光纤传感器原理与应用

合集下载

光纤传感器的工作原理

光纤传感器的工作原理

光纤传感器的工作原理光纤传感器作为一种重要的光学传感器,广泛应用于各个领域,如光通信、工业自动化、医疗设备等。

本文将介绍光纤传感器的工作原理及其在实际应用中的特点。

一、工作原理光纤传感器是利用光学原理来实现物理量的检测和测量的装置。

它基于光的传输、反射、折射、散射等现象,通过改变光的强度、频率或相位来感知和测量被测物理量。

1. 光传输光纤传感器中的光信号通过光纤传输到被测物体或环境中。

光纤具有优异的光导传输特性,可以保证光信号在传输过程中的稳定性和可靠性。

2. 光的接收与反射被测物体或环境中的光信号与光纤发射的光信号相互作用后,一部分被反射回光纤。

这里的反射可以是由于光的散射、反射或折射等效应引起的。

3. 光的探测与解读通过光纤传感器接收到的反射光信号会被传感器内部的光电探测器接收并转换成电信号。

电信号会被后续的电路处理和解读,从而获取被测量的物理量信息。

二、特点和应用光纤传感器具有以下特点,使其在各个领域得到广泛应用:1. 高精度光纤传感器具有高分辨率和高灵敏度,可以对微小物理量进行准确测量。

同时,光纤传感器还能实现长距离的传输,适用于大范围的测量需求。

2. 免受干扰光纤传感器的信号传输是光学信号,不会受到电磁干扰,有较高的抗干扰能力。

这使得光纤传感器在工业自动化、电磁环境复杂的场合下具有稳定可靠的性能。

3. 多功能光纤传感器可以根据需求设计不同的传感结构,实现对不同物理量的测量。

如温度、压力、湿度等物理量都可以通过光纤传感器进行检测。

4. 实时性光纤传感器的工作响应快速,能够实时获取被测物理量的变化。

这使得在对实时监测和控制要求较高的应用领域,如工业生产过程中的物料流动监测等,光纤传感器发挥了极其重要的作用。

光纤传感器由于其独特的工作原理和优越的性能,在多个领域有广泛的应用。

以下是一些典型的光纤传感器应用案例:1. 环境监测通过光纤传感器,可以实时监测环境参数,如温度、湿度、气体浓度等。

这对于环境保护、工业安全等方面具有重要意义。

光纤传感器原理与应用

光纤传感器原理与应用

• • • • • • • • • •
按照检测对象进行划分
温度传感器 压力传感器 位移传感器 流速传感器 辐射传感器 气体传感器 光谱传感器 ……….
传感器的设计原则
1.优良的变换功能
• 动态范围广 • 单纯的变换关系 • 信噪比高 • 重复性好 • 时间稳定性好 • 灵敏度高
2.探测信号的质量好
光纤传感器 (FOS-Fiber Optic Sensor)
• 以光纤作为功能材料的传感器。 • 以光学技术为基础,将被敏感的状态以光 信号的形式取出。
通信波段划分及相应传输媒介
频率,Hz
101
102
ELF
103
VF
104
VLF
105
LF
106
MF
107
HF
108
VHF
109
UHF
101 SHF 0
光纤传感器的发展概况及其展望
1.发展概况
• 70年代中期,人们开始意识到光纤不 仅具有传光特性,且其本身就可以构 成一种新的直接交换信息的基础,无 需任何中间级就能把待测的量与光纤 内的导光联系起来。

• 1977年,美国海军研究所(NRL-National Novel Research Laboratory)开始执行光 纤传感器系统计划
光纤传感器
原理及应用
主要内容
• • • • • • • 概论 光纤传感器原理 光源 光探测器 光信号检测技术 特殊光纤 典型应用
第一讲


传感器
• 将待测量对象的状态变换为可处理信 号的器件或装置。 • 可以实现信息检测、转换和传输。 • 从字面上讲可比做人感知自然界物理 现象的器官。 • 从工程技术上讲,指检测被测物体某 种信息的仪器。它是感知、获取、检 测和转换信息的窗口,处于研究对象 与传输处理系统的接口位置。

光纤传感器的应用与原理

光纤传感器的应用与原理

光纤传感器的应用与原理概述光纤传感器是一种利用光纤作为传感元件的传感器,广泛应用于各个领域,如工业自动化、医疗诊断、环境监测等。

本文将介绍光纤传感器的应用领域和工作原理,并对常见的几种光纤传感器进行详细解析。

应用领域光纤传感器在许多领域中都有着重要的应用。

以下是光纤传感器常见的应用领域:1.工业自动化:光纤传感器可以用于检测物体的位置、形状、尺寸等信息,广泛应用于自动化生产线中的物体检测和质量控制。

2.医疗诊断:光纤传感器可以用于生物体内的监测和诊断,如血液浓度、体温、心率等生理参数的测量。

3.环境监测:光纤传感器可以用于监测环境中的温度、湿度、压力等参数,对环境污染和自然灾害的预警起到重要作用。

4.结构监测:光纤传感器可以用于监测建筑物、桥梁、飞机等结构的变形和破损,提高结构的安全性和可靠性。

工作原理光纤传感器的工作原理基于光信号的传输和变化。

以下是光纤传感器的几种常见工作原理及其原理解析:1.弯曲传感器:光纤传感器通过光纤的弯曲程度来测量物体的弯曲角度。

当光纤被弯曲时,光信号会在光纤中发生反射,通过测量反射光的强度变化,可以确定物体的弯曲程度。

2.压力传感器:光纤传感器利用内部的光纤材料的压阻效应来测量物体的压力。

当物体施加压力时,光纤内部的光线受到压阻效应的影响,从而改变光的传输特性。

3.温度传感器:光纤传感器利用光纤材料的热导性来测量物体的温度。

当物体受热时,光纤内部的温度会发生变化,从而改变光的传输特性。

4.气体传感器:光纤传感器利用特殊的光纤材料与目标气体之间的相互作用来测量气体的浓度和组成。

当目标气体与光纤材料发生化学反应或物理吸附时,光的传输特性会发生变化。

常见光纤传感器以下是几种常见的光纤传感器及其应用场景:1.FBG(Fiber Bragg Grating)光纤传感器:基于光纤中的光栅效应,可以用来测量温度、应变、压力等参数。

