行驶多少小时相遇? 解:设两车行驶x h相遇. 根据题意,得65x+85x=450,解得x=3. 因此,两车行驶3 h相遇.
感悟新知
北师大版数学七年级上册.应用一元一次方程——追赶小明课件
解得n=10,
所以4n=4×10=40,
答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.
两人的路程和=两人之间的距离
叁
当堂训练
当堂训练
1.甲、乙两人在400m跑道上练中长跑,甲每分钟跑300m,乙每分
钟跑260m,两人同地、同时同向起跑,xmin后第一次相遇,x等于
(2)2×16÷4=8(h).
答:相遇后经过8h小强到达A地.
当堂训练
4.小明骑自行车的速度是15千米/小时,一天,小明从家出发骑自
行车去学校,恰好准时到达,如果他全程乘坐速度为40千米/小时
的公共汽车,则会提前15分钟到达学校.
(1)小明家离学校有多少千米;
(2)小明乘坐公共汽车上学需要多长时间?
(1)两人的行进速度分别是多少?
(2)相遇后经过多少时间小强到达A地?
解:(1)设小刚的速度为xkm/h,
则相遇时小刚走了2xkm,小强走了(2x−24)km,
由题意得,2x−24=0.5x,
解得:x=16,
则小强的速度为:(2×16−24)÷2=4(km/h),
答:两人的行进速度分别是16km/h,4km/h;
故小轿车出发 小时、 小时、 小时与货车相距50km.
两人的路程差=两人之间的距离
讲授新知
知识点二:相遇问题
甲、乙两人相距 280,相向而行,甲从 A 地每秒走8米,
乙从 B 地每秒走 6 米,那 么甲出发几秒与乙相遇?
解:设甲出发后x秒与乙相遇,画图如下:
甲走的路程+乙走的路程=两人的距离
解得:_____________
北师大版七年级上册数学5.6应用一元一次方程-追赶小明教案
-强调速度、时间、距离三者之间的关系,并能够用方程表达。
b.方程的列立与求解:
-重点讲解如何根据问题情境列出正确的一元一次方程。
-强调方程求解的步骤,包括移项、合并同类项、化简等。
c.应用与实践:
-通过多个实际问题的案例分析,使学生熟练运用一元一次方程解决问题。
同学们,今天我们将要学习的是《应用一元一次方程-追赶小明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人在不同速度下开始走,然后一个人开始追赶另一个人的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程在追赶问题中的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调如何正确列立方程和求解方程这两个重点。对于难点部分,比如理解速度差与时间差的关系,我会通过具体的例子和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题,如追赶小明的各种变体。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。通过角色扮演和计时,学生可以直观地看到速度和时间差对追赶过程的影响。
其次,在方程的列立和求解过程中,有些同学容易犯错,比如移项时忘记变号,合并同类项出错等。这说明他们在基本的数学运算方面还需要加强练习。我计划在课后为他们提供一些额外的练习题,巩固方程求解的基本技能。
此外,小组讨论环节,同学们的参与度较高,但也有一些小组在讨论过程中偏离了主题。为了提高讨论效率,我将在下次教学中明确讨论要求,并在讨论过程中适时引导,确保每个小组都能围绕主题展开讨论。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
新北师大版七年级上册初中数学 6 应用一元一次方程 -追赶小明 教学课件
新课讲解
1.行程问题的基本关系式: 路程=速度×时间; 时间=路程÷速度,速度=路程÷时间.
2.行程问题中的等量关系: (1)相遇问题中的等量关系:
①甲走的路程+乙走的路程=甲、乙出发点之间的路程; ②若甲、乙同时出发,甲用的时间=乙用的时间.
第七页,共十八页。
新课讲解
(2)追及问题中的等量关系: ①快者走的路程-慢者走的路程=追及路程; ②若同时出发,快者追上慢者时,快者用的时间=慢者用的时间.
