第八章 弹性体的应力和应变
弹性体的应变与应力特性
弹性体的应变与应力特性弹性体是一种特殊的材料,具有独特的应变和应力特性。
在应用中,了解弹性体的应变和应力特性对于设计和制造具有弹性特性的产品至关重要。
首先,了解什么是应变。
应变是弹性体在受力作用下发生的形变量。
它通常以变形体积与初始体积之比来表示。
当施加外力时,弹性体内的分子或原子之间的相对位置会发生变化,从而引起材料的形变。
应变是弹性体发生的可逆性变形,即当外力消失时,弹性体会恢复到原始形态。
而应力则是弹性体内部由于外界施加力而产生的内部力。
应力和力的大小成正比,与受力点附近的弹性体横截面积成反比。
应力可以分为拉伸应力、压缩应力和剪切应力等。
在材料的应变-应力曲线中,通常可以观察到不同阶段的特征。
首先是线性弹性阶段,这个阶段的特点是应变与应力成正比。
当外力移除时,弹性体会回到原始状态,没有留下永久变形。
接着是屈服点之后的塑性变形阶段。
在这个阶段,应变增加,但材料没有完全失去可逆性。
当外力移除后,材料会部分恢复,但仍然存在永久塑性变形。
最后是断裂阶段,材料无法恢复原状,会发生破裂。
这时,应变和应力之间的关系失去线性关系,也就是材料的断裂点。
弹性体的应变和应力特性对于产品设计和材料选择至关重要。
学习和预测这些特性可以帮助工程师选择恰当的材料,并了解产品在受力时的行为。
例如,汽车制造业中常用的悬挂系统。
这些悬挂系统需要具有弹性特性,以吸收和缓解车辆在不平路面上的震动和冲击。
由于弹性体的应变和应力特性,悬挂系统可以使车辆在行驶过程中保持稳定性和驾驶舒适度。
另一个例子是运动鞋的制造。
在设计运动鞋的缓震系统时,工程师必须考虑弹性体的应变和应力特性。
优秀的缓震系统可以缓解由于跑步等运动产生的震动和冲击,为运动员提供更加舒适和安全的体验。
除了产品设计,了解弹性体的应变和应力特性还有助于研究材料的性能和改进材料的制造工艺。
利用工程分析和模拟方法,可以精确地预测弹性体在不同受力情况下的行为,进而优化产品的设计和生产过程。
最新力学漆安慎(第二版)答案08节
力学(第二版)漆安慎习题解答第八章弹性体的应力和应变第八章一、基本知识小结1•弹性体力学研究力与形变的规律;弹性体的基本形变有拉伸压缩形变和剪切形变,弯曲形变是由程度不同的拉伸压缩形变组成,扭转形变是由程度不同的剪切形变组成。
2•应力就是单位面积上作用的内力;如果内力与面元垂直就叫正应力,用c表示; 如果内力方向在面元内,就叫切应力,用T表示。
3•应变就是相对形变;在拉压形变中的应变就是线应变,如果10表示原长,A l表示绝对伸长或绝对压缩,则线应变c =A l/l o;在剪切形变中的应变就是切应变,用切变角书表示。
4.力与形变的基本规律是胡克定律,即应力与应变成正比。
在拉压形变中表示为c = Y c Y是由材料性质决定的杨氏模量,在剪切形变中表示为T = N书,N 是由材料性质决定的切变模量。
5.发生形变的弹性体具有形变势能:拉压形变的形变势能密度E p0弓Y 2,剪切形变的形变势能密度E p01N 26•梁弯曲的曲率与力偶矩的关系12Ybh37•杆的扭转角与力偶矩的关系NR421、思考题解答8.1作用于物体内某无穷小面元上的应力是面元两侧的相互作用力,其单位为N.这句话对不对?答:不对,应力为作用于该无穷小面元两侧单位面积上的相互作用内力,其单位为或。
其面元法向分量称正应力,切向分量称切应力。
8.2(8.1.1)式关于应力的定义当弹性体作加速运动时是否仍然适用?答:适用,(8.1.1)式中的是面元两侧的相互作用内力,它与作用于物体上的外力和物体的运动状态有关。
8.3牛顿第二定律指出:物体所受合力不为零,则必有加速度。
是否合力不为零,必产生变形,你能否举出一个合力不为零但无形变的例子?答:不一定,物体是否发生形变应看物体内应力是否为零,应力为零,则不形变。
自由落体运动,物体受重力作用,但物体内部应力为零,则不发生形变。
8. 4胡克定律是否可叙述为:当物体受到外力而发生拉伸(压缩)形变时,外力与物体的伸长(压缩)成正比,对于一定的材料,比例系数是常数,称作该材料的杨氏模量?答:不对。
弹性力学课后习题及答案
弹性力学课后习题及答案弹性力学课后习题及答案弹性力学是力学的一个重要分支,研究物体在受力作用下的形变和应力分布规律。
在学习弹性力学的过程中,课后习题是巩固所学知识、提高解题能力的重要环节。
本文将为大家提供一些常见的弹性力学课后习题及其答案,希望对大家的学习有所帮助。
一、弹性体的应力与应变1. 一个长为L,截面为A的弹性体,在受力F作用下产生了长度为ΔL的形变。
求该弹性体的应变。
答案:根据胡克定律,应变ε等于形变ΔL与原始长度L的比值,即ε = ΔL / L。
2. 一个弹性体的应变为ε,如果该弹性体的截面积为A,求该弹性体在受力F作用下的应力。