在结构监测和环境监测中有广泛应用。

2.光纤陀螺仪:利用光纤的光学路径差来测量旋转角度,广泛应用于航空航天和导航领域。

光纤传感器的原理是

光纤传感器的原理是

光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。

它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。

光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。

一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。

通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。

光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。

二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。

1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。

它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。

当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。

2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。

它通过纤芯中的光散射来判断外界物理量的变化。

光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。

通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。

3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。

它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。

通过测量光的强度变化,可以获得物理量的信息。

三、应用领域光纤传感器在诸多领域有着广泛的应用。

1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。

通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。

2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。

光纤传感器原理与应用

光纤传感器原理与应用

光纤传感器原理与应用光纤传感器是一种基于光学原理的传感器,利用光的散射、干涉、吸收等特性来测量目标物理量。

它具有高灵敏度、快速响应、无电磁干扰等优点,在各个领域得到广泛应用。

本文将介绍光纤传感器的原理、分类以及在不同领域的应用。

一、光纤传感器的原理光纤传感器的工作原理基于光的传输和光与物质的相互作用。

其基本结构由光源、光纤和光检测器组成。

光源发出光信号经光纤传输到目标位置,通过光与目标物理量的相互作用,改变光信号的特性,最后被光检测器接收并转换成电信号进行处理。

光纤传感器的原理主要有散射原理、干涉原理和吸收原理。

散射原理是利用目标物质对光的散射程度与目标物理量之间的关系来进行测量;干涉原理利用光的相位干涉来测量目标物理量;吸收原理则是利用目标物质对光的吸收程度与目标物理量之间的关系来进行测量。

根据不同的原理,可以设计出不同类型的光纤传感器。

二、光纤传感器的分类光纤传感器根据测量方式的不同,可以分为直接测量型和衍射测量型。

1. 直接测量型直接测量型光纤传感器是通过测量光的散射、干涉或吸收来间接测量目标物理量的。

根据光的散射、干涉或吸收特性的不同,直接测量型光纤传感器又可以分为散射型、干涉型和吸收型。

散射型光纤传感器是通过测量光信号在光纤中由于目标物质散射导致的光功率、频谱或相位的变化来进行测量的。

常见的散射型光纤传感器有拉曼散射和布里渊散射传感器。

干涉型光纤传感器是通过测量光信号在光纤中由于目标物质引起的干涉引起的相位差变化来进行测量的。

干涉型光纤传感器可以实现高灵敏度的测量,常见的干涉型光纤传感器有光纤干涉仪和弗罗伊德森干涉仪。

吸收型光纤传感器是通过测量光信号在光纤中由于目标物质吸收导致的光功率变化来进行测量的。

吸收型光纤传感器可用于测量目标物质的浓度、温度和压力等。

常见的吸收型光纤传感器有光纤光栅传感器和吸收型光纤传感器。

2. 衍射测量型衍射测量型光纤传感器是通过测量目标物质对光的衍射现象来直接测量目标物理量的。

光纤传感器原理及应用课件

光纤传感器原理及应用课件
光纤通过全反射原理传递 光信号,具有低衰减、低 色散等优点。
光的干涉与衍射
光纤中光的干涉与衍射现 象可用于传感和调制。
光纤传感器的原理
光纤传感器通过检测光纤中光信号的 变化来感知外界物理量的变化。
外界物理量如温度、压力、磁场等作 用于光纤,导致光纤中光信号的相位 、频率、强度等发生变化,从而感知 外界物理量的变化。
水质监测
光纤传感器可用于监测水体中的化学 物质、温度、浊度和流速等参数,确 保水质安全和生态平衡。
医疗领域
生物医学
光纤传感器可以用于监测生物体内的生理参数,如血压、血氧饱和度和体温等 ,为医疗诊断和治疗提供重要信息。
光学成像
光纤传感器结合光学成像技术,可用于内窥镜、显微镜等领域,提高医疗诊断 的准确性和效率。
光纤传感器原理及应用课件
目 录
• 光纤传感器原理 • 光纤传感器的应用领域 • 光纤传感器的优势与挑战 • 光纤传感器的发展趋势与前景 • 实际应用案例分析
01
光纤传感器原理
光纤的结构与特性
01
02
03
光纤的结构
光纤由中心纤芯、包层和 涂覆层组成,具有低损耗 、高透明度、高带宽等特 性。
光的全反射
成本较高
光纤传感器制造工艺复杂,导致其成 本相对较高。
小型化与集成化难度大
实现小型化与集成化的光纤传感器制 造技术有待突破。
交叉敏感问题
部分光纤传感器可能对不同参数敏感 ,导致测量结果不准确。
04
光纤传感器的发展趋势与 前景
技术创新
光纤传感器的技术不断创新,以 提高其灵敏度、精度和稳定性。
新型光纤材料和制造工艺的应用 ,将进一步优化光纤传感器的性
光纤压力传感器在石油工业中主要用于监测井下压力,具有高精度和高可靠性的特点。它们能够实时传输数据, 帮助工程师及时了解井下情况,优化开采过程,提高石油产量。

光纤传感器原理及应用技术

光纤传感器原理及应用技术

光纤传感器原理及应用技术光纤传感器是一种基于光学原理进行测量和检测的传感器,它通过利用光纤的特性,将光信号转换为电信号,实现对被测量物理量的测量。

光纤传感器具有高精度、即时响应、抗干扰能力强等优点,在许多领域得到了广泛的应用。

光纤传感器的原理是基于光的传播和反射原理。

光纤是一种由光纤芯和包覆层组成的细长材料,光信号在光纤芯内由于全反射而传输。

当外部环境发生变化时,比如温度、压力、湿度等物理量发生变化时,会引起光纤芯的折射率发生变化,进而改变光信号传播的特性,通过对光信号的检测和分析,可以得到被测物理量的信息。