第十一页,共十八页。
新课讲解
典例分析
例 2.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,
小明几秒钟追上小兵? 分析:先画线段图:
第十二页,共十八页。
新课讲解
解:设小明 t 秒钟追上小兵, 据题意得 6(4+t ) =7t . 解得 t =24.
答:小明24秒钟追上小兵.
第十三页,共十八页。
新课讲解
第八页,共十八页。
新课讲解
典例分析
例 1.甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5
小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米, 求乙骑自行车的速度.
解:设乙骑自行车的速度为x千米/时, 据题意得 5(3x-6)+5x =150. 解得 x=9.
答:乙骑自行车的速度为9千米/时.
第十八页,共十八页。
知识点3 航行问题
思考
在海上的船那些因素会影响船的速度?
结论
顺水(风)速度=静水(风)速度+水流速度(风速) 逆水(风)速度=静水(风)速度-水流速度(风速)
பைடு நூலகம்第十四页,共十八页。
课堂小结
一 元 一 次 方 程 追 击 小 明
2022年数学七年级上《应用一元一次方程——追赶小明》课件(新北师大版) (3)
胆进行猜测; (3)找出不同事物中的相似点或共同点; (4)总结规律,得出结论; (5)验证结论是否正确.
考点讲练
考点一 列代数式 例1 用代数式表示: (1)a,b两数的平方和减去它们乘积的2倍; (2)a,b两数的和的平方减去它们的差的平方; (3)一个两位数,个位上的数字为a,十位上的数字为b, 请表示这个两位数; (4)假设a表示三位数,现把2放在它的右边,得到一个 四位数,请表示这个四位数.
的值.
解:当 x3,y21,z1时,
23
x24y324219101.
2
9z2
9132
911. 9
所以原式=1.
【归纳总结】 ①字母比较多时,代入时一定要认准每一个字 母所对应的值;②遇到分数或负数乘方时,一 定要加上括号;③遇到带分数时,要先化为假 分数,再代入计算;④代数式中原来省略的乘 号,代入值时,必须要添上乘号.
(2)对于同向同地不同时的问题,如下图,甲 的行程=乙先走的路程+乙后走的路程.
注意:同向而行注意始发时间和地点.
三 相遇问题
例4 小明家离学校2.9公里,一天小明放学走了5分 钟之后,他爸爸开始从家出发骑自行车去接小明, 小明每分钟走60米,爸爸骑自行车每分钟骑200米, 请问小明爸爸从家出发几分钟后接到小明?
归纳总结
两人从两地出发相向而行的行程问题称为相遇问题. 往往根据路程之和等于总路程列方程.如下图, 甲的行程+乙的行程=两地距离.
练一练
A,B两地相距60千米,甲、乙两人分别从A, B两地出发相向而行,甲的速度是8千米/时,乙的 速度是6千米/时.经过多长时间两人相距4千米?
A
北师大版七年级数学上册:5.6应用一元一次方程-追赶小明教案
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,特别是在行程问题中的速度、时间和路程关系的理解和应用;
2.强化学生的逻辑思维和抽象思维能力,通过建立一元一次方程模型,提升他们对数学问题的分析和解决能力;
3.激发学生的探究意识,引导他们在小组合作中交流思想,培养团队合作精神和解决问题的能力;
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何通过一元一次方程来解决行程问题,包括速度、时间和路程的关系,以及如何在实际问题中运用这一数学工具。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
然后,在新课讲授环节,我发现有些学生对速度、时间和路程的关系理解不够深入。在讲解过程中,我应该更加注意观察学生的反应,适时地调整教学节奏和方式,用更直观的图示或实物操作来帮助他们理解这些概念。
在实践活动和小组讨论环节,学生们表现得相当积极。他们通过讨论和实验操作,不仅加深了对一元一次方程的理解,还学会了如何与他人合作、交流思想。这一点让我感到非常欣慰。但同时,我也注意到有些小组在讨论时可能会偏离主题,今后我需要适时引导,确保讨论的效率和质量。
3.重点难点解析:在讲授过程中,我会特别强调速度、时间和路程的关系,以及如何从实际问题中抽象出一元一次方程这两个重点。对于难点部分,我会通过具体的行程问题实例和图示来帮助大家理解。
北师大版七年级上册应用一元一次方程--追赶小明课件
.前队出发1 h 后,后队才出发,同时后队派一名联络员骑自行车在
两队之间不间断地来回进行联络,他骑车的速度为 12 km/h.根据上面
的事实提出问题并尝试去解答.