答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。
二、弹性体的应力分布1. 一个长为L,截面为A的弹性体,在受力F作用下,其应力沿着截面的分布是否均匀?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。
由此可知,应力与截面积成反比,即截面积越大,应力越小;截面积越小,应力越大。
因此,弹性体受力作用下的应力分布是不均匀的。
2. 一个长为L,截面为A的弹性体,在受力F作用下,其应力是否与截面的形状有关?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。
由此可知,应力与截面积成正比,即截面积越大,应力越小;截面积越小,应力越大。
因此,弹性体受力作用下的应力与截面的形状有关。
三、弹性体的弹性模量1. 一个弹性体的应力为σ,应变为ε,求该弹性体的弹性模量E。
答案:根据胡克定律,应力σ等于弹性模量E与应变ε的乘积,即σ = E * ε。
由此可得,弹性模量E等于应力σ与应变ε的比值,即E = σ / ε。
2. 一个弹性体的弹性模量为E,如果该弹性体的截面积为A,求该弹性体在受力F作用下的形变。
答案:根据胡克定律,形变ΔL等于弹性模量E与受力F的乘积再除以截面积A,即ΔL = (E * F) / A。
第八章弹性体的应力和应变-盐城师范学院
第八章弹性体的应力和应变学时安排:3课时教学目的与要求:1、掌握应力和应变的相互关系、拉伸形变的胡克定律及其适用范围;2、了解杨氏模量、泊松比、剪切模量、固体的弹性形变势能、弹性形变势能密度等概念;3、了解梁的弯曲、杆的扭转的基本知识和结论。
教学重点:弹性体的拉伸和压缩。
教学难点:应力、杨氏模量、剪切模量、泊松比等概念的物理意义。
习题:8.1.2 8.1.3 8.1.6Chapter8 弹性体的应力和应变形变的分类:塑性形变:外力撤消后,形变不完全消失;弹性形变:外力撤消后,形变完全消失,此类物体为弹性体——理想模型;本章的研究范围:各向同性的均匀弹性体的弹性形变,均匀弹性体:体内各点的弹性相同。
各向同性的弹性体:体内各点的弹性与方向无关。
弹性形变的种类:伸长、缩短、切变、扭转、弯曲……; 弹性形变的基本种类:长应变、切应变。
§8—1 弹性体的拉伸和压缩一、外力、内力与应力1.外力:对于给定物体,外界(其它物体)对它的作用力2.内力:物体内部各部分之间的相互作用力。
内力的求法:外力→物体形变→内力,为了研究内力,用一假想的平面S 将物体分为两个部分:则S 面的两侧的相互作用力——内力F ' 、F求内力的方法:隔离体法,S 面的两侧分别为一个隔离体。
物体处于平衡时,列出左侧(或右侧)隔离体的平衡方程式,由外力求内力。
S 面上受力不均匀时,在S 面上任一点(O 点)处取面元S ∆,0n 自受力一侧指向施力物一侧,是S ∆的外法向,S ∆确定了即可确定S ∆的受力(内力)。
3.应力:描述物体内部各点处内力强度的物理量(1)定义:①平均应力:F p S ∆=∆ ②应力:0lim S F p S∆→∆=∆ 物理意义:作用于物体某点处某有向面元的平均应力,当面元0S ∆→时的极限——该无限小有向面元上的应力。
③正应力:p n σ=⋅ σ正应力为p 在无穷小有向面元的外法向上的投影,σ取“+”——有向面元的某一侧受到另一侧的拉力σ取“-”——有向面元的某一侧受到另一侧的压力 ④剪切应力:τ,p 在无穷小有向面元的外法线垂直方向上的投影。
弹性体的应力与应变
弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。
了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。
在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。
1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。
在计算应力时,常用到两种基本的力学概念:张力和压力。
张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。
而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。
应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。
其中,ΔL是材料长度的变化量,L是材料的初始长度。
应变可以分为线性弹性应变和非线性应变。
线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。