1.光纤光栅传感器:光纤光栅传感器是一种利用光纤中的光栅结构实现测量的技术。

当外界物理量作用于光栅上时,光栅的折射率、光栅常数等参数会改变,进而改变光纤中光信号的传播特性。

利用对光信号的分析,可以实现对温度、压力、应变等物理量的测量。

光纤光栅传感器具有高精度、远距离传输、抗干扰能力强等优势,在工业、航空航天、环境监测等领域得到广泛应用。

2.光纤光耦合传感器:光纤光耦合传感器是一种利用光纤与被测物之间的光耦合效应实现测量的技术。

光纤输入端将光源发出的光信号通过总反射等机制输入到被测物上,在被测物上发生反射、散射等光学效应后,再传回到光纤输出端。

通过对光信号的分析,可以得到被测物的信息,如距离、位置、形变等。

光纤光耦合传感器可以实现远距离测量、抗干扰能力强等优点,广泛应用于机械制造、机器人、石油勘探等领域。

3. 光纤陀螺仪:光纤陀螺仪是一种利用光学运动学原理实现姿态变化测量的传感器。

光纤陀螺仪利用光纤中的Sagnac效应,在光纤环结构中通过激光的传播过程实现对旋转加速度和角速度的测量。

光纤陀螺仪具有无惯性元件、高精度、稳定性好等优点,在惯导、导航、航空航天等领域得到广泛应用。

总之,光纤传感器以其高精度、远距离传输、抗干扰能力强等优点,在物理量测量领域得到了广泛的应用。

随着光学技术的不断发展,光纤传感器的性能会不断提升,应用领域也会不断拓展。

光纤传感器原理及应用

光纤传感器原理及应用

光纤传感器原理及应用
光纤传感器的工作原理主要包括干涉、散射、吸收和全反射等几种。

干涉原理是利用光纤的两束光之间的相位差来测量被测量物的物理量,如压力、温度等。

散射原理是通过测量光纤中散射光的强度或频率变化,来检测环境中的温度、压力、形变等物理量。

吸收原理则是利用被测量物的吸收光强度与被测量物的物理量之间的关系来进行测量。

全反射原理则是利用光在光纤中的全反射现象,在光纤的入射接口和出射接口之间进行光的传输及传播。

1.温度测量:光纤传感器可以通过测量光的波长或相位的变化来实现对温度的测量。

由于光纤传感器具有免疫电磁干扰、电气绝缘和高温耐受等特性,因此在高温环境下的温度测量应用中具有很大的优势。

2.压力测量:光纤传感器可以通过测量光纤中的散射光强度或频率变化来实现对压力的测量。

由于光纤传感器具有高灵敏度、高分辨率和长距离传输等特点,因此在工业领域中的压力测量应用中得到广泛应用。

3.拉伸和变形测量:光纤传感器可以通过测量光的相位变化来实现对材料的拉伸和变形的测量。

由于光纤传感器具有高精度、高灵敏度和高可靠性等特性,因此在结构健康监测和材料力学等领域得到广泛应用。

4.气体检测:光纤传感器可以通过测量光的吸收强度与被测气体浓度之间的关系来实现对气体浓度的测量。

由于光纤传感器具有快速响应、高灵敏度和易于集成等特点,因此在环境监测和化学分析等领域得到广泛应用。

总之,光纤传感器具有灵敏度高、稳定性好、反应速度快、抗电磁干扰等优点,具有广泛的应用前景。

随着光纤技术的不断发展和完善,光纤
传感器的应用将越来越广泛,将为现代化的科学研究、工业制造和环境监测等领域带来新的突破和发展。

光纤传感器在温度测量中的应用

光纤传感器在温度测量中的应用

光纤传感器在温度测量中的应用随着现代科技的不断进步,各行业对于温度测量的要求也越来越高。

而传统的温度测量方式,例如电阻温度计、热电偶等,存在着不可避免的缺陷,例如响应速度慢、易受干扰等。

而光纤传感器作为一种新兴的温度测量方式,已经被成功应用于各种领域,具备着响应速度快、准确度高的特点。

本文将介绍光纤传感器的原理、优点、应用范围以及未来发展趋势。

一、光纤传感器的原理光纤传感器的测量原理基于光学方法,将物理量传递到光学传感器中进行测量,使得测量结果具有高精度、高稳定性和高灵敏度。

在温度测量中,光纤传感器通过利用光纤对温度的敏感性来进行温度测量的。

在光纤传感器中,光纤起到的是光载体的作用。

一般情况下,光纤采用单模光纤,即只允许一条光路通过。

当光路通过光纤,由于光纤材料的物理性质,光路本身会发生一定程度的变化,例如反射、散射、吸收和干扰等。

这些变化的过程也是光纤传感器测量温度的基本原理。

具体实现过程是:把一个光源串接到一根光纤上,选择电磁波频段为红外或可见光,把电磁波沿光纤传递,使之经过一个空气、液体或固体样品。

样品和光线的交互作用将影响光的折射率,这导致光有一部分发生反射或散射,导致在光源端或末端出现干扰信号。

通过分析这些信号,并结合一定的理论计算,就可以得到样品的温度值。

二、光纤传感器的优点与传统的温度测量方式相比,光纤传感器具有以下优点:1. 响应速度快:光纤传感器响应速度快,适用于需要实时监测的场合。

2. 准确度高:光纤传感器在测量温度时具有更高的准确度和精度,可以达到精确到0.01°C的级别。

3. 不易受干扰:光纤传感器适用于较为复杂的环境,具有优异的抗干扰能力。

4. 可远距离监测:光纤传感器可以进行长距离信号传输,可对远离的位置进行测量。

5. 安全性高:光纤传感器可采用不含重金属的材料制成,具有安全性高的特点。

三、光纤传感器的应用范围光纤传感器的应用范围广泛,特别是在液态金属冶炼、石油钻探、核能安全、环境监测等需求高精度、高稳定性的领域中,其应用尤为广泛。

光纤传感器的原理和应用

光纤传感器的原理和应用

光纤传感器的原理和应用光纤传感器是一种利用光纤作为传感器的基础元件,通过光的波导和传输特性来感知和测量环境参数的器件。

它具有高灵敏度、宽测量范围、抗干扰能力强等特点,在工业、医疗、环境监测等领域有广泛的应用。

本文将详细介绍光纤传感器的工作原理以及其在不同应用领域中的具体应用。

一、光纤传感器的工作原理光纤传感器的工作原理基于光的传输和波导特性。

它利用光纤的高折射率和内部的光波导效应,将入射的光信号沿着光纤进行传输,并通过测量光信号的改变来获得环境参数的相关信息。

1. 光纤传感器的结构光纤传感器由光纤、光源、检测器和信号处理器组成。

光源产生光信号,通过光纤传输到检测器上,检测器接收到光信号并转换为电信号,再经过信号处理器进行放大、滤波和数字化处理。

2. 光纤的传输特性光纤传感器利用光纤的传输特性进行环境参数测量。

一般来说,光纤的折射率会随着环境参数的变化而改变,例如温度、压力、应变等。

通过测量光信号在光纤中的传播时间、相位差、幅度变化等参数,可以确定环境参数的数值。