问题1:多少小时后,联络员追上前队 ?
解:设:x小时后,联络员追上前队 。
根据题意,可列出方程:
4( x+1) = 12x
解得:
答:0.5小时后,联络员追上前队。
地点沿着同一方向同时出发,骑行结束后两人有如下对话:
(1)他们的对话内容,求小明和爸爸的骑行速度;
(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,
根据题意得:2(2x-x)=400,
解得:x=200,
∴2x=400.
答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.
程减少了30千米,而车速平均每小时增加了30千米,只需4小时即
可到达.求甲、乙两地之间高速公路的路程?
解:设长途汽车本来的速度是x千米/小时,
根据题意可得:7x=4×(x+30)+30,解得x=50,
故两地高速公路的路程是:50×7-30=320千米,
答: 两地高速公路的路程是320千米.
5.登山是一种简单易行的健身运动,山中森林覆盖率高,负氧离
地.设乙车出发x小时后追上甲车,根据题意可列方程为( A )
A.60(x+2)=100x
B.60x=100(x-2)
C.60x+100(x-2)=600
D.60(x+2)+100x=600
3.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出
发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80
在这两小时之间,联络员一直骑行,所以,联络
数学七年级上北师大版5.6应用一元一次方程-追赶小明同步练习3
应用一元一次方程—追赶小明(60分钟 100分)一、选择题(每题8分,共24分)1.A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B•地开往A• 城,6h 后两车相遇.若普快列车速度是特快列车速度的23,且设普快速度为xkm/h , 则下面所列方程正确的是( ).A .720-6x=6×23x+120B .720+120=6×(x+23x ) C .6x+6×32x+120=720 D .6(x+23x )+120=7202.在某公路的干线上有相距108km 的A 、B 两个车站,某日16时整,甲、•乙两辆 汽车分别从A 、B 两站同时出发,相向而行,已知甲车速度为45km/h ,乙速度为36km/h , 两车相遇的时间为( ).A .16点20分B .17点20分C .17点30分D .16点50分3.甲、乙两人由A 地到B 地,甲先走2h 乙再出发,结果乙比甲迟到15min ,已知甲 速为4km/h ,乙速为6km/h ,求A 、B 两地的距离,设A 、B 两地的距离为xkm ,可列 方程( ).A .4x -6x =2-14B .4x -6x =2+1.5C .4x -6x =2+14D .6x -4x =2-14二、填空题(每题8分,共48分)4.甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑1米然后追乙,______秒便可追上. 5.某人计划开车用3时从甲地到乙地,因为每小时比原计划多行驶16千米,•结果用了2.5时就到达乙地,甲、乙两地相距_______千米.6.快车每小时行72千米,慢车每小时行60千米,它们同时分别从甲、乙两站相向 而行,两车相遇前,慢车因故停车1.5小时,相遇时,•快车所列的路程是慢车所行路程的3倍,则甲、乙两站的距离为_______千米.7.甲、乙两人都从A地到B地,甲步行,每小时走5千米,先走1.5小时;乙骑自行车,乙走了50分钟,两人同时到达目的地,乙每小时骑_______千米.8.在400米的环形跑道上,甲练习骑自行车,速度为6米/秒,乙练习跑步,•速度为4米/秒,若两人同时同地同向而行,_____秒后两人首次相遇.9.一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道经历18秒钟,• 隧道顶部一盏固定的灯光在火车上照了10秒钟,则这列火车的长为_______米.