计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。
3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。
弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。
在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。
这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。
当应力超过材料的屈服点时,就进入了屈服点阶段。
在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。
塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。
这是由于材料的内部结构发生了永久性的改变,无法恢复原状。
4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。
弹性模量越大,表示材料越难发生形变,具有较高的刚度。
常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。
弹性体的应力和应变
弹性体的应力和应变应力和应变是弹性体力学中重要的概念。
弹性体是指在受力作用下能够发生形变,但在去除力后能够恢复原状的物质。
应力是表示物体内部各点在力作用下的应对程度的物理量,而应变则是表示物体形变程度的物理量。
在本文中,我们将探讨弹性体的应力和应变之间的关系,以及弹性体在不同应力条件下的行为。
首先,我们来介绍应力的概念。
应力是由于外部力作用于物体而引起的内部应力,即单位面积上作用的力。
通常情况下,应力可以分为三种类型:拉应力、压应力和剪应力。
拉应力是指沿物体的长度方向作用的力,压应力则是指作用于物体表面的垂直方向力,而剪应力则是作用于物体表面的平行于其平面的力。
这些应力可以通过数学计算来求得。
对于拉伸或压缩情况下的应力,一般可以通过应力=外力/截面积来计算。
而对于剪切情况下的应力,则可以通过应力=外力/接触面积来计算。
接着,我们来谈谈应变的概念。
应变是指物体由于受到外力作用而产生的形变程度。
同样,应变也可以分为三种类型:线性应变、体积应变和剪切应变。
线性应变是指物体沿作用力方向的长度变化与未受力前的原始长度之比,体积应变则是物体单位体积的变化量与未受力前的原始体积之比,剪切应变是物体平行于受力平面上的平面与未受力前的原始平面之间的夹角变化。
这些应变可以通过数学计算来求得。
通常情况下,线性应变可以通过应变=位移/原始长度来计算,体积应变可以通过应变=体积变化/原始体积来计算,而剪切应变可以通过应变=变形角度/90度来计算。
在了解了应力和应变的概念后,我们可以进一步讨论弹性体在不同应力条件下的行为。
根据背景和材料性质的不同,弹性体在应力作用下会出现不同的应变情况。
当应力作用于弹性体时,弹性体会发生形变,但在去除应力后,弹性体又会恢复到原来的形状。
这种恢复力就是弹性体的回弹力,是由于弹性体内部的分子结构和键的特性所决定的。
此外,弹性体还有一个重要的性质,即背应力。
背应力是指在弹性体内部的不同位置上,由于力的传递产生的相对应力差。
弹性体与变形弹性体的应力与应变关系
弹性体与变形弹性体的应力与应变关系弹性体是指在外部施加力后能够发生形变,但在去除力后能够恢复原状的物质。
而变形弹性体则是指在外力作用下形变后不能完全恢复原状的物质。
弹性体与变形弹性体在受力时会出现应力与应变的关系,这种关系是研究材料力学性能的重要内容。
一、弹性体的应力与应变关系弹性体在外力作用下,发生形变。
应力是单位面积上的力,定义为单位面积上的力与面积的比值,通常用σ表示,单位为帕斯卡(Pa)。
应变是物体的相对形变,定义为单位长度的变化量与被测长度的比值,通常用ε表示,无单位。
根据弹性体的应力与应变关系,我们可以得到胡克定律,即应力与应变成正比关系。
弹性体的胡克定律可表示为:σ = E * ε其中,E表示弹性体的弹性模量,是反映弹性体变形能力大小的重要参数,单位为帕斯卡(Pa)。
弹性模量越大,代表弹性体越难形变,具有较好的弹性性能。
根据胡克定律,当外力施加于弹性体上时,应力与应变成正比,且两者之间的关系是线性的。
即在弹性极限之内,如果应力增大,应变也会相应增大;如果应力减小,应变也会相应减小。
而且,当外力去除后,弹性体会恢复到原来的形状和大小,应变会回到零。
二、变形弹性体的应力与应变关系变形弹性体与弹性体不同,其在外力作用下形变后不能完全恢复原状。
因此,其应力与应变关系也存在一定的差异。