3. 光纤传感器的工作原理光纤传感器根据不同的测量原理可以分为多种类型,例如光纤布拉格光栅传感器、光纤衍射光栅传感器、光纤受限传感器等。

这些传感器利用光纤的特殊结构和波导特性,通过测量光信号的衰减、干涉、散射等变化来获得环境参数的相关信息。

二、光纤传感器的应用光纤传感器具有高灵敏度、快速响应、抗干扰能力强等优势,在多个领域中得到了广泛的应用。

1. 工业应用光纤传感器在工业领域中被广泛应用于压力、温度、湿度等参数的测量。

例如,光纤布拉格光栅传感器可以用于监测桥梁、管道等结构的应变变化,以及测量机械设备中的应力分布情况。

光纤传感器还可以用于燃气、液体等介质的检测和监测。

2. 医疗应用光纤传感器在医疗领域中的应用较多,例如用于血氧饱和度监测、生物体内脉搏测量、呼吸检测等。

由于光纤传感器具有非接触式测量的特点,可以大大提高患者的舒适度和安全性。

3. 环境监测光纤传感器在环境监测中起到重要的作用。

光纤传感技术原理与应用研究

光纤传感技术原理与应用研究

光纤传感技术原理与应用研究近年来,光纤传感技术在各个领域得到了广泛的应用。

本文将深入探讨光纤传感技术的原理以及其在实际应用中的研究成果。

一、光纤传感技术原理光纤传感技术是一种基于光信号传输的测量和控制方法。

其原理是通过光的传播和传输特性来感知环境的参数变化,并将信号传递到检测仪器进行处理分析。

光纤传感技术的核心是光纤的特性,包括引导光信号传输的光纤芯和包覆在芯外部的光纤壳。

光纤传感技术有多种工作原理,其中最常见的是基于光纤的干涉原理。

当光信号在光纤中传输时,会与介质的参数变化相互作用,改变其传播特性,这种变化可通过测量光的相位或强度来分析。

例如,当光纤传感器暴露在温度变化的环境中时,光纤的长度会发生微小变化,从而导致光的相位或强度发生变化。

通过测量这些变化,我们可以准确地测量环境的温度。

二、光纤传感技术的应用研究1. 温度传感应用光纤传感技术在温度测量领域具有广泛的应用。

通过利用光纤的热敏特性,可以实现高精度、远距离的温度测量。

比如,在火电厂中,通过将光纤传感器布置在管道上,可以实时监测管道的温度分布,及时预警可能出现的故障。

2. 压力传感应用利用光纤的压力敏感特性,可以实现对压力变化的测量。

在石油钻井、航空航天等领域,光纤传感器被广泛应用于高压条件下的压力监测。

相比传统的电子压力传感器,光纤传感器具有更高的可靠性和耐用性。

3. 气体传感应用通过将光纤传感器与特定的气体传感材料相结合,可以实现对气体成分的监测。

例如,在环境监测中,光纤传感器可以用于监测空气中的有害气体浓度,如二氧化碳、一氧化碳等。

由于光纤传感器具有高灵敏度和快速响应的特性,可以实现对极低浓度气体的准确测量。

4. 应变传感应用由于光纤传感器具有极高的灵敏度和对应变的良好适应性,因此在结构安全监测领域得到了广泛应用。

通过布置在工程结构中的光纤传感器,可以实时监测结构的应变变化,从而提前发现潜在的结构故障隐患。

5. 生物医学应用光纤传感技术在生物医学领域也有着重要的应用。

光纤传感器的原理及应用

光纤传感器的原理及应用

统外部观察 、 监视系统 内部情 况, 其原理 图如 下图 4所示 。它 由物镜 、 传像束 、 传光束、 目镜组成 。光源发出的光通过光束 照 射到被测物 体上 , 明视场 , 照 通过物镜和传像 束把 内部结构 图 像送出来, 以便观察或照相 。
接 收装置转换为 电信号 ,经过信 号处理电路处理后便 可 以正
聂 帅华 , , 西 南 昌 人 , 男 江 本科 在 读 。研 究方 向 : 子技 术 , 电 通信 工程 。
6 8—

应 用 技 术 与 研 究 囊
中的光强度产生调制。可直接连接光探测器变成 电信号 ( 即调 制的强度包括 电信号) 。
3 . 相 位 调 制 光 纤 传 感 器 .2 2

部分反射回纤芯。 但当入射角e 小于临界入射角e 时, 。 光线
反复逐 次全反射 , 呈锯齿波形状在纤芯 内向前传播 , 最后从光
纤 的 另一 端 射 出 , 就 是 光 纤 的 传 光 原理 【 这 2 _ 。
器解调后 , 获得被测参数 。
32 光 纤 传 感 器 分类 .
就 不 会 透 射 出 界面 , 全 部 被 反 射 , 在纤 芯 和 包 层 的 界 面 上 而 光
点介绍了光纤传 感器 的原理及 其在 各方面的广泛应用 。光 纤
传 感 器 的 应 用 远 不 止 于 此 , 了上 述 应 用 之 外 , 传 感 器 在 全 除 纤 光 网络 安 全 、 长 油 田使 用 、 物 传 感 、 联 网 等 各 方 面 也 有 延 生 物 重 要 应 用 , 且我 们 相 信 光 纤传 感 器 还 会 得 到进 一 步 的 发 展 , 并 应 用 到 人们 生活 的方 方 面 面 。

光纤传感器原理的应用

光纤传感器原理的应用

光纤传感器原理的应用1. 简介光纤传感器是一种基于光学原理的传感器,通过利用光纤的特性将光信号转换为电信号或其他形式的信号,用于测量、监测和控制各种物理量。

光纤传感器具有快速响应、高灵敏度、抗干扰性强等优点,在各个领域都有广泛的应用。

2. 光纤传感器的工作原理光纤传感器的工作原理基于光的传输和散射特性。

其主要包括两个部分:光源和光纤接收器。

2.1 光源光源是光纤传感器中用于发射光信号的组件。

常见的光源有激光器和LED。

激光器由于具有高亮度、单色性好等特点,被广泛应用于光纤传感器中。

LED则具有功耗低、寿命长等特点,适合某些特定场景的应用。

2.2 光纤接收器光纤接收器是光纤传感器中用于接收并转换光信号的组件。

常见的光纤接收器有光电二极管(PD)和光电转换器。

光电二极管能够将接收到的光信号转换为电信号,而光电转换器则能够将光信号转换为其他形式的信号。

2.3 工作原理光纤传感器的工作原理是利用光信号在光纤中的传输特性进行测量和控制。

当光信号通过光纤传输时,会受到被测量物理量的影响而发生变化,这种变化可以通过光纤传感器来检测和测量。

常见的光纤传感器包括温度传感器、压力传感器、位移传感器等。

3. 光纤传感器的应用领域光纤传感器具有广泛的应用领域,以下列举了几个典型的应用领域:3.1 石油和天然气行业在石油和天然气行业中,光纤传感器可以用于油井监测、管道泄漏检测等方面。