三、解答题(10题8分,11,12题各10分,共28分)10.甲、乙两车自南向北行驶,甲车的速度是每小时48km,•乙车的速度是每小时72km,甲车开出25min后乙车开出,问甲车开出多长时间后被乙车追上?11.甲列车从A地以150千米/时的速度开往B地,1小时后,乙列车从B地以70• 千米/时的速度开往A地,如果A、B两地相距200千米,求两车相遇点距A地多远?12.A、B两地相距150千米,一辆汽车以50千米/时的速度从A地出发,另一辆汽车以40千米/时的速度从B地出发,两车同时出发,相向而行,•问经过几小时,• 两车相距30千米?参考答案一、1.C 分析:本题的等量关系是:普快列车先走的路程+普快列车6•小时走的路程+ 特快列车6小时走的路程=720千米,普快列车6小时走的路程为6x 千米;特快列车 的速度为32x 千米/时,特快列车6小时走的路程为32x ×6千米,故选C . 点拨: 路程=•速度×时间.2.B 分析:设两车从开始出发x 小时后相同,由题意得:45x+36x=108,x=113,• ∵开始出发的时间为16时,∴出发113后的时间为17点20分,故选B .3.A 分析:从同一地点出发,目的地相同,那么总路程相同.设两地距离为x 千米,由题意得:4x -2+1560=6x,即4x -6x =2-14,故选A . 点拨:单位一定要统一.二、4.13 分析:本题属追及问题,等量关系为:甲追上乙所走的路程+乙走的路程相等,设x 秒甲追上乙,由题意得:7x=6.5(x+1),解得x=13.5.240 分析:设原计划每小时行x 千米,由题意得:3x=2.5(x+1.6),•解得x=•80,3x=240. 点拨:•本题列方程是利用原计划和实际所走的路程相等这个不变量来列方程,我们也可以设甲、乙两地相距x 千米,•由原计划速度与实际速度的关系列方程得1632.5xx+=. 6.240 分析:设快车行驶x 小时后与慢车相遇,由题意得下表:根据题意,可列方程:72x=3×60(x-1.5),解得x=2.5,72x+60(x-1.5)=240.7.14 分析:设乙每小时骑x 千米,由题意得5×(1.5+5060)=5060x ,x=14. 点拨:因为甲、乙两人都是从A 地到B 地,所以路程相等,由此列方程求解. 8.200分析:环形跑道问题:两人同地同向而行首次相遇,即甲行的路程-•乙行的 路程=400米,设经过x 秒后两人首次相遇,由题意得:6x-4x=400,解得x=200. 点拨:环形跑道若两人同地同向而行首次相遇就是快者比慢者多行一圈.9.400 分析:火车从进入隧道到完全通过隧道的意思是火车走的路程=隧道长+一个 火车车身长;隧道顶部的灯在火车上照了10秒钟,这说明火车10•秒钟走的路程等 于一个火车长,设火车的速度为x 米/秒,由题意得18x-320=10x ,解得x=•40, 10x=400.点拨:本题利用火车车身长度不变列方程. 三、10.分析:等量关系是甲走的总路程=乙的路程.解:设甲车开出x 小时后被乙车追上,由题意得:48x=72(x-2560),解得x=54.答:甲车开出54小时后被乙车追上.11.分析:设乙车开出x 小时后与甲车相遇,可根据甲车的路程+乙车的路程=•200 千米列方程求出x ,再求甲车的路程即为两车相遇点距A 地的距离,也可直接设元, 利用甲、乙行驶的时间差为1小时列方程求解.解:设乙车开出x 小时后两车相遇,•则甲车行驶了150(x+1)千米,由题意得:150(x+1)+70x=200,x=527,150(1)1502222x +=⨯=202511千米. 答:两车相遇点距A 地202511千米. 点拨:也可设两车相遇点距A 地x 千米,由题意得:200115070x x --=. 12.分析:两车同时相向出发,两车相距30千米有两种情形: 一种是两车的路程之和=A 、B 两地的总路程+30千米,另一种是两车的路程之和=A、B两地的总路程-30•千米.解:设经过x小时,两车相距30千米,由题意得:50x+40x=150-30,或x=2或50x+40x=150+30,解得x=43答:经过4小时或2小时,两车相距30千米.3。
北师大版七年级数学上册课件:5.6应用一元一次方程-追赶小明
答:乙骑自行车的速度为9千米/时.