变形弹性体的应力与应变关系可以用应力-应变曲线来描述。
在应力-应变曲线中,随着应变的逐渐增大,物体的应力并不是线性变化的,而是呈现出一定的非线性特性。
应力-应变曲线通常可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变基本保持线性关系,符合胡克定律;而在屈服阶段,应力增加的同时,应变开始出现非比例增长。
当应力达到一定程度后,材料会发生塑性变形,进入塑性阶段;在断裂阶段,材料发生破裂。
变形弹性体的应力与应变关系还可以通过一些指标进行描述,如屈服强度、断裂强度、延伸率等。
这些指标是衡量材料变形能力和抗破坏能力的重要参数。
弹性体的应力和应变
5
数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、 数学弹性力学的典型问题 主要有 一般性理论 、 柱体扭转和弯曲 、 主要有一般性理论 平面问题、变截面轴扭转,回转体轴对称变形等方面 平面问题、变截面轴扭转,回转体轴对称变形等方面。 等方面。 在近代,经典的弹性理论得到了新的发展。例如, 在近代 , 经典的弹性理论得到了新的发展 。 例如 , 把切应力的成 对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各 对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续, 应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律, 应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除 机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本 机械运动本身外 , 还考虑其他运动形式和各种材科的物理方程称为 本 构方程。对于弹性体的某一点的本构方程, 构方程 。 对于弹性体的某一点的本构方程 , 除考虑该点本身外还要考 虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 但是,由于课程所限, 但是 , 由于课程所限 , 我们在以下几节里仅对弹性体力学作简单 的介绍,为振动部分和波动部分作准备。 的介绍,为振动部分和波动部分作准备。
6
§8.1 弹性体力学--弹性体的应力和应变简介 弹性体力学-- --弹性体的应力和应变简介
弹性体有四种形变 拉伸压缩、剪切、扭转和弯曲。其实, 弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。其实,最基本的形 四种形变: 变只有两种 拉伸压缩和剪切形变; 两种: 变只有两种:拉伸压缩和剪切形变;扭转和弯曲可以看作是由两种基本形变 的组成。 的组成。
Fn ∆l =Y S l0
其中:Y 称为杨氏模量,反映材料对于拉伸或压缩变形的抵抗能力。 杨氏模量, 其中: 称为杨氏模量 反映材料对于拉伸或压缩变形的抵抗能力。
《力学》第八章弹性体应力和应变ppt课件
= y(x x) y(x)
x
当 x 0 时:
= lim y(x x) y(x) y
x0
x
x
因此,
=G y
x
上页 下页 返回 结束
第八章 弹性体的应力和应变 5、剪切形变的弹性势能密度(单位体积的弹性势能):
E
0 p
1 G
2
2
(5)
注意:切变只能在固体中产生,流体中不会产生。所以流体中只 能传播纵波,而固体中既能传播纵波,也能传播横波。
弹性体是变形体的一种,它的特征为:在外力作用 下物体变形,当外力不超过某一限度时,除去外力后物 体即恢复原状。绝对弹性体是不存在的。物体在外力除 去后的残余变形很小时,一般就把它当作弹性体处理。
上页 下页 返回 结束
第八章 弹性体的应力和应变
人类从很早时就已经知道利用物体的弹性性质了,比如古代 弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹 性原理,而人们有系统、定量地研究弹性力学,是从17世纪开 始的。
由于课程所限,我们在本章仅对弹性体力学作简单的 介绍,为振动部分和波动部分作准备。
上页 下页 返回 结束
第八章 弹性体的应力和应变
§8.1 弹性体的拉伸和压缩形变
弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。其实,最基本的形 变只有两种:拉伸压缩和剪切形变;扭转和弯曲可以看作是由两种基本形变 的组成。
1. 正压力(拉伸压缩应力)
= Fn
S
(1)
其中,F沿作用力截面的法线方向。
例:如图示,一般取n为外法线方向,则
0,也可能是 0.