通过在光纤上安装敏感元件,可以实时监测油井的温度、压力等参数,并及时报警,保障油井的正常运行。

3.2 制造业在制造业中,光纤传感器可以用于机械设备的监测与控制。

例如,通过在光纤上安装光纤陀螺仪,可以实时检测设备的姿态和转动方向,从而实现设备的精确定位和控制。

3.3 环境监测光纤传感器在环境监测中也有广泛的应用。

例如,通过在光纤上安装光纤布拉格光栅传感器,可以实时监测大气中的温度和湿度变化,从而为天气预报和气候研究提供数据支持。

3.4 医疗行业在医疗行业中,光纤传感器可以用于生命体征监测和手术辅助。

光纤传感器的原理

光纤传感器的原理

光纤传感器的原理光纤传感器是一种基于光纤技术的传感器,能够将光信号转换为电信号,用于测量、监测和控制各种物理量。

它具有高精度、高灵敏度、抗干扰性强等优点,被广泛应用于工业自动化、环境监测、医疗诊断等领域。

本文将介绍光纤传感器的工作原理及其应用。

一、光纤传感器的基本原理光纤传感器的基本原理是利用光的传播特性和传感物理量之间的相互作用来实现信号的转换。

光纤传感器由光源、光纤、光电探测器和信号处理电路等组成。

1. 光源:光源是产生光信号的装置,通常采用激光二极管或发光二极管。

通过控制光源的电流或电压,可以调节光源的亮度和光强。

2. 光纤:光纤是传输光信号的介质,通常由玻璃或塑料制成。

光纤具有高折射率和低损耗的特点,能够保持光信号的传播质量。

3. 光电探测器:光电探测器将光信号转换为电信号,常用的光电探测器包括光电二极管、光电倍增管和光电二极管阵列等。

光电探测器的选择取决于光信号的波长和强度。

4. 信号处理电路:信号处理电路用于放大、滤波和解调光电探测器输出的电信号。

根据不同的应用需求,信号处理电路可以包括模拟电路或数字电路。

二、不同类型的光纤传感器光纤传感器根据测量的物理量和工作原理的不同,可以分为多种类型。

下面将介绍几种常见的光纤传感器。

1. 光纤光栅传感器:光纤光栅传感器利用光栅结构对光信号进行调制和解调,实现对应变物理量的测量。

光纤光栅传感器可以测量温度、压力、应变、位移等参数。

2. 光纤陀螺仪:光纤陀螺仪是一种利用光纤的旋转效应实现角速度测量的设备。

它广泛应用于惯性导航系统、航天器姿态控制等领域。

3. 光纤压力传感器:光纤压力传感器利用光纤的弯曲效应来测量压力变化。

光纤压力传感器具有高灵敏度、快速响应、广泛测量范围等特点。

4. 光纤温度传感器:光纤温度传感器通过测量光纤的热导率或光纤中热致发光的变化来实现温度测量。

光纤温度传感器具有高分辨率、抗干扰性强等优点。

三、光纤传感器的应用领域光纤传感器具有广泛的应用领域,以下列举其中几个典型的应用。

光纤传感技术及其应用

光纤传感技术及其应用

光纤传感技术及其应用光纤传感技术是一种利用光学原理进行信息采集和传输的技术,被广泛应用于石油勘探、飞机、汽车等现代高科技领域中。

它主要依赖于光的传输和反射特性,通过光纤导线把传感器放置于需要监测的位置,通过光纤感应器的测量结果实现数据采集,其应用范围已经远远超出了传统传感技术,主要涉及到机械、气动、液动、电气等多个领域。

本文将介绍光纤传感技术的基本原理、分类以及在实际应用中的一些主要领域。

一、光纤传感技术的基本原理光纤传感技术主要依赖于光线的传输和反射特性,其中最基本的原理是光线在光纤中的传导和扩散。

当有光线被反射回来时,代表着光线所穿过的物质的特定情况,例如压力、温度,或者流量等变化,可以通过测量光的反射情况将这些信息收集起来。

光纤传感器主要由光源、光纤导线、接收器及处理单元四个部分组成,光源向光纤导线中发送光信号,经过导线的扩散,其中一部分信号会反射回来由接收器接收到,接收器收集反射回来的信号,并将其转化成需要监测的信号。

整个系统需要高精度的光学模型和控制算法来保证监测效果。

二、光纤传感技术的分类光纤传感技术根据测量信号的种类以及测量位置的不同可以分为很多不同的分类。

以下是几种主要的光纤传感技术分类:1、光纤布里渊散射传感(FBGS)光纤布里渊散射传感技术利用布里渊散射现象,将光声波信号转换为波长和相位,通过监测这些信号的变化来实现对物理量的测量。

常用于测量光学及机械应力等参数。

2、光栅与光纤光栅传感光栅与光纤光栅传感是一种基于光纤光栅的传感技术,其原理是将探头植入测量化学、温度、压力等物理量的区域,通过光纤光栅反射出来的光波进行测量。

常用于仪器仪表、气体、液体的浓度等方面。

3、微型化光纤传感器微型化光纤传感技术是现代高科技的尖端之一,其基本原理是利用光纤芯的材料特性进行设计,缩小探头的尺寸,从而提升传感器的敏感度、准确度以及可靠性。

常用于化学、生物等领域的测量。

三、光纤传感技术在实际应用中的主要领域光纤传感技术被广泛应用于现代工业、军事和科学研究等领域,在各自领域内展现出了极强的应用价值。

传感器原理及其应用光纤传感器课件

传感器原理及其应用光纤传感器课件
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
2.非功能型(传光型)光纤传感器
这类光纤传感器中光纤仅起导光
作用,只“传”不“感”,对外
界信息的“感觉”功能依靠其他
物理性质的功能元件完成,光纤
在系统中是不连续的。此类光纤
传感器无需特殊光纤及其他特殊
技术,比较容易实现,成本低; 非功能型光纤传感器使用的光
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
光电转换器件采用光电二极管
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
9.2 光纤传感器的分类及其工作原理
光纤传感器与电类传感器的对比


电源


电类传感器
电缆


电量检测



光源



可以证明,该入射角为
sin0
1 n0
n12 n22
光 纤 的 “ 数 值 孔 径 ” NA ,
NAsin0n10 n12n22
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
9.1.3 光纤的种类 1.按材料分类
1) 高纯度石英(SiO2)玻璃纤维
这种材料的光损耗比较小,在波长时,最低损耗约为 0.47 dB/km 。 锗 硅 光 纤 , 包 层 用 硼 硅 材 料 , 其 损 耗 约 为 0.5 dB/km。
光纤传感器的特点:
①电绝缘性能好。 ②抗电磁干扰能力强。 ③非侵入性。 ④高灵敏度。 ⑤容易实现对被测信号的远距离监控。 光纤传感器可测量位移、速度、加速度、液位、应变、压力、 流量、振动、温度、电流、电压、磁场等物理量