13
本课结束
14
分析:等量关系:快车所用时间=慢车所用时间; 快车行驶路程=慢车行驶路程+相距路程.
线段图:
解:设快车x小时追上慢车, 据题意得: 85x=450+65x.
解,得 x=22.5. 答:快车22.5小时追上慢车.
5
二、新课讲解
小结:同向而行 ②甲、乙同时走;
等量关系:甲的时间=乙的时间; 乙的路程=甲的路程+起点距离.
第五章 一元一次方程
6 应用一元一次方程 ——追赶小明
授课人:XXXX
1
一、新课引入
分析:等量关系:小明所用时间=5+爸爸所用时间; 小明走过的路程=爸爸走过的路程.
线段图:
2
一、新课引入
解:(1)设爸爸追上小明用了x 分钟,
据题意得 80×5+80x=180x. 解,得 x=4.
答:爸爸追上小明用了4分钟. (2)180×4=720(米),1000-
720=280(米). 答:追上小明时,距离学校还有280 米.
3
二、新课讲解
小结:同向而行 ①甲先走,乙后走;
等量关系:甲的路程=乙的路程; 甲的时间=乙的时间+时间差.
4
二、新课讲解
甲、乙两站间的路程为450千米,一列慢车从甲站开出, 每小时行驶65千米,一列快车从乙站开出,每小时行驶85千 米.设两车同时开出,同向而行,则快车几小时后追上慢车?
10
四、强化训练
1. 七年级一班列队以每小时6千米的速度去甲地. 王明从队尾以每小时10千米的速度赶到队伍的排头后 又以同样的速度返回排尾,一共用了7.5分钟, 求队伍的长.
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生掌握如何运用一元一次方程解决实际问题。
通过追赶小明的故事情境,让学生理解速度、时间和路程之间的关系,并学会运用一元一次方程进行计算。
教材通过具体的案例,使学生能够将所学的数学知识与实际生活相结合,提高解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了一元一次方程的基本概念和计算方法。
但部分学生可能对实际问题与数学知识的结合还不够熟练,需要通过实例来进行引导和训练。
此外,学生可能对速度、时间和路程之间的关系有一定的了解,但需要通过数学方程来进行深入的解析和应用。
三. 教学目标1.理解速度、时间和路程之间的关系,并能够运用一元一次方程进行计算。
2.学会将实际问题转化为数学问题,提高解决问题的能力。
3.培养学生的逻辑思维和数学素养,使学生能够运用数学知识解释实际问题。
四. 教学重难点1.掌握速度、时间和路程之间的关系。
2.将实际问题转化为数学问题,并运用一元一次方程进行计算。
3.解决实际问题时,如何正确选择变量和建立方程。
五. 教学方法采用问题驱动的教学方法,通过追赶小明的故事情境,引导学生理解速度、时间和路程之间的关系。
利用实例,让学生动手尝试建立方程,并进行计算。
在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。
同时,进行分组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.准备追赶小明的案例材料,包括小明的行程路线、时间和速度等信息。
2.准备相关的一元一次方程计算练习题,用于巩固学生的计算能力。
3.准备黑板和粉笔,用于板书解题过程和重点知识。
七. 教学过程1.导入(5分钟)通过讲述一个关于追赶小明的故事,引导学生思考速度、时间和路程之间的关系。
提出问题:“如果你是追赶者,如何计算追赶所需的时间和距离?”2.呈现(10分钟)呈现小明的行程路线、时间和速度等信息。
北师大版七年级上册应用一元一次方程-追赶小明(课件)
总结:1.
