求离心率的取值范围方法总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档求离心率的取值范围

椭圆的离心率,双曲线的离心率,抛物线的离心率。求椭圆与双曲线离

心率的范围是圆锥曲线这一章的重点题型。求离心率的取值范围涉及到解析几何、平面几何、代

数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,构造不等式。

下面从几个方面浅谈如何确定椭圆、双曲线离心率e的范围。

一、利用曲线的范围,建立不等关系

例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,

使,求离心率e的取值范围。

例2.已知椭圆

22

22

1(0)

x y

a b

a b

右顶为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,

求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系例1.已知12

F F是椭圆的两个焦点,满足的点P总在椭圆内部,则椭圆离心率

的取值范围是()

A.(0,1)B.

1

(0,]

2

C.

2

(0,)

2

D.

2

[,1)

2

例2.直线L过双曲线的右焦点,斜率k=2。若L与双曲线的两个交点分别在左、右

两支上,求双曲线离心率的取值范围。

例3. 已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线

交于A、B两点。若△ABF2是锐角三角形,求双曲线的离心率的取值范围。

例4.设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率

的取值范围是( ).

A.

23

2

3

B.

23

2

3

C.

23

3

D.

23

3

例5.过双曲线的左焦点

1

F且与双曲线的实轴垂直的直线交双曲线于A、B两点,若在双曲线的虚

轴所在直线上存在一点C,使得0

90

ACB,双曲线的离心率e的取值范围为_______________

精品文档

三、利用曲线的定义和焦半径范围,建立不等关系

例1.已知双曲线的左右焦点分别为、

,点P 在双曲线的右支上,

,求此双曲线的离心率

e 的取值范围。

例2.已知双曲线

22

2

2

1(0,0)x

y

a

b a b 的左、右焦点分别为

12(,0),(,0)F c F c .若双曲线上

存在点

P 使

12

21

sin sin

PF F a PF F c

,求该双曲线的离心率的取值范围。

四、利用点与圆锥曲线的位置关系,建立不等关系

例1.已知ABC 的顶点B 为椭圆

12

2

22

b

y a

x )0(b a

短轴的一个端点,另两个顶点也在椭圆

上,若

ABC 的重心恰好为椭圆的一个焦点F )0,(c ,求椭圆离心率的范围

.

五、利用判断式,建立不等关系

例1.在椭圆

222

2

1(0)x y a b a

b

上有一点M ,12,F F 是椭圆的两个焦点,若2

21

2MF

MF b ,

求椭圆的离心率.的范围。

例2.设双曲线

与直线

相交于不同的点

A 、

B 。求双曲线的离心率

e

的取值范围。

六、利用均值不等式,建立不等关系。

例1. 已知点P 在双曲线

)0b

,0a (1b

y a

x 2

22

2的右支上,双曲线两焦点为

21F F 、,

|

PF ||

PF |22

1最小值是

a 8,求双曲线离心率的取值范围。

七、利用函数的值域,建立不等关系

例1.设1a

,则双曲线

22

2

2

1(1)

x y

a

a 的离心率e 的取值范围是(

)A.(

2,2)

B.(2,

5)

C.(2,5)

D.(2,

5)

例2.椭圆

12

22

2

b

y a

x )0(b a

与直线01

y

x 相交于A 、B 两点,且0OB

OA (O 为

原点),若椭圆长轴长的取值范围为

6,5,求椭圆离心率的范围

.

八、利用三角函数有界性,建立不等关系

例1.双曲线

222

2

1(0,0)x y a b a

b

的两个焦点为12,F F ,若P 为其上一点,且

122PF PF ,

则双曲线离心率的取值范围是()

A.(1,3)B.(1,3]

C.(3,

)D.[3,)

相关文档
最新文档