光纤传感器的原理和应用

光纤传感器的原理和应用

光纤传感器的原理和应用光纤传感器是一种基于光纤技术的传感器,通过光纤的传输和延时特性来实现对物理量的测量和检测。

它具有高精度、快速响应、抗干扰能力强等优点,被广泛应用于工业、医疗、环境监测等领域。

本文将介绍光纤传感器的基本原理和常见的应用场景。

一、光纤传感器的基本原理光纤传感器是利用光纤波导结构的特性来实现物理量的测量和检测。

光纤波导是一种能够将光信号传送的导光器件,其核心部分是由折射率高于外部包层的光纤芯构成。

基于光的干涉、散射、吸收等特性,光纤传感器能够实现对温度、压力、位移、浓度等多种物理量的测量。

1. 光纤干涉型传感器光纤干涉型传感器是利用光的干涉效应来测量物理量的一种传感器。

光信号在光纤中传播时,受到温度、应变等物理量的影响,使得光的相位发生改变。

通过测量光的相位差,可以确定物理量的大小。

常见的光纤干涉型传感器有光纤布拉格光栅传感器、光纤干涉仪传感器等。

2. 光纤散射型传感器光纤散射型传感器是利用光在光纤中的散射效应来测量物理量的一种传感器。

光信号在光纤中传输时,会与光纤中的杂质或结构缺陷散射,通过测量散射光的特性来推断物理量的变化。

常见的光纤散射型传感器有光时域反射计传感器、拉曼散射光纤传感器等。

3. 光纤吸收型传感器光纤吸收型传感器是利用光在光纤中的吸收效应来测量物理量的一种传感器。

光信号在光纤中传输时,会被光纤材料吸收,通过测量吸收光的强度来判断物理量的变化。

常见的光纤吸收型传感器有红外光纤传感器、光纤化学传感器等。

二、光纤传感器的应用领域光纤传感器具有灵敏度高、抗干扰能力强等优点,被广泛应用于各个领域。

以下是几个典型的应用场景。

1. 工业自动化光纤传感器在工业自动化领域中,常用于测量温度、压力、液位等物理量,用于控制和监测生产过程。

例如,光纤温度传感器可以实时监测设备的温度变化,及时进行报警和控制;光纤压力传感器可以监测管道中的压力变化,用于流体控制和安全保护。

2. 医疗领域光纤传感器在医疗领域中,常用于生理参数的监测和诊断。

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景
光纤温度传感器是利用光纤光纤作为传感元件,通过光纤的光学特性来测量温度变化的一种传感器。

光纤温度传感器的工作原理:
光纤温度传感器一般由两根或多根光纤组成,在其中一根光纤中注入一定量的光信号,另一根光纤则作为传感器测量信号的接收端。

光信号在进入传感光纤前会经过一个特殊的光纤中心,该中心根据温度变化会发生膨胀和压缩。

当外部温度变化时,会引起传感光纤的长度发生微小的变化,进而影响光信号的传输时间和强度。

接收端通过测量光信号的传输时间和强度变化来间接测量温度。

光纤温度传感器的应用场景:
1. 工业领域:光纤温度传感器可以应用于高温环境下的温度测量,例如炼油、钢铁制造、玻璃制造等工艺过程中的温度监测。

2. 环境监测:光纤温度传感器可以用于地下水温度的监测,可以帮助提供地下水温度的信息,用于环境保护和地热能的开发利用。

3. 电力系统:光纤温度传感器可以测量电缆、变压器等电力设备的温度,及时发现异常情况,以保障电力系统的安全运行。

4. 医疗领域:光纤温度传感器可以测量人体内部的温度变化,用于监测患者的体温,可以应用于体温监护仪、手术中的温度监测等场景中。

5. 空调系统:光纤温度传感器可以测量室内、室外的温度变化,用于空调系统的控制和自动调节,提高能源利用效率。

总之,光纤温度传感器凭借其高灵敏度、快速响应、耐高温、抗电磁干扰等特点,在工业、环境、医疗等领域中有着广泛的应用前景。

光纤传感器的设计和应用

光纤传感器的设计和应用

光纤传感器的设计和应用随着科技的不断发展,传感器技术也在不断更新,而光纤传感器作为一种新型传感器,被越来越多的人们所重视和应用。

本文就来讨论一下光纤传感器的设计和应用。

一、光纤传感器的概念和原理光纤传感器是利用光纤传输光信号的特性,通过光纤传感器的结构和信号处理设备,可以检测物体或环境的温度、压力、形变等变化,从而实现非接触式、高精度的测量和监控。

其原理主要是基于物体或环境对光纤的物理性质的改变,如温度引起的热膨胀、压力引起的形变、折射率的变化等,从而改变了光纤的透明度、反射率、传输延迟时间等物理性质,通过测量这些变化可以确定物体或环境的状态。

二、光纤传感器的设计与实现光纤传感器的设计和实现包括两个方面,一是传感器的结构设计,二是信号处理和数据采集。

传感器结构设计光纤传感器的结构设计主要包括光纤的选择、布置方式和传感头的结构设计。

通常采用单模光纤或多模光纤作为传感元件,优选质量好、反射率高、传输速度快且抗拉强度高的光纤。

对于光纤的布置方式,可分为点式、线式和面式三种布置方式,具体应根据检测对象的形状和要求来设计选择。

对于传感头的结构设计,应综合考虑其机械性能、光学性能和可制造性等因素,以保证传感器的灵敏度和可靠性。

信号处理和数据采集光纤传感器使用标准光学脉冲测量技术和比较方式,在光纤传输的信号中增加一些测试波形,检测物体或环境信号变化,然后将信号传输到信号处理器或数据采集器中,进行信号解析、滤波、放大等处理,最终得到准确的测量数据。

信号处理技术的发展,使得光纤传感器的高速化、智能化和网络化等方向有了广阔的应用前景。

三、光纤传感器的应用领域由于光纤传感器具有体积小、质量轻、防腐蚀、高温、抗干扰等特点,因此在现代工业生产和环境监测等领域得到广泛应用。

1、工业自动化在机械加工、动力机械、化工、食品、制药等行业中,利用光纤传感器可以实现流体、压力、温度等参数的监控和控制,全面提高了机器设备的自动化水平。

光纤传感器的原理和应用

光纤传感器的原理和应用

光纤传感器的原理和应用光纤传感技术是指利用光纤作为传感元件来实现物理量的测量和控制。

光纤传感技术具有非常广阔的应用领域,如制造业、民用建筑、水利工程、医药、环境监测等领域,由于它具有高精度、高速度、免维护等特点,所以被广泛应用。

一、光纤传感器原理光纤传感器一般由光源、光纤、光束分布器、光电探测器、信号处理器等部分组成。

光源照射光纤时,产生一组又一组的光脉冲,光脉冲由光纤传输到光电探测器转化成电信号,再由信号处理器进行信号放大、滤波、计数处理,最后输出相应的测量值。

在光纤传感器中,光纤具有很好的传输光信号特性,使得它可以通过改变传输时光信号的某些特性,如光强、相位、偏振、频率等,来感测物理量的变化,从而实现物理量的测量。

光纤传感器的工作原理是利用光的传输特性,通过光学、光电或光机械转换,测量或控制某种物理量。

一般来说,光纤传感技术主要包括两类:依据光纤在用过程中光的改变而产生的变化,如光纤拉伸弯曲、温度、压力、应变等参数的变化,并利用光纤的光学、光电、光机械转换机制来实现测量和控制。