上页 下页 返回 结束
第八章 弹性体的应力和应变
2. 线应变(相对伸长或压缩)
弹性力学中的应力和应变
弹性力学中的应力和应变弹性力学是物理学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。
在弹性力学中,应力和应变是两个关键的概念。
本文将详细介绍弹性力学中的应力和应变,并探讨它们之间的关系和物体在外力作用下的行为。
一、应力的概念与分类在弹性力学中,应力是描述物体内部受力状况的物理量。
它的定义是单位面积上的力,即单位面积上所受的力。
在材料力学中,通常将力的作用面积取无限小,这样就可以得到面积趋于无穷小的情况下的应力。
根据作用方向的不同,应力可以分为三种类型:正应力、剪应力和体应力。
1. 正应力:即垂直于物体截面的力在该截面上单位面积的作用力。
正应力可以分为正拉应力和正压应力,正拉应力是指物体上的拉力,正压应力是指物体上的压力。
2. 剪应力:即平行于物体截面的力在该截面上单位面积的作用力。
剪应力是指物体上的切力,它使得物体相对于截面沿切应变方向发生形变。
3. 体应力:即物体内部体积元素上的力在该体积元素上单位体积的作用力。
体应力是指物体中各个点处的压力或拉力。
二、应变的概念与分类应变是描述物体变形程度的物理量,它是物体的形状改变相对于初始形状的相对变化量。
应变也可以分为三种类型:线性应变、剪应变和体应变。
1. 线性应变:即物体在受力下沿作用力方向产生的长度变化与初始长度的比值。
线性应变通常用拉伸应变表示。
2. 剪应变:即物体在受剪力作用下发生的相对位移与物体初始尺寸的比值。
3. 体应变:即物体受力时体积的相对变化量与初始体积的比值。
三、应力和应变的关系应力和应变之间存在着一定的关系,它们之间通过杨氏模量来联系。
杨氏模量是描述物体在拉伸应力作用下的应变程度的物理量。
弹性体的材料有两个重要的杨氏模量:弹性模量(或称杨氏模量)和剪切模量。
1. 弹性模量(E):它描述的是物体在正应力作用下的正应变情况。
根据材料的不同,弹性模量也不同。
2. 剪切模量(G):它描述的是物体在剪应力作用下的剪应变情况。
弹性力学弹性体的应力与应变关系
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
普通物理学教程力学第八章 弹性体的应力和应变课后答案
第八章弹性体的应力和应变习题解答8.1.1 一钢杆的截面积为5.0×10-4m 2,所受轴向外力如图所示,试计算A 、B ,B 、C 和C 、D 之间的应力。
解: E G HF 1 F 4根据杆的受力情况,可知杆处于平衡状态。
分别在AB 之间E 处,BC 之间G 处,CD 之间H 处作垂直杆的假想截面S 。
隔离AE 段,由平衡条件,E 处S 面上的内力F=F 1,∴A 、B 之间的应力隔离AG 段,由平衡条件,G 处S 面上的内力F=F 2-F 1,∴B 、C 之间压应力隔离HD 段,由平衡条件,H 处S 面上的内力F=F 4,∴C 、D 之间的应力8.1.2 利用直径为0.02m 的钢杆CD 固定刚性杆AB.若CD 杆内的应力不得超过σmax =16×107P a .问B 处最多能悬挂多大重量?解:隔离AB ,以A 点为轴,由力矩平衡条件,有隔离CD ,杆CD 应力σ=T/S,∴T=σS=σπ(D/2)2.杆能承受的最大拉力47241max 4max 1002.5101602.014.32⨯=⨯⨯⨯⨯==σπDT N B 处能悬挂的最大重量 N T W 4m a x m a x 1096.139.0⨯==8.1.3 图中上半段为横截面等于4.0×10-4m 2。
且杨氏模量为6.9×1010P a 的铝制杆,下半段为横截面等于1.0×10-4m 2且杨氏模量为19.6×1010P a 的钢杆,又知铝杆内允许最大应力为7.8×107P a ,钢杆内允许最大应力为13.7×107P a .不计杆的自重,求杆下端所能承担的最大负荷以及在此负荷下杆的总伸长量。
解:设铝杆与钢杆的长度、横截面、杨氏模量、应力分别为:l 1、S 1、Y 1、σ1,l 2、S 2、Y 2、σ2., 显然,σ1=F/S 1,σ2=F/S 2.设铝杆和钢杆所能承担的最大负荷分别为F 1max ,F 2max ,则整个杆的最大负荷应取钢杆的最大负荷:N F 4max 1037.1⨯=根据拉伸形变的胡克定律,对于铝杆 111maxl l S F Y ∆=,所以,111max 1S Y l F l =∆;对于钢杆,同样有 222max 2S Y l F l =∆. 整个杆的伸长量是:8.1.4 电梯用不在一条直线上的三根钢索悬挂。
弹性体
§8.1 外力、内力、应力
㈠外力与内力
• 外界对弹性体的作用力称为外力;内力就是弹性体内 部各部分间的相互作用力 • 为研究内力,必须在弹性体内部取一假想截面 S ,它 把弹性体分为两部分,这两部分间的相互作用力叫截 面 S 上的内力,内力总是成对出现的 • 在一般情况下,取不同的截面,内力不同;在同一截 面的不同点处,内力也不相同
z
τ'
R
r
⒈切应变和切应力的分布规律
从外观看,上端面各半径直线相对下底面转过一个相同 的角度φ ,此角称为杆的扭转角 ;侧面轴向直线倾斜一 个相同角度 r ,它就是外层体元的切变角 L r 坐标为r的体元,切变角为: L G r 由胡克定律,切应力 M G L 11