探索&交流
路程=速度×时间;
时间=路程÷速度,速度=路程÷时间.
2.
(1)相遇问题中的等量关系:
①甲走的路程+乙走的路程=甲、乙出发点之间的路程;
②若甲、乙同时出发,甲用的时间=乙用的时间. (2)追及问题中的等量关系:
①快者走的路程-慢者走的路程=追及路程;
探索&交流
分析 等量关系: 小明走的路程=爸爸走的路程
小明走的总时间-爸爸追的时间=5 min
家
学
80m/min
校
5min
180m/min
怎么求爸爸追上小明的时间?
探索&交流
家
80×5
80x 学校
180x
1.用简单的“线段图”表示演示的追赶过程. 2.路程、速度和时间三者之间有何关系呢?“线段图”反应了 怎样的等量关系?
例题欣赏 ☞
例题&解析
例2.一艘轮船在A、B两地之间航行,顺流用3h,逆流航行比顺流
航行多用30min,轮船在静水中的速度为26km/h,求水流的速度。 分析 等量关系:
3h 顺水中
逆水中
3.5h
26km/h
?
顺水中的航速=静水中的航速 +水流速度
逆水中的航速=静水中的航速-水流速度
顺水中的航程=逆水中的航程
解:设小明的速度为x m/s,
则他的哥哥的速度为 3 x m/s,
2
由题意得160x=160×
3 2
x
-400.
解得x=5.
则小明的哥哥的速度为5×
3 2
=7.5(m/s).
设经过y s他们第一次相遇,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新知讲解
问题1:后队追上前队用了多长时间 ?
解:设后队追上前队用了x小时,由题意得: 6x = 4x + 4
解方程得:x =2 答:后队追上前队时用了2小时。 问题2:后队追上前队时联络员行了多少路程? 解:由问题1得后队追上前队用了2小时,因此,联络员共行进了 12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米。
新知讲解
问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 由题意得:
12x = 4x + 4 解方程得:x =0.5 答:联络员第一次追上前队时用了0.5小时。
新知讲解
归纳 对于行程问题,通常借助“线段图”来分析问题中的数量关系.
新知讲解
例1、 小明每天早上要在7:50分之前赶到距家1000米的学校上学.一天,小
做一做 明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带数学书.于是,爸
爸立即以180米/分的速度去追小明,并且在途中追上他,问爸爸追上小明用了
多长时间? 假设爸爸追上小明用了x分钟
小明5分钟走 的路程80×5
1000-720=280(米) 所以,追上小明时,距离学校还有280米。
新知讲解
做一做
例2 已知船在静水中的速度是24千米/时,水流速度是2千米/ 时,该船在甲、乙两地间行驶一个来回共用了24小时, 求甲、乙两地的距离是多少?
分析:本题是行程问题,故有: 路程=平均速度×时间; 时间=路程÷平均速度.
甲、乙两人同向出发,甲追乙这类问题为追及问题:
(1)对于同向同时不同地的问题,如图所示,甲的行程-乙的
行程=两出发地的距离;
甲出发地
乙出发地
追及地
乙的行程
甲的行程
新知讲解
(2)对于同向同地不同时的问题,如图所示,甲的行程=乙先 走的路程+乙后走的路程.
乙先走的路程 乙后走的路程
甲的行程 甲、乙出发地
应用一元一次方程 ——追赶小明
数学北师大版 七年级上
新知导入
速度、路程、时间之间的关系
想一想
1.行程问题中速度、时间和路程的关系是:路程
=___速__度___×__时___间___.
2.行程问题分为两类:一类是__相__遇___问__题___;另一 类是__追__及__问___题___.借助“线段图”分析题意,找 出等量关系,正确地列出方程并求解.