二、光纤传感器的应用光纤传感技术在实际应用中极其广泛,以下是其一些常见的使用场景。

1.温度测量:光纤传感器能够测量高温和低温,无论是室内还是户外,都可以使用这种传感器来测量温度。

温度型光纤传感器和温度变化导致的光学特性改变有关,并且可以针对不同的工作环境配置不同类型的传感器。

2.压力测量:光纤传感器同样能够测量压力变化,该技术主要利用压力引起的光学特性改变来测量压力。

光纤压力传感器的结构简单,使用方便,能够监测到各种类型的压力变化,并且可在高温、高压的环境下稳定运行。

3.应变测量:应变测量是光纤传感技术的一种常见应用。

在应变型传感器中,光纤通常被固定在被测物的表面,当物体发生应变时,光束分布器释放的光经过光纤时发生变化,这种变化可以通过光电转换成电信号输出。

4.光纤激光雷达:光纤传感技术在激光雷达中应用得非常广泛。

光纤激光雷达通过发射激光束,将激光束通过光纤传输到目标反射面上,利用激光的反射光回传光纤,最终通过信号的分析能够得出目标距离、方位、高度等信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤传感器原理与应用1 引言传感器技术、通信技术、计算机技术是现代信息技术的三大支柱,传感器作为探测与获取外界信息的重要环节之一而被应用于工业、农业及军事等各个领域。

近20多年来,光纤传感器的发展则大有取代传统传感器的趋势。

光纤传感器是光通信和集成光学技术发展的结晶,与以往的传感器不同,它将被测信号的状态以光学的形式取出[1]。

光信号不仅能被人所直接感知,利用半导体二极管等小型简单元件还可以进行光电、光学转换,极易与一些电子装备相匹配。

此外,光纤不仅是一种敏感元件,还是一种优良的低损耗传输线,因此,光纤传感器还可以用于传统的传感器所不适用的远距离测量。

自从20世纪70年代末光纤传感器诞生以来,便由于其具有的防火、防爆、精度高、损耗低、体积小、重量轻、寿命长、性价比高、复用性好、响应速度快、抗电磁干扰、频带范围宽、动态范围大、易与光纤传输系统组成遥测网络等优点而被广泛地应用于各行各业。

随着对其研究的不断深入,光纤传感器势必会对科学研究、国民生产、日常生活等诸多领域产生深远影响。

2 光纤传感器基本构成及原理光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。

其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。

光纤传感器按传感原理可分为两类:一类是传光型(非功能型)传感器[2],另一类是传感型(功能型)传感器[3]。

在传光型光纤传感器中,光纤仅作为光的传输媒质,对被测信号的感觉是靠其它敏感元件来完成的,这种传感器中出射光纤和入射光纤是不连续的,两者之间的调制器是光谱变化的敏感元件或其它性质的敏感元件。

在传感型光纤传感器中光纤兼有对被测信号的敏感及光信号的传输作用,将信号的“感”和“传” 合而为一,因此这类传感器中光纤是连续的。

由于这两种传感器中光纤所起的作用不同,对光纤的要求也不同。

在传光型传感器中光纤只起传光的作用,采用通信光纤甚至普通的多模光纤就能满足要求,而敏感元件可以很灵活地选用优质的材料来实现,因此这类传感器的灵敏度可以做得很高,但需要较多的光耦合器件,结构较复杂;传感型光纤传感器的结构相对来说比较简单,可少用一些耦合器件,但对光纤的要求较高,往往需采用对被测信号敏感、传输特性又好的特殊光纤。

到目前为止,实际中大多数采用前者,但随着光纤制造工艺的改进,传感型光纤传感器也必将得到广泛的应用。

按光在光纤中被调制的原理不同,光纤传感器可分为:强度调制型、相位调制型、偏振态调制型、频率调制型、波长调制型等。

迄令为止,光纤传感器能够测定的物理量已达七十多种。

3光纤传感器特点与传统的传感器相比,光纤传感器具有独特的优点:(1) 灵敏度高由于光是一种波长极短的电磁波,通过光的相位便得到其光学长度。

以光纤干涉仪为例,由于所使用的光纤直径很小,受到微小的机械外力的作用或温度变化时其光学长度要发生变化,从而引起较大的相位变化。

假设用1 0米的光纤,l℃的变化引起1000ard的相位变化,若能够检测出的最小相位变化为0.01ard,那么所能测出的最小温度变化为l 0℃,可见其灵敏度之高。

(2) 抗电磁干扰、电绝缘、耐腐蚀、本质安全由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输媒质,并且安全可靠,这使它可以方便有效地用于各种大型机电、石油化工、矿井等强电磁干扰和易燃易爆等恶劣环境中。

(3) 测量速度快光的传播速度最快且能传送二维信息,因此可用于高速测量。

对雷达等信号的分析要求具有极高的检测速率,应用电子学的方法难以实现,利用光的衍射现象的高速频谱分析便可解决。

(4) 信息容量大被测信号以光波为载体,而光的频率极高,所容纳的频带很宽,同一根光纤可以传输多路信号。

(5)适用于恶劣环境光纤是一种电介质,耐高压、耐腐蚀、抗电磁干扰,可用于其它传感器所不适应的恶劣环境中。

此外,光纤传感器还具有质量轻、体积小、可绕曲、测量对象广泛、复用性好、成本低等特点。

4 光纤传感器的应用正是由于光纤传感器拥有如此之多的优点,使得其应用领域非常广泛,涉及石油化工、电力、医学、土木工程等诸多领域。

4.1 光纤传感器在石油化工系统的应用在石油化工系统中,由于井下环境具有高温、高压、化学腐蚀以及电磁干扰强等特点,使得常规传感器难以在井下很好地发挥作用。

然而光纤本身不带电,体小质轻,易弯曲,抗电磁干扰、抗辐射性能好。

特别适合于易燃易爆、空间受严格限制及强电磁干扰等恶劣环境下使用,因此光纤传感器在油井参数测量中发挥着不可替代的作用,它将成为可应用于油气勘探及石油测井等领域的一项具有广阔市场前景的新技术。