B B'
γ A
C C' D
F
8
§8.4弯曲和扭转
㈠梁的纯弯曲
b h F R F
o' θ
o
y
o x
y dx
x 梁仅在一对等大反向力偶距作用下的弯曲称为纯弯曲,上层被 压缩, 下层被拉长,y 轴所在的中间层,既不被压缩,也不被 拉长,保持原长,称为中性层,可见纯弯曲形变是由程度不同的 拉、压形变组成。
7
㈡剪切形变的胡克定律:
在切应变较小的情况下,切应力与切应变成正比,即 τ=Gγ,G是由材料本身决定的切变弹性模量 通过理论推导可知,材料的杨氏模量、切变模量和泊 松系数有如下关系: G
E 2(1 )
0 2 Ep 1 G 2
F
㈢剪切形变的势能密度:
0 2 E 与拉、压形变的势能密度 Ep 1 具有相同的形式 2
⒈应变、应力分布规律 • x 处取一厚度为 dx 薄层, 其线应变
弹性体的应力和应变
第八章 弹性体的应力和应变迄今为止,我们总是把研究对象简化为“质点”或“刚体”这样的理想模型。
我们都知道刚体是在任何情况下形状大小都不发生变化的力学对象,用质点系的观点来说,就是内部质点之间没有相对运动。
但是,任何物体在力的作用下都或多或少的发生形变,而且,有些物理现象,从本质上来讲,就是形变引起的,如声音在弹性媒质中的传播和媒质内的形变有关。
因此,讨论物体在力作用下形变的规律,也是力学不可缺少的内容。
本章及后面两章将讨论连续媒质力学:连续媒质的共同特点是其内部质点间可以有相对运动。
宏观地看,连续媒质可以有形变或非均匀流动。
弹性体:若物体所受外力撤消后,在外力作用下所发生的形状和体积的变化能够消失的物体,相应的形变叫弹性形变。
显然,弹性体也是一种理想模型。
即不存在绝对弹性体,只有近似的弹性体,例如,房屋的地基,水库的堤坝等在形变极小时,均可视为弹性体。
若弹性体内各点弹性相同,则叫作均匀弹性体,若每点的弹性不仅相同,而且与方向无关,则叫均匀、各向同性弹性体。
处理连续媒质的办法不是把它们看成一个个离散的质点,而是取“质元”,即有质量的体积元。
在连续媒质力学中,力也不再看作是作用在一个个离散的质元上,而看成是作用在“质元”的表面上,因而需要引进作用在单位面积上的力,即“应力”的概念,为止,我们先来讨论弹性体的拉伸和压缩。
§8.1 弹性体的拉伸和压缩在上一章中采用的是刚体模型,要把固体的一切形变都忽略了,在本章中我们将讨论固体的弹性,即讨论固体在外力作用的形变规律。
(一) 外力、内力和应力我们先来研究横截面线度远小于其长度的直杆的拉伸和压缩形变。
如图所示,直杆的典型受力情况为两端受到沿轴线的力且处于平衡。
称一对拉力或压力F和连续媒质F '' 为外力,一般情况下 |F ' |>>mg(忽略不计)|F '' |>> mg内力:假想截面AB 两侧相互施以向上(下)的拉(压)力:F 和–F 于忽略重力,且处于平衡,故而 |F | = |F ' | = |F ''| (正)应力:s nF =σ其中: s — 横截面积n F — 内力在横截面处法线(即nˆ方向)上的投影 拉伸应力 > 0 F 与nˆ同向 σ压缩应力 < 0 F 与nˆ反向σσ的单位: 2m N 称为 “帕斯卡” (国际单位制)σ的量纲:21--MT L(L — 长度 M — 质量 T — 时间)〔例题1〕P333求壁内沿圆周切向的应力(忽略容器自重和大气压力)解:过圆心沿纵向取假想截面,其长度取为一个单位,将一半圆柱形容器和气体作为研究对象,受力情况如下图:按平衡条件:022=+⋅-d R p σ(R p 2⋅-下方气体对上方气体的力 d σ2下方器壁对上方气壁的力)则有: ⇒=d Pp σ器壁内沿圆周的拉伸压力,由此可见: 圆柱形容器外部受压而内部压强较小时,刚沿圆周切向有压缩压力。
工程力学基础第8章 应力、应变和应力应变关系
第8章 应力、应变和应力-应变关系
第一节 第二节 第三节 第四节 第五节
一点处的应力状态 平面应力状态分析 应变状态分析 广义胡克定律 材料失效和失效判据
第一节 一点处的应力状态
一、引言 在本章中,将应用微元体法,从力、变形、力与变形的关系三 方面研究变形固体内一点处的性态。本章的内容覆盖了固体力 学的三大理论基础:应力理论、应变理论和本构关系(主要是对 理想弹性体)。在此基础上建立复杂受载条件下,材料的失效判 据和构件的强度设计准则,从而为解决杆件在复杂受载条件下 的强度、刚度和稳定性问题创造条件。
(1)一点处的应变状态由六个应变分量εx、εy、εz、γxy、γyz、 γzx完全决定,即由它们可以确定该点处任一方向的线应变和任
第三节 应变状态分析
(2)在任一点处都存在三个互相垂直的方向,它们在变形过 程中保持垂直,即切应变为零,这三个方向称为应变主方向, 沿应变主方向的线应变称为主应变,记为ε1≥ε2≥ε3。主应变ε1 和ε3 试验证明,对于各向同性的线弹性材料的小变形问题,应变主 方向与应力主方向重合,即一对切应力为零的正交截面在变形 过程中保持垂直。应变和应力由材料的力学性能相联系。在工 程中除接触应力等少数情形外,直接测量应力是很困难的,而 变形则比较容易测量。通常是从测得的应变来确定应力。应变 分析的实际意义在于:通过测得的应变确定主方向和主应变,
第一节 一点处的应力状态 三、主应力和主方向 如果微元体某对截面上的切应力等于零,该对截面就称为主平 面,主平面的法向称为主方向,主平面上的正应力称为主应力。 按不等于零的主应力的个数分类,可以把一点处的应力状态分