归纳
环形跑道长s米,设v甲>v乙,经过t秒甲、乙第一次相遇.
一般有如下两种情形:
①同时同地、同向而行:v甲t-v乙t=s. 追及问题
②同时同地、背向而行: v甲t+v乙t=s. 相遇问题
课堂练习
1.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走
4千米,3小时后两人相遇,设小刚的速度为x千米/时,
解:设无风时飞机的飞行速度为 x 千米/时,则顺风飞行的速度 为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时.
17 根据题意,得 6 (x+24)=3(x-24).
课堂练习
解得 x=840.所以 3(x-24)=2 448(千米). 答:无风时飞机的飞行速度为 840 千米/时,两城之间的航程为 2 448 千米
答:经过40秒两人第一次相遇
新知讲解
操场一周是400米,小明每秒跑5米,小华骑自行车每秒15米, 两人绕跑道同时同地同向而行,两人同时同地相背而行,则 两个人何时相遇?
解:设经过x秒两人第一次相遇,依题意,得 15x+5x=400, 解得x=20 .
答:经过 20 秒两人第一次相遇
新知讲解
环形跑道问题
列方程得( C )
A.4+3x=25.2
B.3×4+x=25.2
C.3(4+x)=25.2
D.3(x-4)=25.2
2.一列长30米的队伍以每分钟60米的速度向前行进,队尾一名同 学用1分钟从队尾走到队头,这位同学走的路程为__9_0_米,速度是 _9_0_行,风速为24千米/时,顺风飞行需要 2小时50分,逆风飞行需要3小时. 求无风时飞机的飞行速度和两城之间的航程.
追及地
注意:同向而行注意始发时间和地点.
新知讲解
环形跑道问题
议一议 问题1:操场一周是400米,小明每秒跑5米,小强每秒跑4米, 两人绕跑道同时同地同向而行,他俩能相遇吗?
分 析:
小华 小强
能相遇
同时同地
同向而行
新知讲解
议一议 问题2:操场一周是400米,小明每秒跑5米,小强骑自行车 每秒15米,两人绕跑道同时同地同向而行,经过几秒钟两人 第一次相遇? 解:设经过x秒两人第一次相遇,依题意,得 15x-5x=400, 解得x=40.
但涉及水流速度,必须要掌握: 顺水速度=船速+水速; 逆水速度=船速-水速.
新知讲解
直接设元法
想一想
解:设甲、乙两地距离是 x 千米,
x
x
由题意得24+2+24-2=24,
解得 x=286,
想一想,这道题 是不是只有这一 种解法呢?
甲、乙两地的距离是 286 千米
新知讲解
间接设元法
解 设汽船顺水航行从甲地到乙地需x 小时,
则汽船逆水航行的距离是(24-2)(24-x)千米,
顺水航行的距离是(24 +2)x千米.
等量关系:汽船顺水航行的距离=汽船逆水航行的距离.
依题意,得: (24-2)(24-x)= (24+2)x
解方程,得: x=11 (24 +2) ×11=286
答:甲、乙两地距离为286千米.
新知讲解
议一议 育红学校七年级学生步行到郊外旅行:(1)班的学生组成前 队,步行速度为4千米/时,(2)班的学生组成后队,速度为6 千米/时。前队出发1小时后,后队才出发,同时后队派一名联 络员骑自行车在两队之间不间断地来回进行联络,他骑车的速 度为12千米/时。 根据上面的事实提出问题并尝试去解答.
家
小明在爸爸追时 走的路程80x
追上
学校
爸爸追赶小明时走的路程180x
则有:5×80+80x=180x 解得: x=4
追上时,距学 校还有多远?
280米
新知讲解
解(1)设爸爸追上小明用了x分钟, 据题意,得 180x=80x+80×5
解得x=4 因此,爸爸追上小明用了4分。 (2)因为 180×4=720(米)