4.1.1 光纤传感器在油气勘探[4]中的应用光纤传感器由于其抗高温能力、多通络、分布式的感应能力,以及只需要较小的空间即可满足其使用条件的特点,使得在勘探钻井方面尤其独特的优势。

应用光纤传感器可以制成井下分光计,分布式温度传感器及光纤压力传感器等适用于这种特殊作业要求的产品。

(1) 井下分光计流体分析仪如图1所示,可用于了解初期开发过程中的原油组成成分。

它由两个传感器合成:一个是吸收光谱分光纤,另一个是荧光和气体探测器。

井下流体通过地层探针被引入出油管,光学传感器用于分析出油管内的流体。

流体分析分光计则提供了原位井下流体分析,并对地层流体的评估加以改进。

(2) 分布式温度传感器光纤分布式温度传感器是井下应用最为流行的光纤传感器。

应用实例是监测注水蒸气重油开采系统。

蒸汽被注入重油层用以降低油的黏度,使稠油能够开采出来。

井下蒸汽温度可高达250℃以上。

图1 流体分析仪构造(3) 压力传感器侧孔光纤式压力传感器目前正在研发中,其主要致力于超高温和井下压力监测任务。

目前基于光纤传感器已经出现其他商业产品,例如,用于多相流测量和分布式动态应变测量的光纤探针。

其高可靠性和高效低耗的技术优势是光纤产品在油田应用上取得成功的关键因素。

4.1.2 光纤传感器在石油测井中的应用石油测井是石油工业最基本和最关键的环节之一,压力、温度、流量等参量是油气井下的重要物理量,通过先进的技术手段对这些量进行长期的实时监测,及时获取油气井下信息,对石油工业具有极为重要的意义[5]。

光纤传感器对电磁干扰不敏感而且能承受极端条件,包括高温、高压以及强烈的冲击与振动,可以高精度地测量井筒和井场环境参数,同时,光纤传感器具有分布式测量能力.可以测量被测量的空间分布,给出剖面信息。

而且,光纤传感器横截面积小,外形短,在井筒中占据空间极小[6]。

而这些特性都是传统的电子传感器在井下的恶劣环境下所不具备的。

利用光纤传感器可以进行井下流量测量、温度测量、压力测量、含水(气)测量、密度测量、声波测量等。

(1) 流量测量由于光的强度、相位、频率、波长等特性在光纤传输的过程中会受到流量的调制,利用一定的光检测方法把调制量转换成电信号,就可以求出流体的流量,这就是光纤流量计的工作原理[7]。

(2) 温度及压力测量分布式光纤测量系统(DTS)利用光纤后向拉曼散射的温度效应,可以对光纤所在的温度场进行实时监测,EFPI型(非本征型F-P干涉)、FBG型光纤传感器为波长编码型传感器,具有灵敏度高、可同时测量压力、温度、应力等多个参量的特点[8]。

光纤热色温度传感器是由白光源、多模光纤组成的反射式温度传感器;光纤辐射式温度传感器利用黑体辐射能量,其非接触,可测瞬问温度,响应速度快,不需要热平衡时间,可用于高温测量;半导体吸收式光纤温度传感器利用其半导体材料的吸收边波长随着温度的增加而向较长波长位移的特性,选择适当的半导体发光二极管,使其光谱范围正好落在吸收边的区域,这样透过半导体的光强就随着温度的增加而减少[9]。

(3) 含水(气)率及密度测量U型光纤的传输功率随外界介质折射率变化而变化,光波作为信息载体,与混合流体电阻率、流型及水质无关,基于该原理的光纤持率/密度传感器从本质上解决了现有持率存在的高含水无分辨率和放射性物质的应用问题,对于多相流体油、水、气的折射率各不相同,因而混合流体的折射率会随着油、水、气比例的改变而改变。

因此这种折射率调制型光纤传感器不仅能测流体持率,可同时测流体密度,其精度较高。

(4) 声波测量地震波在不同的介质中传播,接收到的地震波波形就会不同,根据不同的地震波形态,可识别地层沉积序列和沉积构造,为储层定位、判断窜槽、检测套管破损及断裂、射孔层位及确定流体流量等。

VSP地震测井,就是把检波器放人井中,通过地面击发的地震波或利用井中流体流动等产生的微震动,由井中的检波器接收地震信号。

永久井下光纤三分量地震测量具有高的灵敏度和方向性,能产生高精度的空间图像,不仅能提供近井眼图像,而且能提供井眼周围地层图像,测量范围能达数千公里。

它能经受恶劣环境条件,且没有可移动部件和井下电子器件,能经受强的冲击和震动,可安装在复杂的完井管柱极小的空间4.2 光纤传感器在电力系统的应用电力系统网络结构复杂、分布面广,在高压电力线和电力通信网络上存在着各种各样的隐患,因此,对系统内各种线路、网络进行分布式监测显得尤为重要。

4.2.1 在高压电缆温度和应变测量中的应用目前,国外(主要是英国、日本等)已利用激光喇曼光谱效应研制出分布式光纤温度传感器产品。

而国内也在积极地开展这方面的研究工作。

国内把分布式光纤温度传感技术引入电力系统电缆测温的研究工作只是刚刚开始。

联系到我国南方地区去年所遭受到的雪灾来考虑,如果能在高压电缆上并行地铺设传感光缆,对电力系统电缆、铁塔等设施的温度、压力等参量进行实时测量,就能够做到及时排险,从而尽可能减少经济损失。

可见,光纤传感器在电力系统将具有广泛的应用前景。

在理想情况下,光纤应被置于尽可能靠近电缆缆芯的位置,以更精确地测量电缆的实际温度。

对于直埋动力电缆来说,表贴式光纤虽然不能准确地反映电缆负载的变化,但是对电缆埋设处土壤热阻率的变化比较敏感,而且能够减少光纤的安装成本。

4.2.2 在电功率传感器中的应用电功率是反映电力系统中能量转换与传输的基本电量,电功率测量是电力计量的一项重要内容。

随着电力工业的迅速发展,传统的电磁测量方法日益显露出其固有的局限性,如电绝缘、电磁干扰、磁饱和等问题,因而人们一直在致力于寻找测量电功率的新方法。

可以说光纤传感器的出现给人们解决这一问题带来了福音。

光纤电功率传感器的主要特点是:由于电功率传感同时涉及电压、电流2个电量,因而通常需要同时考虑电光、磁光效应,同时利用2种传感介质或1种多功能介质作为敏感元件,这使得光纤电功率传感头的结构相对复杂;光纤电功率传感器的光传感信号中有时同时包含电压、电流信号,因此其信号检测与处理方法也将比较复杂[10]。

相关文档
最新文档