(1)单向(单轴)应力状态,也称为简单应力状态,只有一个主 应力不为零,如受轴向拉压的直杆和纯弯曲直梁中各点处的应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中,G 为剪切模量,反映材料抵抗剪切应变的能力。
通过理论推导,对于各向同性的,均匀的弹性体, 有: E
G
2(1 )
上式说明了:三个量之间只有两个是独立的。其中:E 是 杨氏模量,反映材料抵抗拉伸与压缩的能力;G 是剪切模量, 反映材料抵抗剪切形变的能力; 是泊松系数,描写材料横向 收缩或膨胀的特性。但几个不同特性的量是有联系的。
12
同理,例如,在横波中:
=
y ( x x ) y ( x )
x
当 x 0 时:
= lim
因此,
y ( x x ) y ( x )
x 0
x
y x
=G
y x
13
五、剪切形变的弹性势能
E
0 p
1 2
G V
2
(4)
弹性势能密度(单位体积的弹性势能)
b b0 b0 b b0
横向应变
(3)
其中:设想直杆横截面是正方形每边长为 b0,横向形变后为 b 。 横向形变和纵向形变之比为泊松系数:
1
(4)
8
3. 胡克定律 当应变较小时,应力与应变成正比:
=E
或
(5)
Fn S
E
l l0
(6)
其中:E 或Y 称为杨氏模量,反映材料对于拉伸或压缩变形的抵抗能力。
二、剪应力
F S
(1)
其中:S为假想截面ABCD的面积,力F 在该面上均匀分布。
三、剪切形变
特征:表现为平行截面间的相对滑移。如图示: tg 若 很小,则
tg l l
l
l
剪应变
(2)
11
切应角
四、剪切形变的胡克定律
若形变在一定限度内,剪切应力与剪切应变成正比:
G
设一纵波传播中,t 时刻 x 处媒质的变形情况, x表示 所取媒质的长度,x 处媒质的位移为 y(x) , x处媒质 x 的位移为 y( x x ) ,因此 媒质的应变为: y / x ,取 x 0 ,即为 x 处媒 质的应变:
x 0
lim
y ( x x ) y ( x )
弹性体是变形体的一种,它的特征为:在外力作用
下物体变形,当外力不超过某一限度时,除去外力后物 体即恢复原状。绝对弹性体是不存在的。物体在外力除 去后的残余变形很小时,一般就把它当作弹性体处理。
2
弹性力学的发展简史
人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性
的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学, 是从17世纪开始的。 弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。 英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比 的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。 同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性 力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理 一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完 全错误的。 在17世纪末第二个时期开始时,人们主要研究粱的理论。到19世纪20年代法国的纳
x
y
x
所以:
Fn S
E
y x
(7)
9
4. 拉伸或压缩的形变势能——属于形变物体本身所有
Ep 1 2 E V
2
(8)
同时有:弹性势能密度,即单位体积中的弹性势能:
1 2
E
0 p
E
2
(9)
10
§8.2 弹性体的剪切形变
一、剪切形变
当物体受到力偶作用使物体的两个平行截面间发生相对平行移动时的 形变叫做剪切形变。例如:用剪刀剪断物体前即发生这类形变。
维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论
文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何 方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性 力学的理论基础,打开了弹性力学向纵深发展的突破口。
第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力
E
0 p
1 2
N
2
(5)
注意:
切变只能在固体中产生,流体中不会产生。所以流 体中只能传播纵波,而固体中既能传播纵波,也能传播
横波。
14
§8.3 梁的弯曲和杆的扭曲 一 、梁的弯曲
中性层:一根杆中处于中间的既不拉伸又不压缩的层, 如图中的 CC ' 层。 对于纯梁弯曲形变有:
k 1 R 12 Ebh
3
其中:R 和 k 分别为中性层的半径和曲率;h 和b 分别 为梁的或度和宽度,τ为梁仅受的靠端部的力偶。
15
二、 杆的扭曲
产生扭转的力偶 和实心圆柱扭转角 的关系:
NR
2l
4
c
其中:和分别为圆柱的半径和长度,N 是剪切模量, 式中 c 是圆柱的扭转系数:
c
NR
2l的介绍,为振动部分和Fra bibliotek动部分作准备。
6
§8.1 弹性体力学--弹性体的应力和应变简介
弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。其实, 最基本的形变只有两种:拉伸压缩和剪切形变;扭转和弯曲可 以看作是由两种基本形变的组成。
弹性体的拉伸和压缩形变
1. 正压力(拉伸压缩应力)
=
Fn S
(1)
其中, 沿作用力截面的法线方向。 F
例:如图示, 0
7
2. 线应变(相对伸长或压缩)
绝对伸长(或压缩)与原长之比称为相对伸长(或压缩)。公式:
线应变
l l0
(2)
当 0 时,为拉伸形变; 0 时,为压缩形变,因而,它很好地 反映形变程度。如直杆拉伸压缩时,还产生横向形变,则对应的应变(或 形变)为:
1
5
数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、 平面问题、变截面轴扭转,回转体轴对称变形等方面。 在近代,经典的弹性理论得到了新的发展。例如,把切应力的成 对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各 应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除 机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本 构方程。对于弹性体的某一点的本构方程,除考虑该点本身外还要考 虑弹性体其他点对该点的影响,发展为非局部弹性力学等。 但是,由于课程所限,我们在以下几节里仅对弹性体力学作简单
普通物理学教程
(Chapter 8 Stress and strain of elastic body)
1
§8.0 弹性力学简介 弹性力学是固体力学的重要分支,它研究弹性物体 在外力和其它外界因素作用下产生的变形和内力,也称 为弹性理论。它是材料力学、结构力学、塑性力学和某 些交叉学科的基础,广泛应用于建筑、机械、化工、航 天等工程领域。
学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了 3 许多有效的计算方法。
1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期 的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的 证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基 尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验 现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重 视。 在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理 (原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利— —里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬 勃发展。 从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题, 出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考 虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以 及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义 变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。
4
弹性力学的基本内容
弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和
运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中 许多定理、公式和结论等,都可以从三大基本规律推导出来。
连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变
形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的 情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。 求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和 应力共15个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。 但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至 只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法, 就可求解。
4
16